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ABSTRACT

Background The COVID-19 pandemic emphasised the
importance of access to reliable real-time forecasts for key
epidemiological indicators. Given the strong heterogeneity
between regions, providing forecasts at the local level is
essential for health professionals.

Methods We developed a SARS-CoV-2 transmission model
in France, COVIDici, that performs parameter estimation
using up-to-date vaccination coverage and hospital data to
provide forecasts up to a four-week horizon based on the
current epidemic trend. We present the model, its associated
online tool and perform a retrospective evaluation of the
forecasts provided from January to December 2021 by
comparing to three standard statistical forecasting methods
(auto-regression, exponential smoothing, and ARIMA) at the
national and regional levels.

Results COVIDici allowed simultaneous real-time
visualisation of several indicators of the COVID-19 epidemic
at the sub-national level. For anticipating risk of critical care
unit overload, it performed worse compared to the baseline
methods for forecasts under the three-week horizon, but had
better point forecasts at the longest horizons (e.g. four weeks)
for 8 of the 13 regions considered depending on the metric.

Conclusions Effective communication between modelers
and clinicians is essential for utilising forecasts for health
care planning. Online visualisation tools and consideration of
how metrics can be affected by distortion from non-
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dialogue.

What is already known on this topic

e The US and European Covid-19 Forecast Hubs publish
real-time COVID-19 forecasts on the national level for new
deaths, new cases, and hospital admissions, but not more
direct measurements of hospital strain like critical care bed
occupancy.

e In France, statistical modelling approaches have been
proposed to anticipate hospital stain at the sub-national
level but are limited by a two-week forecast horizon.

What this study adds

e We present a sub-national French modelling framework
and online application for anticipating hospital strain at the
four-week horizon that can account for abrupt changes in
key epidemiological parameters.

e [t was the only publicly available real-time non-Markovian
mechanistic model for the French epidemic when
implemented in January 2021 and, to our knowledge, it still
was at the time it stopped in early 2022.

How this study might affect research, practice or
policy

¢ Further adaptations of this surveillance system can serve as
an anticipation tool for hospital strain across sub-national
localities to aid in the prevention of short-noticed ward
closures and patient transfers.
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INTRODUCTION

The COVID-19 pandemic emphasised that
policymakers need access to accurate forecasts of
key epidemiological indicators to mitigate strain on
hospital services and reduce preventable deaths
[1,2]. Furthermore, policies implemented at the local
level outperformed uniform national policies [3]. This
led to international projects tasked with creating
centralised repositories for COVID-19 forecasts
pertaining to the United States [4], Germany/Poland
[5], and Europe [6]. Unfortunately, in contrast to their
counterparts, the European COVID-19 Forecast Hub
only considers the national level and countries like
France had to rely on other sources to optimise their
local to national healthcare system management.

Of particular interest is intensive care unit (ICU)
occupancy, one of the most direct indicators of
hospital strain, which is predicted using either
statistical or mechanistic models. Statistical models
use correlations in previously observed data to
explain model structure that can be separated from
noise and extrapolated to the future. In time series
analysis, they can benefit from the addition of
adequate predictor variables. For example, [7]
proposed an ensemble model approach that
combined several statistical models (including
machine learning) to utilise predictors identified from
available epidemiological, mobility, and
meteorological data to make 14-day forecasts for
ICU admissions and ICU occupancy by French
region. Their ensemble was effective in the short-
term but had more difficulty predicting beyond the lag
(typically at most two weeks) between their
predictors (e.g. positive antigen testing) and the
subsequent hospitalisation events.

Mechanistic models are explicitly based on a
simplified version of the underlying epidemiological
process [8]. The most popular is the compartmental
model, which typically involves separating a
population into distinct sub-populations (e.g.
susceptible, infected, and ‘removed’ individuals in
the SIR model) and inferring the transition dynamics
between these compartments. This can be done
based on assumptions regarding the biology of the
pathogen or via optimisation approaches using
observed data, e.g. hospital admissions, to make
inferences regarding partially or unobserved factors
such as daily infections [9]. The biological

assumptions simplify the causal relationships
between a pathogen’s infectivity, pathogenicity, and
lethality so that long-term forecasts can be produced.
These models provide us with a mechanistic
understanding of the epidemic process and can help
to anticipate planned changes such as lockdowns or
increases in vaccination coverage. A limitation of
compartmental models is that they typically require
large, idealised populations for best results [10] and
can have lower predictive performance [11]
depending on the time scale. However, as shown in
[12], a non-Markovian discrete-time compartmental
model may have the potential to capture the
dynamics up to 5 weeks on average (although this
also reflects the epidemiological relevance of the
underlying assumptions made).

