
 1 

Systematic review of type 1 diabetes biomarkers 
reveals regulation in circulating proteins related 
to complement, lipid metabolism, and immune 
response 
 

Soumyadeep Sarkar1, Emily C. Elliott1, Hayden R. Henry1, Ivo Díaz Ludovico1, John T. Melchior1, 

2, Ashley Frazer-Abel3, Bobbie-Jo Webb-Robertson1, W. Sean Davidson2, V. Michael Holers3, 
Marian J. Rewers4, Thomas O. Metz1, Ernesto S. Nakayasu1* 

 
1Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, USA. 
2Department of Pathology and Laboratory Medicine, Department of Pathology and Laboratory 
Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA 
3Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical 
Campus, Aurora, CO, USA 
4Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical 
Campus, Aurora, CO, USA. 

 

*Correspondence: Ernesto S. Nakayasu, email: ernesto.nakayasu@pnnl.gov 

 

Contributions: Concept and idea: MJR, ESN, & TOM; Systematic review of the literature: SS, 
ECE, & HRH; Analysis: All authors; Writing: SS, ECE, HRH, IDL, JTM, & ESN; All authors read 
and approved the final version of the manuscript. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.21.23286132doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:ernesto.nakayasu@pnnl.gov
https://doi.org/10.1101/2023.02.21.23286132


 2 

ABSTRACT 

Aims: Type 1 diabetes (T1D) results from an autoimmune attack of the pancreatic β cells that 
progresses to dysglycemia and symptomatic hyperglycemia. Current biomarkers to track this 
evolution are limited, with development of islet autoantibodies marking the onset of autoimmunity 
and metabolic tests used to detect dysglycemia. Therefore, additional biomarkers are needed to 
better track disease initiation and progression. Multiple clinical studies have used proteomics to 
identify biomarker candidates. However, most of the studies were limited to the initial candidate 
identification, which needs to be further validated and have assays developed for clinical use. 
Here we curate these studies to help prioritize biomarker candidates for validation studies and to 
obtain a broader view of processes regulated during disease development.  

Methods: This systematic review was registered with Open Science Framework (DOI 
10.17605/OSF.IO/N8TSA). Using PRISMA guidelines, we conducted a systematic search of 
proteomics studies of T1D in the PubMed to identify putative protein biomarkers of the disease. 
Studies that performed mass spectrometry-based untargeted/targeted proteomic analysis of 
human serum/plasma of control, pre-seroconversion, post-seroconversion, and/or T1D-
diagnosed subjects were included. For unbiased screening, 3 reviewers screened all the articles 
independently using the pre-determined criteria. 

Results: A total of 13 studies met our inclusion criteria, resulting in the identification of 251 unique 
proteins, with 27 (11%) being identified across 3 or more studies. The circulating protein 
biomarkers were found to be enriched in complement, lipid metabolism, and immune response 
pathways, all of which are found to be dysregulated in different phases of T1D development. We 
found a subset of 3 proteins (C3, KNG1 & CFAH), 6 proteins (C3, C4A, APOA4, C4B, A2AP & 
BTD) and 7 proteins (C3, CLUS, APOA4, C6, A2AP, C1R & CFAI) have consistent regulation 
between multiple studies in samples from individuals at pre-seroconversion, post-seroconversion 
and post-diagnosis compared to controls, respectively, making them strong candidates for clinical 
assay development. 

Conclusions: Biomarkers analyzed in this systematic review highlight alterations in specific 
biological processes in T1D, including complement, lipid metabolism, and immune response 
pathways, and may have potential for further use in the clinic as prognostic or diagnostic assays. 
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INTRODUCTION 

Our understanding of type 1 diabetes (T1D) pathophysiology has advanced significantly 
in the last 100 years since discovering insulin as a T1D treatment, but additional biomarkers of its 
earliest stages could help determine its cause and develop more refined and targeted prevention 
approaches. The disease begins as an autoimmune insult on pancreatic β cells (seroconversion, 
marked by the detection of circulating autoantibodies) that progresses to elevated blood glucose 
and glycated hemoglobin A1c in the body – the current gold standard for T1D diagnosis. Current 
biomarkers to track this evolution are limited, with the development of autoantibodies to insulin 
(IAA), glutamic acid decarboxylase (GADA), insulinoma-associated antigen-2 (IA-2A), or zinc 
transporter 8 (ZnT8A) marking the onset of islet autoimmunity [1, 2]. Proteomics is a powerful tool 
to identify biomarkers, as it can detect and quantify thousands of proteins. Several proteomics 
studies have been carried out to identify T1D biomarkers. However, the development of 
biomarkers is a long process that involves identification of candidates, validation, and clinical 
assay development [3]. Despite all the efforts of the field, our knowledge is still concentrated in 
the initial biomarker candidate identification step. A deep analysis of the published reports can 
recognize reproducible protein expression patterns [4], leading to the identification of most 
promising candidates. 

