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 31 
ABSTRACT 32 
 33 
Polygenic risk scores (PRS) are an emerging tool to predict the clinical phenotypes and 34 
outcomes of individuals. Validation and transferability of existing PRS across independent 35 
datasets and diverse ancestries are limited, which hinders the practical utility and 36 
exacerbates health disparities. We propose PRSmix, a framework that evaluates and 37 
leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, 38 
which incorporates genetically correlated traits to better capture the human genetic 39 
architecture. We applied PRSmix to 47 and 32 diseases/traits in European and South Asian 40 
ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 41 
1.20-fold (95% CI: [1.10; 1.3]; P-value = 9.17 x 10-5) and 1.19-fold (95% CI: [1.11; 1.27]; P-42 
value = 1.92 x 10-6), and PRSmix+ improved the prediction accuracy by 1.72-fold (95% CI: 43 
[1.40; 2.04]; P-value = 7.58 x 10-6) and 1.42-fold (95% CI: [1.25; 1.59]; P-value = 8.01 x 10-7) 44 
in European and South Asian ancestries, respectively. Compared to the previously 45 
established cross-trait-combination method with scores from pre-defined correlated traits, we 46 
demonstrated that our method can improve prediction accuracy for coronary artery disease 47 
up to 3.27-fold (95% CI: [2.1; 4.44]; P-value after FDR correction = 2.6 x 10-4). Our method 48 
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provides a comprehensive framework to benchmark and leverage the combined power of 49 
PRS for maximal performance in a desired target population. 50 
 51 
INTRODUCTION 52 
 53 
Thousands of polygenic risk scores (PRS) have been developed to predict an individual’s 54 
genetic propensity to diverse phenotypes1. PRS are generated when risk alleles for distinct 55 
phenotypes are weighted by their effect size estimates and summed2. Risk alleles included 56 
in PRS have traditionally been identified from genome-wide association studies (GWAS) 57 
results conducted on a training dataset, which are weighted and aggregated to derive a PRS 58 
to predict distinct phenotypes. The association between PRS and the phenotype of interest 59 
is subsequently evaluated in a test dataset that is non-overlapping with the training dataset3. 60 
 61 
Most PRS have been developed in specific cohorts that may vary in terms of population 62 
demographics, admixture, environment, and SNP availability. Limited validation of many 63 
PRS outside of the training datasets and poor transferability of PRS to other populations 64 
may limit their clinical utility. However, pooling of data from individual PRS generated and 65 
validated in diverse cohorts has the potential to improve the predictive ability of PRS across 66 
diverse populations. The Polygenic Score Catalog (PGS Catalog) is a publicly available 67 
repository that archives SNP effect sizes for PRS estimation. The SNP effect sizes were 68 
developed from various methods (e.g. P+T4, LDpred5,6, PRS-CS7, etc.) to obtain the highest 69 
prediction accuracy in the studied dataset. PRS metadata enables researchers to replicate 70 
PRS in independent cohorts and aggregate SNP effects to refine PRS and enhance the 71 
accuracy and generalizability in broader populations8.  However, optimizing PRS 72 
performance requires methodological approaches to adjust GWAS estimate effect sizes that 73 
take into account correlated SNPs (i.e., linkage disequilibrium) and refine PRS for the target 74 
population4,5,7,9–12. Furthermore, numerous scores are often present for single traits with 75 
varied validation metrics in non-overlapping cohorts. There is a lack of standardized 76 
approaches combining PRS from this growing corpus to enhance prediction accuracy and 77 
generalizability while minimizing bias, for a target cohort8,11,13. 78 
 79 
To address these issues, we sought to: 1) validate previously developed PRS in two 80 
geographically and ancestrally distinct cohorts, the All of Us Research Program (AoU) and 81 
the Genes & Health cohort, and 2) present and evaluate new methods for combining 82 