To facilitate COVID-19 monitoring in France, we
developed COVIDici: a mechanistic transmission
model that accurately captures the hospital and
mortality dynamics from the French epidemic [13].
Model results were publicly communicated via a web
dashboard (https://cloudapps.france-
bioinformatique.fr/covidici/), which provided real-
time visualisations of the French epidemic at the
national, regional, and departmental levels.
COVIDici was updated daily using databases
published by the national public health agency,
Santé Publique France [14] until 2022 when it was
halted after the emergence of the Omicron variant
[15] led to decreased interest in epidemic forecasting
by French authorities, partly driven by the belief that
Omicron BA.1 would represent our way out of the
pandemic and the last wave [16].

Here, we briefly summarise the structure of the
underlying compartmental model, the statistical
procedure for the parameter inference and describe
communication via the web dashboard. We present
an evaluation of COVIDici’'s forecasts for ICU
occupancy up to the four-week horizon at the
regional and national levels using standard metrics
for continuous variables as well as a binarized
version representing ICU overload to focus on model
performance in anticipating wave peaks. Standard
statistical forecasting methods (auto-regression,
exponential smoothing, and ARIMA) are included as
baseline models. Finally, we discuss perspectives for
COVID-19 epidemic modelling in the context of
decreased surveillance.
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METHODS

This section presents a summary of COVIDici and a
retrospective evaluation. A more detailed discussion
with mathematical formulas can be found in the
Supplementary Materials. The scripts and data used
to perform the analysis and generate this manuscript
are available on GitLab
(https://gitlab.in2p3.fr/ete/covidici_public) and
archived in Zenodo [17].

The model

COVIDici is based on the COVIDSIM framework, a
discrete-time deterministic age-structured
transmission model tailored to capture the dynamics
of the hospital indicators of the epidemic in France
[13], which was modified to include vaccination. The
structure of the model is shown in Figure 1, which
describes the age-stratified flows between the
susceptible population, mild infections, severe
infections eventually requiring hospitalisation and a
removed compartment consisting of recovered and
deceased individuals.

Modelling vaccination

The French national vaccination campaign started in
late December 2020. We explicitly modelled that the
vaccines partially prevent infection and critical
COVID-19 by reducing the force of infection
experienced by all vaccinated susceptible hosts and
the probability of being critically ill upon infection,
denoted v and vc respectively. We set vaccine
coverage in each age class in the model using the
official VAC-SI database [18].

Future vaccination rates were predicted using a
linear regression for each age group trained on the
previous 3 weeks of vaccination data. We assumed
that vaccination begins with the older age classes
and that all age classes have an arbitrary vaccine
coverage threshold of 90%. If the coverage for an
age class was ever over this threshold, the doses
planned for this age class were redistributed to the
next oldest age class.

To avoid the inflation of the number of
parameters, we assumed that full vaccination only
required a single dose. Another simplifying
assumption is that the vaccine is instantaneously
efficient, with an assumed permanent reduction in

severe infection forms of 90% (vc = 0.1) and an 80%
contagiousness reduction (vr = 0.2), which is an
optimistic estimate [19]. Additional details are found
in [13].

Parameter inference

Unknown parameters were inferred via MCMC
simulation. While some parameters, e.g. the
infection-to-hospitalisation delay, were inferred at
the nationwide level only, most were independently
fit for each sub-national unit. We expected some of
these parameters to change over time due to virus
evolution, e.g. the increased transmissibility of the
Alpha [20] and then Delta [21] variants, but also to
public health interventions (e.g. lockdowns, curfews,
limitations on businesses, etc.), social factors (e.g.
school holidays), improvement in COVID-19 patient
care, and variation in patient profiles. To account for
this, we allowed for some parameters to be time-
dependent by partitioning the time since the
beginning of the epidemic and allowing each period
to be associated with its own parameter set.

Parameter estimations were based on the daily
COVID-19-related critical care admissions and
hospital deaths from the COVID-19 hospital activity
database (SI-VIC) [14]. In France, critically ill
patients can be hospitalised either in intensive care
units, continuous care units, or acute care units, the
three forming the critical care capacities [22]. For
simplicity here, ICU refers to the wider category of
critical care beds, as provided by SI-VIC.
Furthermore, we assume the age distribution
between localities to be fixed and based on the
official demographics data [23].