Here, we performed a systematic review of untargeted and targeted proteomics of serum 
or plasma from individuals in different stages of T1D development. We report several proteins 
that were differentially expressed in individuals at various stages of T1D development, and we 
also interpreted the findings to understand processes regulated in T1D development. 

 
 

METHODS 
 
Study design and search strategy 

We conducted this systematic review according to the PRISMA guidelines by searching the 
PubMed database with the terms “type 1 diabetes” and “proteomics” as of 08 August 2022 [5]. 
Articles were manually curated with the following expressions: 

((Type 1 Diabetes) AND (Proteomics)) NOT ((Review [Publication Type])) OR (Systematic 
Review [Publication Type])) OR (Meta-analysis [Publication Type]) OR (Commentary 

[Publication Type])) AND ((Serum) OR (Plasma))  

Eligibility Criteria   

Studies comparing the serum/plasma proteome of humans developing or having T1D and 
that of controls were included in the analysis. Ethnicity, study population size, sex, or disease time 
point were not included as exclusion criteria to minimize excluding informative biomarkers. We 
excluded reports of individuals with T1D without matched controls and any studies that failed to 
report detailed proteomic analyses. Study design (case-control, cohort, or longitudinal) was not 
an exclusion criterion. We excluded articles without accessible abstracts or full text, articles that 
were reviews, commentaries, systematic reviews, or meta-analyses. 

Study selection 

The systematic review of the literature resulted in 356 initial articles. All the studies that 
were excluded using the PubMed algorithm (see Eligibility Criteria) were manually verified that 
they did not meet the inclusion criteria. The remaining articles were manually screened to 
eliminate studies that did not use human serum/plasma or MS-based proteomic analysis or were 
related to gestational diabetes and T1D-drug studies. Finally, the studies related to the MS 
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technique without a control group or with missing proteomic data were excluded from the final list 
after the full text was read. In addition, we added two unpublished manuscripts by our group that 
met the eligibility criteria. Figure 1 outlines the study screening and selection process following 
the PRISMA guidelines. 

Data analysis and visualization 

The final 13 articles included were screened by three reviewers independently (SS, ECE, 
HRH) to verify they met the initial inclusion criteria. The additional metadata of sample type, 
population size, MS-analysis type, method of MS-data analysis, and statistical tests were also 
considered. All the authors discussed any conflicts and were added to the analysis upon 
unanimous agreement. Protein data were extracted from the articles manually using 
Adobe/Microsoft excel and were rearranged using Python and the Python package Pandas [6]. 
The protein expression data were manually converted to binary “–1” or “1” representing down or 
up-regulation, respectively, with “0” denoting not reported. Studies were then grouped by the 
sampling time point (pre-seroconversion, post-seroconversion, and post-diagnosis). Functional-
enrichment analysis was performed with Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) using the default parameters [7]. We used the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) output for further interpretations. Final data were visualized with 
Cytoscape (v.3.9.1) and Graphpad prism software. 

 

RESULTS AND DISCUSSION 

Characteristics and description of eligible studies 

The 13 articles described in our systematic review were performed across three disease 
developmental stages: pre-onset, further divided into (i) pre-seroconversion and (ii) post-
seroconversion; and (iii) post-diagnosis. Pre/post seroconversion was defined based on the 
manifestation of the autoimmune response measured by the appearance of autoantibodies while 
post-diagnosis was defined by onset of symptomatic hyperglycemia. Details of the studies and 
their temporal categorization are summarized in Table 1 and the results are summarized in 
electronic supplementary material - ESM 1. 