previously calculated PRS to maximize performance beyond all best performing published 83 
PRS. To better capture the genetic architecture of the outcome traits, we proposed PRSmix, 84 
a framework to combine PRS from the same trait with the outcome trait. Previous studies 85 
highlighted the effect of pleiotropic information on a trait’s genetic architecture14,15. 86 
Therefore, we proposed PRSmix+ to additionally combine PRS from other genetically 87 
correlated traits to further improve the PRS for a given trait.  88 
 89 
To assess the prediction improvement, we performed PRSmix and PRSmix+ for 47 traits in 90 
European ancestry and 32 traits in South Asian ancestry. We evaluated 1) the relative 91 
improvement of the proposed framework over the best-performing pre-existing PRS for each 92 
trait, 2) the efficient training sample sizes required to improve the PRS, 3) the predictive 93 
improvement in 6 groups including anthropometrics, blood counts, cancer, cardiometabolic, 94 
biochemistry and other conditions as the prediction accuracies varied in each group, and 4) 95 
the clinical utility and pleiotropic effect of the newly built PRS for coronary artery disease. 96 
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Overall, we show that PRSmix and PRSmix+ significantly improved prediction accuracy. An 97 
R package for preprocessing and harmonizing the SNP effects from the PGS Catalog as 98 
well as assessing and combining the scores was developed to facilitate the combining of 99 
pre-existing PRS scores for both ancestry-specific and cross-ancestry contexts using the 100 
totality of published PRS. The development of this framework has the potential to improve 101 
precision health by improving the generalizability in the application of PRS16. 102 
 103 
RESULTS 104 
 105 
Overview of methods 106 

 107 
 108 

 109 
Figure 1. The framework of the trait-specific and cross-trait PRS integration. In Phase 110 
1, we obtained the SNP effects from the PGS Catalog and then harmonized the effect alleles 111 
as the alternative alleles in the independent cohorts. In each independent biobank (All of Us, 112 
Genes & Health), we estimated the PRS and split the data into training (80%) and testing 113 
(20%) datasets. In Phase 2, in the training dataset, we trained the Elastic Net model with 114 
high-power scores to estimate the mixing weights for the PRSs. The training phase could 115 
include PRSs from traits corresponding to outcomes (PRSmix) or all traits (PRSmix+). The 116 
training was adjusted for age, sex, and 10 principal components (PCs). In Phase 3, we 117 
adjusted the per-allele effect sizes from each single PRS by multiplying with the 118 
corresponding mixing weights obtained in the training phase. The final per-allele effect sizes 119 
are estimated as the weighted sum of the SNP effects across different single scores. In 120 
Phase 4, we evaluated the re-estimated per-allele effect sizes in the testing dataset. 121 
 122 
A single PRS may only reflect genetic effects captured in the discovery dataset of a single 123 
study that may be only a part of the total genetic effects underlying the trait of interest. 124 
Therefore, we harmonized and combined multiple sets of PRS to establish a new set of 125 
scores, which gather information across studies and traits. Our approach leveraged multiple 126 
well-powered PRSs to improve prediction accuracy and is detailed in Fig. 1.  127 
 128 
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Our combination frameworks leveraged the PGS Catalog17 as the resource of SNP effects to 129 
estimate single PRSs. To avoid overfitting, we used All of Us and Genes & Health cohorts 130 
(see Methods) due to non-overlapping samples from the original GWAS. We randomly 131 
divided the target cohort into a training set (80%) and a testing set (20%). We selected the 132 
most common traits from the PGS Catalog which have the highest number of PRS. For the 133 
stability of the linear combination, we curated binary traits with a prevalence > 2% in the 134 
target cohort. Continuous traits were assessed using partial R2 which is estimated as the 135 