Communication

An automated cluster computing workflow refit the
COVIDici model using daily updates of hospital,
vaccination and testing data downloaded from the
SI-VIC database, allowing a Shiny web application
(see Figure 2 for screenshot, link in Introduction or
[17] for source code) to communicate real-time
results to the public. The original 2021 production
version permitted users to visualise the combined
past and future model fit by national, regional or
departmental administrative unit for multiple
epidemiological  parameters, including ICU
admissions, ICU occupancy, mortality (cumulative
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and daily), temporal reproductive number (R(t)),
infections  (cumulative, daily and current),
vaccination coverage and incidence for positive
tests.

In 2022, a post-mortem version of the interface
was deployed to allow for retrospective inspection of
past forecasts with respect to a historical reference
date. This version allows visualisation of all forecasts
occurring prior to the reference date and includes
basic evaluation metrics based on ICU overload (i.e.
binarized ICU occupancy) and a colour-coded
heatmap of hospital strain for varying forecast
lengths and arbitrary saturation thresholds.

Benchmarking
Our assessment is based on original forecasts made
by COVIDici between January 30, 2021 and the first
detected Omicron case in France (i.e. December 2,
2021), taken on a weekly basis to match with
evaluation frameworks of the European and US
Covid-19 Forecast Hubs. We focus here on ICU
occupancy and only consider the regional and
national levels while emphasising that many of the
results are equally as valid on the departmental level,
especially when they contain major urban areas.
The following baseline models were evaluated
using a rolling forecasting origin [24] starting on
August 2, 2020:

» ETS+ARIMA is an ensemble of an ARIMA and
an exponential smoothing (ETS) model fit
using automated defaults in the fable package
in R. It uses a log transformation of the rolling
7-day average of the ICU occupancy using only
the data available for COVIDici to make its
original forecast for that reference date.

» AR-Lasso is an auto-regressive (AR) machine
learning type model implemented using the
caretForecast package. Lagged values from
the previous 21 days are selected using the
Least Absolute Shrinkage and Selection
Operator (LASSO) [25] tuned using time-series
cross-validation as implemented in [26] to
prevent data leakage and reduce overfitting.

 Naive is a special case of an AR-1
implemented using the fable package. The
point forecast is simply the last observed value

and is optimal if the time series is a random
walk.

Metrics

As recommended by the US and European COVID-
19 Forecast Hubs, we evaluate the point forecasts
with the absolute error (AE), individual prediction
levels with the empirical coverage rate (ECR) and
the forecast distributions with the weighted interval
score (WIS). The WIS is a proper scoring rule that
generalises the absolute error and gives penalties
for interval spread as well as for over- and
underprediction [27]. All three metrics (AE, ECR,
WIS) were calculated using the scoringutils package
[28]. We wused the default summary function
implemented in scoringutils (i.e. the mean) when
aggregating over geographic units. However, we use
the median when aggregating over time because the
mean tended to give distorted results due to outlier
errors that are common during the peaks of
epidemiological waves (see Figure 3A).

Summarising AE and WIS with the median have
the drawback that it is more likely to reflect forecaster
performance between waves rather than its ability to
anticipate peaks, which is arguably the more
important objective. Furthermore, AE and WIS tend
to harshly punish outlier errors during wave peaks
which can at least be partially explained by a survivor
bias that occurs every time a public health policy is
implemented (see Figure 3B for non-exhaustive list),
as well as spontaneous behavioural change. As
illustrated by Figure 3C, this bias (i.e. the shaded
area between the curves) corresponds to the
difference between what would happen in absence
of intervention (dashed curve) and what eventually is
observed (the solid curve). While the magnitude of
this bias at the peaks is counterfactual and subject to
debate, several studies have indicated that even mild
non-pharmaceutical interventions can have similar
effects on curbing the spread of the virus compared
to more severe ones [29,30].