Pre-onset proteomic profiles 
 

Our literature search identified 6 papers that investigated the temporal protein abundance 
changes in individuals with T1D. Studies by Moulder et al. [8], Fronhert et al. [9], Nakayasu et al. 
[10], and Webb-Robertson et al. (unpublished) looked at protein abundance changes at both pre-
and post-seroconversion stages . In contrast, von Toerne et al. and Lui et al. examined the protein 
profile only after seroconversion [11, 12]. Moulder et al., von Toerne et al., Lui et al., and 
Nakayasu et al. used untargeted proteomics and identified 68, 26, 30, and 59 proteins, 
respectively, that were significantly different in post-seroconversion vs controls. Nakayasu et al., 
used targeted proteomics and validated 83 proteins. Webb-Robertson et al. used targeted 
proteomics, investigating the expression of 24 complement proteins in plasma from pre-
seroconversion, and post-seroconversion subjects. In addition, von Toerne et al., and Fronhert et 
al. used targeted proteomics as a validation method to look at 3 and 5 unique proteins, 
respectively, whereas Liu et al. used ELISA as its validation step. In conclusion, these studies 
have identified many biomarker candidates, but with limited validation.  
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Post-diagnosis proteomic profiles 
 

One of the first plasma/serum proteomics studies of individuals with T1D was performed 
by Metz et al. in 2008 [13]. They identified 5 differentially abundant proteins in recently diagnosed 
T1D patients compared to controls. Similarly, studies by Zhi et al. and Chen et al. utilized 
untargeted proteomics and identified 21 and 36 differentially abundant proteins, respectively, in 
sera from individuals with T1D compared to controls [14, 15]. Zhang et al. and Oliveira et al. 
performed untargeted proteomics of serum/plasma samples from individuals with T1D and 
identified 24, and 8 differentially abundant proteins, respectively [16, 17]. Zhang et al. tested the 
24 proteins using targeted proteomics in 50 T1D vs. 100 controls, validating 16 proteins with high 
discriminating power. A subsequent blinded experiment in an independent cohort of 10 individuals 
with T1D and 10 controls identified the chemokine proplatelet basic factor (PPBP/CXCL7) and C1 
inhibitor with 100% sensitivity and specificity to discriminate between the groups. Manjunatha et 
al. and Gourgari et al. performed untargeted proteomic analysis on high-density lipoproteins 
(HDL) and found a compositional but not level change of the HDL proteome in T1D individuals 
with high risk of cardiovascular complications [18, 19]. Overall, these studies showed proteomic 
changes in plasma profiles after T1D onset, which have the potential to be developed as 
diagnostic biomarkers.  

 

Potential biological functions of biomarker candidates 

To better understand the biological relevance of these proteins, we performed a functional 
enrichment analysis using DAVID [7]. The KEGG annotation from DAVID mapped 140 proteins 
out of 251 to 20 biological pathways (ESM 2). Out of these pathways, the complement and 
coagulation pathway (44 proteins) had the most significant number of proteins mapped to it, 
followed by COVID-19 (22 proteins), Staphylococcus aureus infection (16 proteins), and systemic 
lupus erythematosus (15 proteins). These pathways were further curated down to 6 major 
pathways, i.e. complement and coagulation, metabolic protein, inflammatory signaling, 
cytoskeleton remodeling, extracellular matrix, and antigen presentation, after removing 
overlapping and redundant proteins, (Figure 2). Here, we further discuss these pathways in the 
context of T1D risk and disease evolution over time.  

Complement system 

The complement system is a cascade of proteases making up a humoral extension of the 
innate immune system. Dysregulation of the complement pathway is linked to chronic and 
autoimmune diseases. Complement deficiencies are either inherited or acquired. Inherited 
deficiencies of C1-C4 are strongly associated with bacterial infection and systemic lupus 
erythematosus, while inherited deficiencies of C5-C9 are associated with bacterial infection and 
sepsis [20]. Acquired deficiency or factor level changes arise when activation or inflammation-
related acute phase responses exist, resulting in either up or downstream exhaustion of some 
factor [21]. They also interact with adaptive immunity by forming complexes with antibodies, 
including islet autoantibodies [22]. A cytotoxic effect [23] of such complexes has been 
controversial, but this concept has gained a renewed interest with recent discovery of β-cell 
surface autoantibodies [24]. In individuals with T1D, complement components C3 and C4 are 
highly expressed in the pancreas, including the islets [25, 26]. Studies of pancreata obtained from 
cadaveric T1D donors have reported C4D immunostaining in blood vessel endothelium and 
exocrine ducts [25], a change typically associated with activation at that site, and significant 
upregulation of the complement cascade (C1QA, C1QB, C1QC, C1R, C1S, C3, C4B, C5, C5AR1, 
C6, C7, C8A, C8B, C8G, and especially C9) [27]. Their tissue compartment localization was 
extrapolated from transcriptomic data but remains uncertain. This information may be of limited 
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value for our project as the tissue or plasma status of the complement system at the time of death 
in a person with long-standing T1D may not resemble that at the time of the appearance of islet 
autoantibodies in an otherwise healthy young child.   