difference between the full model of PRS and covariates (age, sex, and 10 PCs) and the null 136 
model of only covariates. For binary traits, the prediction accuracy was converted to liability 137 
R2 with disease prevalence approximated as the prevalence in the corresponding cohort. 138 
 139 
To combine the scores, we employed Elastic Net18 to construct linear combinations of the 140 
PRS. We proposed two combination frameworks: 1) PRSmix combines the scores 141 
developed from the same outcome trait, and 2) PRSmix+ combines all the high-power 142 
scores across other traits. Trait-specific combinations, PRSmix, can leverage the PRSs 143 
developed from different studies and methods to more fully capture the genetic effects 144 
underlying the traits. It has also been shown that complex traits are determined by genes 145 
with pleiotropic effects15. Therefore, we additionally proposed a cross-trait combination, 146 
PRSmix+, to make use of pleiotropic effects and further improve prediction accuracy. 147 
 148 
First, we evaluated the improvement for each method, defined as the fold-ratio of the method 149 
compared to the prediction accuracy of the best single PRS. For a fair comparison with the 150 
proposed framework, we selected the best single PRS from the training set and evaluated its 151 
performance in the testing set. First, we performed simulations to assess the improvement 152 
with various heritabilities and training sample sizes. We estimated the slope of improvement 153 
of prediction accuracy by increasing training sample sizes for various heritabilities. 154 
 155 
Next, we applied the proposed frameworks in two distinct cohorts; (1) the All of Us program, 156 
in which 47 traits were tested in U.S. residents of European ancestry, and (2) the Genes & 157 
Health (G&H) cohort, in which 32 traits were tested in British South Asian ancestry 158 
(Supplementary Table 1). In each cohort, we compared the improvement of our proposed 159 
framework with the single best score from the PGS Catalog. We estimated the averaged 160 
fold-ratio as a measure of the improvement of prediction accuracy by our approach, 161 
compared to the best single score from PGS Catalog. We also classified the traits into 6 162 
categories as anthropometrics, blood counts, cancer, cardiometabolic, biochemistry, and 163 
other conditions (Supplementary Table 2 and 3). Cancer traits were not considered in the 164 
younger Genes & Health cohort due to their low prevalence (<2%). We then present 165 
additional detailed analyses for coronary artery disease focused on clinical utility 166 
improvements relative to existing PRS. 167 
 168 
Simulations were used to evaluate the combination frameworks  169 
 170 
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 171 
 172 
Figure 2. Simulations to demonstrate the predictive improvement of PRSmix and 173 
PRSmix+. The points and triangles represent the mean fold-ratio of R2 between (a) PRSmix 174 
and (b) PRSmix+, respectively, versus the best single PRS. (c) The improvement per 175 
logarithm with base 10 of sample size for various heritabilities was represented as a slope of 176 
a linear regression of fold-ratio ~ log10(N). In simulations, the correlation within simulated 177 
trait-specific PRSs was 0.8, and the correlation between trait-specific and correlated PRSs 178 
was 0.4 (see Methods). The whiskers demonstrate confidence intervals across 200 179 
replications. The dashed red lines represent the reference for fold-ratio equal 1 for (a) and 180 
(b), and equal 0 for (c). 181 
 182 
To compare the performance of PRSmix and PRSmix+ against the best single PRS and 183 
evaluate the sample sizes needed for training the mixing weights, we performed simulations 184 
with real genotypes of European ancestry in the UK Biobank given the large sample sizes 185 
available (Fig. 2). Briefly, we randomly split 7,000 individuals as a testing data set mimicking 186 
the testing size of 20% of real data. In the remaining dataset, we used 200,000 individuals 187 
for GWAS to estimate the SNP effect sizes for PRS calculations. Finally, with the rest of the 188 