To fairly evaluate performance during wave
peaks, we consider ICU overload (binarized ICU
occupancy), which we expect to be more robust
against over-predictions. This requires introducing
arbitrary capacity thresholds which we define as the
percentage of the ICU occupancy observed in the
geographical unit in the first wave in 2020. For point
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forecasts, we consider the proportion of incorrect
forecasts of an outcome given that outcome was
observed. Following the convention that lower
scores are better, we define:

# of incorrect forecasts of overload

1 — Sensitivity —
ensitiviry # of observed overloads

# of incorrect forecasts of underload

1 — Specificity =
pecificity # of observed underloads

For forecast distributions of ICU overload, we use the
Brier score, which is the mean squared error of the
binary overload outcome (i.e. 0 or 1) and the mass
of the prediction interval above the arbitrary
threshold. We present binary metrics separately for
periods of observed overload and underload
because anticipation of overload is widely
considered more important in a hospitalisation
surveillance system.

RESULTS

Qualitatively, all four forecasters performed
reasonably well at the four-week horizon (see Figure
3A) although COVIDici and ETS+ARIMA tended to
over-predict more at the top of the waves. All
forecasters experienced a delay in anticipating
upcoming waves, which was more pronounced for
COVIDici and the naive model. Figure 3B shows
qualitative evidence that COVIDici performs better
on the trailing side of each wave than the leading
side.

Standard metrics for ICU occupancy are
contained in Figure 4. Figure 4A shows the mean
WIS (scaled by the naive model) across all
geographic units over time. Large misses near wave
peaks are evident for COVIDici and ETS+ARIMA but
not AR-Lasso, which appears to be more consistent.
This narrative is reversed in Figure 4B which depicts
the median AE and WIS by region. COVIDici clearly
shows improvement relative to the other baselines at
longer horizons and had the lowest AE at the four-
week horizon for 8 of the 13 regions. These
improvements were not present when evaluating the
forecast distribution using WIS. This is likely
explained by Figure 4C, where we see strong
evidence that the prediction intervals for COVIDici
were far too narrow. AR-Lasso was somewhat better
calibrated and ETS+ARIMA had near optimal

calibration of predictions intervals nationally as well
as in several regions.

Binarized metrics for ICU overload are shown in
Figure 5. All binary metrics show that COVIDici
consistently improves relative to the baselines at
longer horizons. Figures 5A and 5B show all
evaluations of point and distribution metrics for ICU
overload at varying capacity thresholds. AR-Lasso is
clearly not suitable for anticipating ICU overload at
the four-week horizon where it only performed
comparably to the naive baseline while ETS+ARIMA
had slightly fewer incorrect forecasts of overload
compared to COVIDici but slightly more when
predicting underload. ETS+ARIMA and COVIDici
were also the top two choices at the four-week
horizon in Figure 5B where the former had a
consistent edge likely due to the overly narrow
predictions intervals of COVIDici. Figure 5C breaks
these metrics down by region which supports similar
conclusions.

DISCUSSION
Modelling and forecasting

Mathematical modelling has made key contributions
to the understanding and controlling of the COVID-
19 epidemic [2]. In France, it led to the anticipation
of hospital dynamics in the first epidemic wave [31]
and the emergence of the Delta variant [21].
However, most of these studies were performed at a
national level and/or at a single time point, which
made their impact limited from a public health point
of view. To our knowledge, there were only two
continuously running forecasting models in France in
2021: COVIDici and an ensemble of statistical
models implemented by the Pasteur Institute [7].
These two models were built on two types of
approaches each with different limitations and
strengths.

Our benchmarking analysis revealed two major
limitations for COVIDici. First, the prediction intervals
were far too narrow which obfuscated any
performative advantages that it had when
considering distributional evaluation metrics (e.g.
WIS and Brier score). Second, COVIDici exhibited
relatively weak performance up to the two-week
horizon to predict ICU occupancy compared to
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statistical modelling approaches. However, this was
expected as COVIDici only uses hospital data to
update its inference and there is a nearly two-week
delay between infection and hospital admission [32].

The main strength of COVIDici was improved
accuracy at the four-week horizon for point forecasts
of ICU occupancy compared to statistical methods,
especially during the trailing edge of waves. For
anticipating wave peaks, COVIDici had one of the
best overall performances with respect to the trade-
off between the correct prediction rate of observed
overload and observed underload on the four-week
horizon. AR-Lasso on the other hand failed to
reasonably anticipate overload, despite relatively
optimistic performance in terms of more standard
metrics (e.g. WIS), which should serve as a
cautionary example.

Forecasts popularisation

In addition to real-time subnational forecasting, a key
feature of COVIDici was to offer visualisation of
numerous unobservable indicators that can only be
inferred through an underlying model (e.g. the
estimate of all active infections). This is an asset
from a popularisation point of view, but it raises
issues because estimates can be strongly biased in
areas with low population density.