Importantly for studies of pre-diagnosis T1D, a functional relationship has been 
demonstrated between activation of components C3 and C5 and improved β-cell function in mice 
and humans [28], suggesting direct effects on β cells. The pro-inflammatory cytokines interleukin-
1β and interferon-γ increase C3 expression in rodent and human β cells [29]. C3 silencing 
exacerbates β-cell apoptosis. On the other hand, upregulation of the complement system may 
improve β-cell autophagic response - a protective homeostatic response to the β-cell stress [29] 
that is impaired in T1D [30]. Exogenously added C3 protects against cytokine-induced β-cell death 
via AKT activation and c-Jun N-terminal kinase inhibition. While locally produced C3 is an 
important survival mechanism in β-cells under a pro-inflammatory assault. However, it is not 
known if a C3-focused therapy could slow or abort the progression of diabetes in humans. In 
addition, a variant of C3 gene is associated with T1D [31], which may suggest that the response 
to such intervention could be genetically modified. In sum, although changes in the complement 
system are clearly linked to the risk of T1D development and its rapid progression, the direction 
of the effect and the therapeutic implications are uncertain. Thus, we need to determine whether 
the system should be activated or modulated, what components of the pathway are most relevant 
to T1D development, and at what point in the evolution of the disease should a specific change 
in the pathway be introduced. Regarding complement therapeutics designed to block or modulate 
activation, there is a range of drugs that are either available or in clinical development. For 
example, these therapeutics will modulate the C3 and C5 convertases, thus dampening overall 
activation, or be more specific to target C5, C5a, C3a, or complement receptors for activation 
fragments (reviewed in [32]). Conversely, activation of the pathways is being explored for the 
treatment of infectious diseases, cancer, and disorders of metabolism [33]. 

The 13 papers we examined reported some aspect of the complement system as 
dysregulated, with 44 out of the 251 biomarker candidates identified from our KEGG analysis 
(Figure 4). C4 was the most identified protein, followed by C3 in this systematic review, and was 
reported to be primarily downregulated in post-seroconversion and post-diagnosis compared to 
controls [11, 14, 16, 19]. This was further corroborated by Webb-Robertson et al., where C3 levels 
were consistently low in pre- and post-seroconverted subjects. This unaltered level of C3 
expression throughout the course of the disease was also reported by longitudinal studies 
conducted by Moulder et al. and Lui et al. These results are consistent with observations of 
deficiencies in downstream complement components coupled with increased abundance of the 
MAC inhibitor clusterin pre-seroconversion. However, there are conflicting reports of abundance 
following seroconversion. Previous ex-vivo characterization of the T1D pancreas corroborated 
our identification of complement dysregulation but instead found an increased abundance of 
complement markers following diagnosis [25, 27, 34]. Pre-clinical models of C3 knockout or 
receptor blockage leading to reduction in T1D development and other findings also suggest a role 
for the complement system in the T1D development [35-37]. While at first, the serum and tissue 
complement abundances appear to be at odds with one another, the low complement levels pre-
seroconversion may be due to consumption through C3, C4, and MAC depositing in the pancreas 
throughout T1D development. Low C3 and C4 have been seen in both COVID-19 and 
lipodystrophy cases, and low C3 with high C5-C9 are common in glomerulopathy [38]. Evidence 
of lifelong complement deposits in the pancreas matching the parallel findings of lifelong low C3 
levels provides further evidence of complement deposition in the pancreas as the driving force 
behind low blood levels of complement and, therefore, progressive loss of β cells due to increased 
immune response. 
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In the context of T1D, the complement system may play a part in modulating adaptive 
immune response against islets, with HLA class II genes being associated with T1D risk [39]. 
Activation of the complement cascade and deposition of complement factors into the pancreas 
have been reported during insulitis [22, 27]. In late-stage diabetes, elevated complement levels 
in serum are linked to diabetic nephropathy [40]. Overall, the disruption of complement pathway 
seems to be a characteristic trait of T1D, however, further studies are warranted to help navigate 
the path to consistent biomarker or drug development. 