data, we randomly selected different sample sizes as the training sample to evaluate the 189 
sample sizes needed to train the mixing weights. To assess the improvement of PRS 190 
performance, we computed the fold-ratio of prediction accuracy R2 between PRSmix and 191 
PRSmix+ against the best-performing single simulated PRS. 192 
 193 
Our results showed that the trait-specific combination, PRSmix, showed no improvement 194 
with the training sample smaller than 500 for most of the traits. Our simulations illustrated 195 
that traits with low heritability required a larger sample size to achieve an improvement 196 
compared to traits with high heritability (Fig. 2a and 2b). PRSmix demonstrated a better 197 
performance compared to the best single PRS with training sample sizes from Ntraining = 200 198 
samples for the high heritable trait (h2 = 0.4) to Ntraining = 5000 samples for the low heritable 199 
trait (h2=0.05) (Fig. 2a and 2b). We observed that PRSmix demonstrated a saturation of 200 
improvement from Ntraining = 10,000. PRSmix+ demonstrated negligible further improvement 201 
when the training sample size was increased from 30,000 but maintained consistent 202 
improvement relative to PRSmix and the best single PRS. Moreover, we observed that traits 203 
with higher heritability or higher best prediction accuracy of a single PRS demonstrated a 204 
smaller improvement compared to traits with a smaller heritability (Fig. 2c). 205 
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 206 
 207 
Combining trait-specific PRS improves prediction accuracy (PRSmix) 208 
 209 

 210 

 211 
 212 
Figure 3. Comparison of PRSmix and PRSmix+ versus the best PGS Catalog in 213 
European and South Asian ancestries. The relative improvement compared to the best 214 
single PRS was assessed in (a) the European ancestry in the All of US cohort and (b) South 215 
Asian ancestry in the Genes & Health cohort. PRSmix combines trait-specific PRSs and 216 
PRSmix+ combines additional PRSs from other traits. The best PGS Catalog score was 217 
selected by the best performance trait-specific score in the training sample and evaluated in 218 
the testing sample. The prediction accuracy (R2) was calculated as partial R2 which is a 219 
difference of R2 between the model with PRS and covariates including age, sex, and 10 PCs 220 
versus the base model with only covariates. Prediction accuracy for binary traits was 221 
assessed with liability-R2 where disease prevalence was approximately estimated as a 222 
proportion of cases in the testing set. The whiskers reflect the maximum and minimum 223 
values within the 1.5 × interquartile range. The bars represent the ratio of prediction 224 
accuracy of PRSmix and PRSmix+ versus the best PRS from the PGS Catalog across 47 225 
traits and 32 traits in All of Us and Genes and Heath cohorts, respectively, and the whiskers 226 
demonstrate 95% confidence intervals. P-values for significance difference of the fold-ratio 227 
from 1 using a two-tailed paired t-test. PRS: Polygenic risk scores. 228 
 229 
To determine if a trait-specific combination, namely PRSmix, would improve the accuracy of 230 
PRS prediction, we used data from European ancestry participants in the All of Us research 231 
program who had undergone whole genome sequencing, and Genes & Health participants 232 
of South Asian ancestry. We randomly split the independent cohorts into training (80%) and 233 
testing sets (20%). The training set was used to train the weights of each PRS, referred as 234 
mixing weights, that indicate how much each PRS explain the phenotypic variance in the 235 
training set, and the PRS accuracies were evaluated in the testing set (Fig. 1). We curated 236 
47 traits and 32 traits in the All of Us and Genes & Health cohorts, respectively. For binary 237 
traits, we removed traits with a prevalence of smaller than 2% (see Methods, Supplementary 238 
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Table 1). Traits with the best-performance trait-specific single PRS which showed a lack of 239 