Furthermore, it is important to distinguish
between two types of forecasts. Some, like
COVIDici, attempt to capture what will happen if
transmission remains identical, i.e. in absence of
intervention or behavioural change. Others,
especially the ones built on machine learning, try to
factor in these changes to forecast what will
eventually happen. In terms of guiding public health
decisions such as the allocation of resources, the
former seems more appropriate than the latter.
However, this requires familiarising the audience
with the well-known dilemma that we expect
forecasts made under the assumption that nothing
changes to be proven wrong by the observed data
when they are too pessimistic. Otherwise, it means
they were not considered when shaping the public
health response.

Perspectives

Many countries are decreasing their investment in
epidemic surveillance, and some rely on statistical
model forecasting with the inclusion of new
predictors, such as that from wastewater data.
However, there is still room for compartmental model
forecasts like COVIDici that can rely on variables
with a high level of sampling such as hospital
admissions data.

Regarding SARS-CoV-2, future extensions of
COVIDici would require updating the model to
account more precisely for the diversity in immune
protection among individuals, given the number of
natural infections since the evolution of the Omicron
variants [15]. However, existing non-Markovian
models suggest that this is feasible [32].

Furthermore, in several ways COVIDici’s
forecasting potential was under-exploited. It already
incorporated variations in vaccine coverage but,
thanks to its mechanistic nature, it could also readily
include planned events such as school holidays or
early predictors of variations in reproduction
numbers such as temperature.
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Figure 1 — Structure of the underlying COVID-19 epidemic discrete time model with vaccination. The three shaded
areas represent susceptible or infected people in the general community (left), hospitalised people (center) and
individuals that no longer contribute to the epidemic due to recovery with full immunity or death (right). Within each
of these areas, boxes represent groups of individuals who share the same clinical kinetics and who contribute equally
to the epidemic dynamics. Each group of contiguous boxes form a compartment in which individuals progress day
after day where subscripts g, h, r and u are the maximum number of days possible to remain in that compartment.
Individuals assigned to boxes labelled with S are susceptible, J are non-critically infected, Y are critically infected and
will eventually require hospitalisation, H are hospitalised in a critical care bed, W are hospitalised in a non-critical
care unit (i.e. hospice care), R are recovered and D are deceased. SY, J¥and YV denote vaccinated compartments.
Arrows between boxes show the daily flow of individuals between compartments. Dotted arrows depict transitions
that occur with probability 1. For the sake of simplicity, only one age group (denoted using the i subscript) is
depicted here. Only one of the two complementary probabilities is shown for each bifurcating transition. Derivations
of the flows and notational details are provided in the Supplementary Materials and in [13].
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Figure 2 — Screenshot of the COVIDici application showing model fit for daily ICU occupancy in the Occitanie

region.
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Figure 3 — Qualitative inspection of COVIDici forecasts. A) All forecasters at the 4-week horizon plotted with the
observed ICU occupancy for metropolitan France. B) Overlay of national forecasts of ICU occupancy produced by
COVIDici with list of governmental interventions issued at the national level. C) Schematic representation of the
survivor bias that may occur after a restrictive governmental intervention. The dashed curve is the ICU occupancy
that would have occurred if the intervention did not happen. The solid curve is the ICU occupancy that we observed
happen because the intervention did occur.
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Figure 4 — Standard evaluation metrics for ICU occupancy. A) Mean weighted interval score (WIS) of all geographic
units over time for the four-week forecast horizon. B) Absolute error (AE) and WIS per geographic unit by two- to
four-week horizons. Aggregation over time uses the median here because the mean is highly sensitive to outlier
errors during the waves. C) Empirical coverage rate across all geographic units and forecast horizons (dashed line is
optimal).
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Point forecast evaluation for ICU overload Brier score by capacity threshold
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**For increased visibility scores are scaled using Naive model as baseline and transformed using log(x+0.05)

Figure 5 — Binary metrics for ICU occupancy overload. A) Smoothed regression of point forecast scores by threshold
after aggregating over all geographic units and time. B) Smoothed regression of distributional forecast scores by
threshold after aggregating over all geographic units and time. C) All binary metrics by region aggregating across all
capacity thresholds and time. The 51 capacity thresholds span between 0.5 and 1 and represent the percentage of
each respective geographic unit’s peak ICU occupancy observed in the first wave in 2020.
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