 

Immune pathways 

A recurrent theme among the T1D biomarker candidates is the enrichment of proteins 
related to antigen processing and presentation. For instance, the complement pathway can 
opsonize pathogens and dead cells to be presented to the antigen-presenting cells. Other proteins 
related to antigen opsonization are also regulated in T1D, such as antibodies and 
opsonization/scavenger receptors. Once the antigen is opsonized, it is phagocyted into 
phagosomes. In fact, β cells infected with coxsackievirus are efficiently phagocyted by dendritic 
cells, making coxsackievirus infection a potential trigger of the islet autoimmune response [41, 
42]. The phagocytic process requires an extensive cell cytoskeleton remodeling [43], which was 
another pathway enriched in our analysis. The phagosome can be next fused to lysosomes to 
initially process the antigens, which are further processed in the proteasome and loaded into HLA 
for presenting to T cells [44]. HLA alleles represent the main risk factor of T1D development, 
further supporting that this pathway is involved in the autoimmune response [44].  

Another process that occurs in parallel is the cytokine and chemokine signaling [45]. 
Among the biomarker candidates, the chemokine PPBP/CXCL7 has been identified along with 3 
other immunoregulatory molecules (Figure 5). Despite all the cytokines/chemokines regulated in 
T1D, little is known about their mechanistic roles in disease development. Cytokine/chemokine 
and even phagocytosis can trigger signaling cascades in the cells that further regulate these 
processes but also leads to the expression of other effector molecules. Among signaling proteins, 
4 kinases, phosphatases, and phospho-binding proteins have been described (Figure 5). In 
addition, the transcription factor TNIP1 has also been shown to be regulated in T1D (Figure 5). 
Regarding the effector molecules, oxidative stress proteins myeloperoxidase, glutathione 
peroxidase 3, peroxiredoxin-1, and sulfhydryl oxidase 1, were also shown to be regulated in T1D. 
Oxidative stress has been shown to induce β-cell dysfunction and death and has also been 
proposed as a potential therapeutic target [46].  

A common feature in the plasma of individuals with T1D is the regulation of extracellular 
matrix proteins, of which 27 have been described to be regulated (Figure 5). The extracellular 
matrix is an integral part of the immune response regulated by cytokines and chemokines [47, 
48]. For instance, the extracellular matrix peri-islet basement membrane serves as a barrier, 
protecting islets from immune cell infiltration in insulitis in mouse models of T1D [49]. In addition, 
preservation of the extracellular matrix by administration of dextran sulfate, a mimic molecule of 
the extracellular matrix proteoglycans, has been shown to protect β cells and to be a potential 
treatment for T1D in mice [50].  

 

Plasma lipoproteins  

The DAVID analysis showed ~5% of the reported proteins to be key players in lipid 
metabolism. Most circulating plasma lipids are packaged into lipoproteins which are traditionally 
classified into four common subfractions based on particle density: chylomicrons (CM), very low-
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density (VLDL), low-density (LDL), and high-density lipoproteins (HDL). Structurally dynamic 
apolipoprotein scaffolds reside at the water-lipid interface of all subclasses where they modulate 
particle interactions with plasma enzymes, cofactors, and cell surface receptors that continuously 
remodel the lipoproteins throughout their lifespan. Though traditionally defined based on their 
“cholesterol” content, proteomics studies over the last decade have revealed significant 
compositional heterogeneity exists within the lipoprotein subfractions which contain upwards of 
273 different proteins [51] with the HDL subfraction accounting for >250 of these proteins. Thus, 
lipoproteins are thought to consist of a variety of compositionally distinct subspecies which have 
now been shown to modulate a diverse array of metabolic pathways [52, 53].  

Though DAVID analysis implicated “cholesterol metabolism,” and by proxy lipoproteins, 
the analysis fails to capture the full lipoproteome due to the recency of lipoprotein molecular 
profiling studies in the literature. When compared to a lipoprotein-specific database [51], we found 
nearly half (N = 112) of the protein biomarkers identified in individuals with T1D are associated 
with lipoproteins (Figure 6A, ESM3), and 66 were more specifically associated to HDL (ESM4). 
Approximately 85% of these changes were unique to post-seroconversion and post-diagnosis 
indicating the most profound changes in lipoprotein metabolism occurs later in the disease 
process (Figure 6B). A total of 17 members were altered pre-seroconversion with most 
overlapping with previously discussed immune response and complement cascade (Figure 6C). 
Outside of the immune and complement proteins, we noted a few well-studied APOCs and 
clusterin were altered pre-seroconversion (Figure 6D), hinting some changes occur in traditional 
lipoprotein metabolism pathways prior to onset of dysglycemia or hyperglycemia.  