power were also removed. Overall, we observed a significant improvement compared to 1 240 
using a two-tailed paired t-test with PRSmix. PRSmix significantly improves the prediction 241 
accuracy compared to the best PRS estimated from the PGS Catalog. PRSmix improved 242 
1.20-fold (95% CI: [1.10; 1.3]; P-value = 9.17 x 10-5) and 1.19-fold (95% CI: [1.11; 1.27]; P-243 
value = 1.92 x 10-6) compared to the best PRS from PGS Catalog for European ancestry and 244 
South Asian ancestry, respectively.  245 
 246 
In European ancestry, we observed the greatest improvement of PRSmix against the best 247 
single PRS for rheumatoid arthritis of 3.36-fold. Furthermore, in South Asian ancestry, we 248 
observed that PRSmix of coronary artery disease had the best improvement of 2.32-fold 249 
compared to the best-performance single PRS. Details of the prediction accuracy are shown 250 
in Supplementary Fig. 1, 2 and Supplementary Table 2, 3. This was consistent with findings 251 
in simulations since traits with a lower single PRS performance demonstrated a better 252 
improvement with the combination strategy. 253 
 254 
Cross-trait combination further improved PRS accuracy and highlighted the 255 
contribution of pleiotropic effects (PRSmix+) 256 
 257 
We next assessed the contribution of pleiotropic effects from cross-trait PRSs to determine if 258 
these would further improve the combination framework (PRSmix+), by including high-power 259 
PRSs from within 2600 PRSs in the PGS Catalog. To evaluate the power of PRS and 260 
improve computational efficiency, we employed the theoretic power and variance of partial 261 
R2 for continuous traits and liability R2 for binary traits (see Methods). We observed that 262 
PRSmix+ further improved the prediction accuracy compared to the best PGS Catalog in 263 
European ancestry (Fig. 3a) and South Asian ancestry (Fig. 3b). We observed an 264 
improvement of 1.72-fold (95% CI: [1.40; 2.04]; P-value = 7.58 x 10-6) and 1.42-fold (95% CI: 265 
[1.25; 1.59]; P-value = 8.01 x 10-7) higher compared to the best PGS Catalog for European 266 
ancestry and South Asian ancestry, respectively. PRSmix+ significantly improved the 267 
prediction accuracy compared to PRSmix, in both European and South Asian ancestry with 268 
1.46-fold (95% CI: [1.17; 1.75]; P-value = 0.002) and 1.19-fold (95% CI: [1.07; 1.32]; P-value 269 
= 0.001), respectively (Supplementary Fig. 3). 270 
 271 
Consistent with our simulation results, a smaller improvement was observed for traits with a 272 
higher baseline prediction accuracy from PGS Catalog (Supplementary Fig. 4), noting that 273 
the baseline prediction accuracy depends on the heritability and genetic architecture (i.e. 274 
polygenicity). In contrast, more improvement was observed for traits with lower heritability, 275 
thus lower prediction accuracy, when comparing the single best PRS (Fig. 1c). 276 
 277 
Prediction accuracy and predictive improvement across various types of traits 278 
 279 
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 280 
 281 
Figure 4. Prediction accuracy and improvement across various types of traits in the 282 
European and South Asian ancestry. We classified the traits into 6 main categories for 283 
European ancestry in the All of Us cohort and 5 categories for South Asian ancestry in the 284 
Genes & Health cohort due to the low prevalence of cancer traits in Genes & Health. The 285 
prediction accuracies, (a) and (c), are estimated as partial R2 and liability R2 for continuous 286 
traits and binary traits, respectively. The relative improvements, (b) and (d), are estimated as 287 
the fold-ratio between the prediction accuracies of PRSmix and PRSmix+ against the best 288 
PGS Catalog. The order on the axis followed the decrease in the prediction accuracy of 289 
PRSmix+. The boxplots in (a) and (c) show the first to the third quartile of prediction 290 
accuracies for 47 traits and 32 traits in European and South Asian ancestries, respectively. 291 
The whiskers reflect the maximum and minimum values within the 1.5 × interquartile range 292 