Most of the lipoproteome members altered post-seroconversion and post-diagnosis have 
documented roles in triacylglycerol metabolism. Perhaps the most robust of these observations 
was the associated with changes in plasma APOA4 altered in 8 studies post-seroconversion and 
post-T1D diagnosis [8, 11, 14, 18, 19]. APOA4 is well-documented to modulate the triacylglycerol 
packaging in the triacylglycerol-rich lipoproteins (CMs and VLDL). [54]. Additionally, APOA4 is 
reported to play key roles in satiety, gastric function, and glucose homeostasis [55, 56], all of 
which have been reported altered in individuals with T1D [56-60]. Two post-seroconversion and 
post-diagnosis studies reported increased plasma APOA2; a well-known HDL scaffold protein. 
While HDL which has little triacylglycerol, APOA2 has been shown to be implicated in 
triacylglycerol metabolism [61] though the mechanism is still poorly understood. Several studies 
report changes in the APOCs and APOE [8, 11, 18] which are also thought to modulate 
triacylglycerol lipolysis on VLDLs [62, 63]. These observations are in-line with elevated 
triacylglycerol levels and inhibition of lipoprotein lipase associated with the innate immune 
response [64].  

Most of the biomarker studies were performed on whole plasma. As most apolipoproteins 
are exchangeable, more detailed lipoprotein speciation studies are required to determine the 
subclass on which these particles are located and how they are modulating particle function in 
the context of T1D. Though two studies attempted to speciate lipoproteins from individuals with 
T1D, both limited their analysis to HDLs (21, 22) thus missing most of the changes involved with 
the triacylglycerol-rich particles. Future studies that examine the temporal changes in the 
lipoproteome across all subclasses will better inform on the role of these pleiotropic particles and 
how they cross-communicate with the aforementioned complement system and immune 
pathways in T1D. 

 
Overview of the most promising biomarker candidates for clinical use 

For clinical use, biomarkers need to be highly sensitive and specific. As T1D is a chronic 
disease in which each stage can take months to years, biomarkers with more stable changes in 
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abundance are preferable to proteins with transient regulation. In addition, they need to be 
reproducible. Therefore, proteins with consistent abundance profiles across different studies 
would make them stronger candidates to be developed into clinical assays. Our systematic review 
identified 251 proteins, 66 (26%) were found across multiple papers, and 27 (11%) were reported 
three or more times (Figure 3). The differential expression patterns were more limited in the pre-
seroconversion than post-seroconversion, with most differentially expressed proteins in the post-
diagnosis group. Upon evaluating the directional expression (i.e., up and down) of the biomarker 
proteins across all three temporal groups (pre-seroconversion, post-seroconversion, and post-
diagnosis), complement proteins C3, C6, and C1R were found to be consistently downregulated 
in cases compared to HC. Eight proteins (C4B, APOA4, C2, BGH3, ADIPO, A2AP, IBP2, and 
GPX3) identified as low expressed in pre/post-seroconversion individuals were up in post-
diagnosed individuals, whereas 5 proteins (SAMP, CBPN, ITIH2, FHR5, & PA2G4) which were 
up in post-seroconversion stage, were down in post-diagnosed individuals. A subset of proteins 
was only identified in the post-seroconversion group (C5, C1QC & CFAI) or post-diagnosis group 
(THRB, ZA2G, HPT, CBG, & LUM) by 2 or more articles. Therefore, these biomarkers are strong 
candidates for further validation studies and the development of clinical assays. 