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for each group. The bars in (b) and (d) represent the mean prediction accuracy across the 293 
traits in that group and the whiskers demonstrate 95% confidence intervals. The red dashed 294 
line in (b) and (d) represents the ratio equal to 1 as a reference for comparison with the best 295 
PGS Catalog score. The asterisk (*) and (**) indicate P-value < 0.05 and P-value < 0.05 / 296 
number of traits in each type with a two-tailed paired t-test, respectively. 297 
 298 
We next compared PRSmix and PRSmix+ with the best PRS estimated from the PGS 299 
Catalog across 6 categories, including anthropometrics, blood counts, cancer, 300 
cardiometabolic, biochemistry, and other conditions (see Methods). PRSmix demonstrates a 301 
higher prediction accuracy across all types of traits in both European and South Asian 302 
ancestries (Fig. 4). We observed a similar trend in the predictive performance of PRSmix+ 303 
across different types of traits. In European, the smallest improvement with PRSmix+ was in 304 
anthropometric traits of 1.14-fold (95% CI: [1.03; 1.25]; P-value = 0.01) while “other 305 
conditions” (including depression, asthma, migraine, current smoker, hypothyroid, 306 
osteoporosis, glaucoma, rheumatoid arthritis, and gout) obtained the highest mean 307 
predictive improvement but also with high variance of 2.66-fold (95% CI: [1.30; 4.01]; P-308 
value = 0.01) (Supplementary Table 4). In South Asian ancestry, the mean predictive 309 
improvement was highest in “other conditions” (including asthma, migraine, current smoker, 310 
and rheumatoid arthritis) type of 2.10-fold (95% CI: [0.787; 3.405]; P-value = 0.1). 311 
Biochemistry demonstrated the smallest improvement of 1.23-fold (95% CI: [1.15; 1.31]; P-312 
value = 5.8 x 10-9). We note that PRSmix and PRSmix+ improve prediction accuracy for all 313 
traits (Supplementary Table 2 and 3). The large variance could be due to the wide range of 314 
improvement and the small number of traits in each subtype. 315 
 316 
Comparison with previous combination methods  317 
 318 

 319 
Figure 5. Benchmarking previous methods with PRSmix and PRSmix+. LDpred2-auto 320 
was used as the baseline method to input in the methods. 5 traits from Maier et al.19 and 26 321 
publicly available GWAS for European ancestry were curated. The components of each 322 
combination method are denoted in parentheses. wMT-SBLUP was conducted with the input 323 
of sample sizes from the GWAS summary statistics and heritabilities and genetic correlation 324 
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between all pairs of traits using LD score regression. PRSmix (LDpred2 + PGS Catalog) 325 
combined target trait-specific scores within 26 scores and PGS Catalog. Elastic Net 326 
(LDpred2) was performed using Elastic Net with all scores from 26 traits generated with 327 
LDpred2-auto. PRSmix+ (LDpred2 + PGS Catalog) was conducted using 26 scores from 328 
LDpred2-auto and scores from all traits obtained from PGS Catalog. Partial R2 and liability 329 
R2 were used for continuous traits and binary traits, respectively. The whiskers demonstrate 330 
95% confidence intervals of mean prediction accuracy. BMI, Body mass index; CAD, 331 
coronary artery disease; T2D, type 2 diabetes.  GWAS, genome-wide association study. 332 
 333 
There have been several studies proposed to incorporate multiple traits to improve 334 
prediction accuracy of the target trait8,19,20. For example, wMT-SBLUP19 created a weighted 335 
index for correlated PRSs and required the input sample sizes, genetic correlation and 336 
heritability across all pairs of traits from GWAS summary statistics to be determined. Krapohl 337 
et al.20 and Albinana et al.13 combined PRSs using scores estimated from LDpred25. Here 338 
we benchmarked PRSmix and PRSmix+ against the previous methods using summary 339 
statistics with a pre-defined set of correlated traits to the main outcomes and an extension of 340 
scores generated by different methods from PGS Catalog (Fig. 5). 341 
 342 
We first observed that integrating scores by Elastic Net with scores from pre-defined traits 343 