 
Conclusions and perspectives 

Our systematic analysis found 251 candidate protein biomarkers of T1D, of which 66 
(26%) were observed in multiple studies. This helps to prioritize for the validation step of 
biomarker development. Despite some of the biomarkers being consistently regulated across 
different studies, they still need to go through an extensive validation process before moving to 
the clinical assay development. Ideally, the biomarker candidates should be cross-validated in 
independent cohorts of samples and tested for sensitivity and specificity. In general, fewer 
signatures were identified prior to the onset of the disease. This can be partly because T1D has 
an almost silent developmental phase, and it is not expected that significant biochemical changes 
would be observed in the blood of these individuals. Alternatively, the pre-seroconversion phase 
may be convoluted by multiple factors and trajectories that lead to autoimmunity and hinder our 
ability to identify a consistent signature. In this context, machine learning can be an excellent 
approach to identifying multivariate panels of proteins to serve as biomarkers of T1D 
development. This approach has been used to combine metabolic, genetic, and autoimmune 
signatures to predict the onset of disease and can be easily adapted to test peptide/protein panels 
[9, 10, 65, 66]. Another concept that can further improve biomarkers' robustness is using ratio 
between protein abundance changes rather than profiling individual proteins. Ratios between 
oppositely regulated proteins would have much bigger differences compared to them individually, 
providing higher discriminatory power between cases and controls. After selecting candidates, 
clinical-grade assays must be developed and tested for robustness, specificity, and sensitivity in 
the clinical setting. In addition to biomarkers, our systematic review of proteomics studies provided 
insights into the pathways regulated in T1D, such as complement system, plasma lipoproteins, 
and immune response [65, 66]. Our systematic review also opens opportunities to study the 
functions of the biomarker candidates in T1D development and pathology. For instance, our group 
has found that PPBP/CXCL7 can reduce pro-inflammatory cytokine-mediated apoptosis in 
macrophage cell cultures while it enhances it in cultured β cells [67]. This may have a role in T1D 
development by potentiating macrophages and killing β cells in insulitis. Overall, this systematic 
review provides insights into processes regulated in T1D development and highlights some of the 
best candidates for developing clinical assays. 
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Table 1. Characteristic features of the eligible proteomic studies. A total of 13 studies were identified, and details 
regarding the various study groups, sampling, and tools for measurement and validation are listed. Red indicates up-
regulated proteins, and green indicates down-regulated proteins. Terms used: HLA: human leukocyte antigens, F: 
Female, M: Male, NHW: non-Hispanic white, DAISY: Diabetes Auto Immunity Study in the Young, TEDDY: The 
Environmental Determinants of Diabetes in the Young, DASP: Diabetes Antibody Standardization Program, ELISA: 
enzyme-linked immunoassay, LC-DIA-MS: Liquid chromatography data independent-acquisition-mass spectrometry, LC-
MS/MS: Liquid chromatography–tandem mass spectrometry, and LC-SRM-MS: Liquid chromatography-selected reaction 
monitoring-mass spectrometry. 
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Study group Control group 

Sample 
type 

 
Discovery method 

 
Validation 

method 

 

Clinical 
definition 
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sample size) 

Demographics 
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Number of Proteins 
Identified by Disease 

Progression 

Pre-seroconversion 

Moulder et al, 
2015, 

Diabetes 

HLA+, 
autoantibody+. 
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Age (3m to 12y), 
Finland (DIPP). 

HLA+., 
autoantibody-, 
controls, n=19 

 

Age, sex, sample 
periodicity, and risk 

group matched 
Serum 

2DLC-MS/MS 
(Untargeted 
proteomics) 

NA 
 

Pre-seroconversion: 3 
(1, 2) 

Post-seroconversion 
Longitudinal: 55 (30, 

25) 
Post-seroconversion: 

10 (5, 5) 
 

Frohnert et 
al., 2020, 
Diabetes 

Family history of 
T1D, HLA+, 

autoantibody+. 
n=20, T1D n=22, 

age (AbPos-0.7-
26.5y, T1D- 0.7-

15y), and sex 
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autoantibody-. 
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Matched to HLA 
genotype, age (0.7-23y), 
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(20NHW/5BR), US. 
(DAISY cohort) 
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LC-SRM-MS, 

(targeted 
proteomics) 

NA 

 
Pre-seroconversion: 

3(1, 2) 
 

Post-seroconversion: 
2 (1, 1) 

Webb-
Robertson et 

al, 
unpublished 

HLA+ 
Pre-

seroconversion. 
n=47, Post-

seroconversion. 
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Pre T1D n=70, 
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Matched to HLA 
genotype, age (~0-14y), 
and sex (16F/24M), US. 

(DAISY cohort) 

Plasma 
LC-SRM-MS, 

(targeted 
proteomics) 

Exsera 

Pre-seroconversion: 8 
(0, 8) 

 
Post-seroconversion, 

Post IA: 14 (1, 13) 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.21.23286132doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.21.23286132


 12 

63F/68M & pre-T1D 
–31F/39M), US. 
(DAISY cohort) 

Post-seroconversion, 
Pre-T1D: 14 (1, 13) 

Nakayasu et 
al., 2022, 
medRxiv 
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endpoint n=46, 
T1D endpoint 

n=46 
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endpoint 

n=401, T1D 
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25F/21M 
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n=401, T1D 
Control n=94 
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Res. 
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Zhi et al, 
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Proteomics 
 

Post-diagnosis 
n=15 

 

Age and Sex not 
defined, Taiwan 

controls, n=5 
 Taiwan Plasma 

LC-MS/MS 
(Untargeted 
proteomics) 

ELISA and 
Immuno-blotting 

 

Post-Diagnosis: 36 
(16, 20) 

Zhang et al., 
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n=50 
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Manjunatha 
et al. 2016,  
Metabolism 

 

T1D-PC n=15 & 
T1D-GC n=15. 

 

Age (T1D-PC: 33.6 
+12.97y, T1D-GC: 
34.5 ± 12.48y), US. 

 
 

ND-PC n=15 & 
ND-GC n=15. 

 

Matched for age, sex, 
and BMI, US 

Serum and 
Plasma 

 

LC-MS/MS 
(Untargeted 
proteomics) 

NA 
 

Post-Diagnosis: 39 
(23, 16) 

Von Toerne, 
2016, 

Diabetologia 
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history, Post-

seroconversion, 
rapid T1D n=15 

& slow T1D 
n=15 

Age (Rapid T1D 0.5-
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17.5y), Germany. 
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ET birth cohorts) 
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n=15 
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Germany 
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birth cohorts) 
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LC–MS/MS 
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proteomics) 
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(23F/7M), and other 
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Brazil 

Serum 
LC-MS/MS 
(Untargeted 
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NA 

Post-Diagnosis: 8 (6, 
2) 

Liu et al, 
2018, J. 

Proteomics 

HLAPos. 
Post-

seroconversion, 
T1D n=11. 

Age (1-14y), 7 male 
and 4 female, BR (3) 
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(DAISY cohort) 

HLA+, 
autoantibody-. 
controls n=10 

Age 1-14y, 5 male and 5 
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(9), US 
(DAISY cohort) 

Plasma 
LC-MS/MS 
(Untargeted 
proteomics) 

ELISA 
Post-seroconversion: 

30 (12, 18) 
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al, 2019, 

Cadiocasc. 
Diabetol. 

 

Post-Diagnosis, 
with high risk of 
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disease, n=26. 

12-21 years old, US 
(NCT02275091) 

controls n=13. 
 

Age, sex, BMI, and 
clinical lipid 

measurement matched, 
US 

(NCT02275091) 

Plasma 
LC-DIA-MS 
(Untargeted 
proteomics) 

NA 
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2) 
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Figure 1.  

 
Figure1. PRISMA flow chart of literature search strategy, screening, and exclusion criteria.  
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Figure 2.  

 
Figure 2. Pathway analysis of the protein biomarkers. This node and string plot representing 
proteins and their respective consolidated pathways from KEGG. The nodes are colored based 
on the number of studies that the proteins were shown to be significantly regulated. 
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Figure 3. 

  
Figure 3. Potential biomarkers list. It is a heatmap of all the protein biomarkers identified by 
multiple proteomic papers (3 or more times). Upregulated proteins are represented as red and 
downregulated as green. Proteins that the studies have not reported are represented as blank. 
“T” denotes the targeted proteomic approach, whereas “U” denotes the untargeted proteomics. 
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Figure 4. 

 
Figure 4. Complement cascade. The diagram represents all the complement pathway proteins 
denoted by orange color identified in our systematic review. The Image was modified from 
“Complement cascade pathway” on the Reactome website 
(https://reactome.org/PathwayBrowser/#/R-HSA-166658 with StableID: R-HSA-166658). 
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Figure 5. 

 
 

Figure 5. Immune pathways. The diagram represents proteins identified as the extracellular 
matrix, cytoskeleton/actin filament, oxidative stress, gene expression, inflammatory signaling, 
antigen presentation, cytokine/chemokine, opsonization, antibodies, and other immune 
receptors/regulators. 
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Figure 6. 

 
 

Figure 6. Overlap of T1D-relevant proteins with HDL/LDL lipoproteome. A. Venn diagram 
showing common protein hits (grey) between the HDL/LDL proteome [51] (black) and those 
reported in our systematic review (white). B. Venn diagram detailing the T1D stage as pre-
seroconversion (pre-sero), post-seroconversion (post-sero) and post-diagnosis of the 112 
HDL/LDL/T1D shared proteins of figure A. C. Gene Ontology of HDL lipoprotein-known functions 
of pre-seroconversion reported proteins. D. Heatmap of apolipoproteins with altered levels 
reported in at least one stage of T1D development. Panel C was modified from a published figure 
by Davidson et al. (copyright permission was obtained from the publisher, license number: 
5433910818199) [51]. 
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