improved prediction accuracy compared to wMT-SBLUP ranging between 1.08-fold (95% CI: 344 
[1.03; 1.12]; P-value after FDR correction = 0.36) for T2D and 2.87-fold (95% CI: [1.58; 345 
4.15]; P-value = 0.006) for CAD (Supplementary Table 5 and Supplementary Table 6). 346 
PRSmix+, with scores from both pre-defined traits and PGS Catalog, demonstrated a 347 
consistent boost in prediction accuracy compared to wMT-SBLUP between 1.12-fold (95% 348 
CI: [1.02; 1.21]; P-value = 0.016) for T2D and 3.27-fold (95% CI: [2.1; 4.44]; P-value =  2.6 x 349 
10-4) for CAD. PRSmix+ equipped with both LDpred2-auto and PGS Catalog scores also 350 
outperformed the Elastic Net combination of LDpred2 scores best observed with 1.6-fold 351 
(95% CI: [1.31; 1.89]; P-value = 1.1 x 10-4) for depression. Interestingly, height, a highly 352 
polygenic trait21, demonstrated has the similarly best performance under a trait-specific 353 
combination (PRSmix with trait-specific LDpred2-auto and PGS Catalog scores) and 354 
PRSmix+ equipped with both LDpred2-auto and PGS Catalog scores (Fig. 5). Employing 355 
pleiotropic effects only provided a small improvement with height (Supplementary Table 6). 356 
On the other hand, T2D demonstrated that all methods of cross-trait combinations provided 357 
a significant improvement over the trait-specific combination (Fig. 5). 358 
 359 
Clinical utility for coronary artery disease 360 
 361 

 362 
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 363 
Figure 6. Comparison of prediction accuracies with PRSmix, PRSmix+ and CAD PRS 364 
from PGS Catalog. PRSmix was computed as a linear combination of CAD PRS and 365 
PRSmix+ was computed as a linear combination of all significant PRS obtained from the 366 
PGS Catalog. The PRSs were evaluated in the testing set with liability R2 in the (a) 367 
European ancestry from the All of Us cohort and b) South Asian ancestry from the Genes & 368 
Health cohort. The bars indicate the mean prediction accuracy and the whiskers show 95% 369 
confidence intervals. CAD, coronary artery disease. 370 
 371 

 372 
Figure 7. Net reclassification improvement (NRI) for coronary artery disease with the 373 
addition of polygenic risk scores to the baseline model in European and South Asian 374 
ancestries. The baseline model for risk prediction includes age, sex, total cholesterol, HDL-375 
C, systolic blood pressure, BMI, type 2 diabetes, and current smoking status. We compared 376 
the integrative models with PGS Catalog, PRSmix, and PRSmix+ in addition to clinical risk 377 
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factors versus the baseline model with only factors. The points indicate the mean estimate 378 
for continuous NRI and the whiskers indicate 95% confidence intervals estimated from 500 379 
bootstraps. HDL-C: High-density lipoprotein; BMI: Body mass index. NRI: Net 380 
Reclassification Improvement. 381 
 382 
 383 
To evaluate the utility of the proposed methods, we assessed the PRSmix and PRSmix+ for 384 
coronary artery disease (CAD), which is the leading cause of disability and premature death 385 
among adults22–24. The single best CAD PRSs (PRSCAD) s from the PGS Catalog in the 386 
training set were from Koyama S. et al25. and Tamlander M. et al.26 in European and South 387 
Asian ancestries, respectively (Supplementary Fig. 5 and Supplementary Fig. 6). In the 388 
testing set, liability R2 with Koyama S et al. for European ancestry was 0.03 (95% CI: [0.03; 389 
0.04]; P-value < 2 x 10-16) and with Tamlander M. et al. for South Asian ancestry was 0.006 390 
(95% CI: [0.003; 0.009]; P-value = 2.39 x 10-4) (Fig. 6). 391 
 392 
Subsequently, we assessed the clinical utility of the integrative model with PRS and 393 
established clinical risk factors, including age, sex, total cholesterol, HDL-C, systolic blood 394 
pressure, BMI, type 2 diabetes, current smoking status versus the traditional model with 395 
clinical risk factors. (Fig. 7 and Supplementary Table 7). In European ancestry, the CAD 396 
PRSmix+ integrative score improved the continuous net reclassification of 35% (95% CI: 397 
[26%; 45%]; P-value < 2 x 10-16) compared to PRSmix (30%; 95% CI: [21%; 38%]; P-value = 398 
P-value < 2 x 10-16) and the best PRS from the PGS Catalog (28%; 95% CI: [19%; 38%]; P-399 
value < 2 x 10-16). In South Asian ancestry, the integrated score with PRSmix+ showed 400 
significant continuous net reclassification of 27% (95% CI: [16%; 38%]; P-value = 6.07 x 10-401 
7) compared to PRSmix (15%; 95% CI: [9%; 20%]; P-value = 7.18 x 10-6) and the best PGS 402 
Catalog (7%; 95% CI: [1%; 13%]; P-value = 0.02). Our results also demonstrated an 403 
improvement in net reclassification for models without clinical risk factors (Supplementary 404 
Table 7). 405 
 406 
We assessed the incremental area under the curve (AUC) between the full model of PRS 407 
and covariates and the null model with only covariates (Supplementary Table 8). PRSmix+ 408 
demonstrated an incremental AUC of 0.02 (95% CI: [0.018; 0.02]; P-value < 2.2x10-16) and 409 
0.008 (95% CI: [0.007; 0.009]; P-value<2.2x10-16) in European and South Asian ancestries, 410 
respectively. PRSmix obtained an incremental AUC of 0.016 (95% CI: [0.016; 0.017]; P-411 
value < 2.2x10-16) and 0.006 (95% CI: [0.005; 0.007]; P-value < 2.2x10-16) in European and 412 
South Asian ancestries, respectively. The best PGS Catalog had the smallest incremental 413 
AUC of 0.012 (95% CI: [0.011; 0.013]; P-value<2.2x10-16) and 0.003 (95% CI: [0.002; 0.003]; 414 
P-value < 2.2x10-16) in European and South Asian ancestries, respectively. 415 
 416 
We also compared the risks for individuals in the top decile versus the remaining population 417 
(Supplementary Table 9). For European ancestry, an increased risk with OR per 1-SD of the 418 
best PGS Catalog, PRSmix and PRSmix+ were 1.43 (95% CI: [1.30-1.57]; P-value < 2.2x10-419 
16), 1.60 (95% CI: [1.45-1.76]; P-value < 2.2x10-16) and 1.74 (95% CI = [1.58; 1.91]; P-value 420 
< 2.2x10-16), respectively. The top decile of PRSmix+ compared to the remaining population 421 
demonstrated an increased risk of OR = 2.53 (95% CI: [1.96; 3.25]; P-value =8.64 x 10-13). 422 
The top decile for the best PGS Catalog versus the remainder was OR = 1.67 (95% CI: 423 
[1.27; 2.19]; P-value = 2 x 10-4). For South Asian ancestry, an increased risk with OR per 1-424 
SD of the best PGS Catalog, PRSmix and PRSmix+ was 1.24 (95% CI: [1.13; 1.37]; P-value 425 
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< 1.52x10-16), 1.39 (95% CI: [1.33; 1.46]; P-value < 2.2 x 10-16), 1.40 (95% CI: [1.27; 1.55]; 426 
P-value < 2.2x10-16) and 1.50 (95% CI = [1.36; 1.66]; P-value < 2.2x10-16), respectively. In 427 
South Asian ancestry, PRSmix+ demonstrated an OR of 2.34 (95% CI: [1.79; 3.05]; P-value 428 
= 4.22 x 10-10), and with the best PGS Catalog, OR was 1.73 (95% CI: [1.30; 2.28]; P-value 429 
= 1.31 x 10-4) for the top decile versus the remaining population. 430 
 431 
Moreover, we observed that there is a plateau of improvement for PRSmix from the training 432 
size of 5000 in both European and South Asian ancestries (Supplementary Fig. 7), which 433 
aligned with our simulations (Fig. 2a and 2b). Our results demonstrated the generalization of 434 
our combination methods across diverse ancestries to improve prediction accuracy. With 435 
PRSmix+, our empirical result showed that there was a modest improvement with training 436 
sample sizes larger than 5,000. 437 
 438 
Finally, we conducted phenome-wide association studies (PheWAS) in All of Us between 439 
PRSCAD with 1815 phecodes to compare the pleiotropy of PRS and assess the relationship 440 
between CAD PRS and disease phenotypes given the inherent use of pleiotropy in 441 
development (Supplementary Table 10). As expected, PRSmix+ had a stronger association 442 
for coronary atherosclerosis relative to the single best PRS from the PGS Catalog. PRSmix+ 443 
associations with cardiometabolic risk factors were significantly greater with averaged fold-444 
ratio = 1.10 (95% CI: [1.09-1.12]; P-value with paired T test =1.07 x 10-25) and 1.07 (95% CI: 445 
[1.05-1.081]; P-value = 4.8 x 10-13) for circulatory system and endocrine/metabolic system 446 
(Supplementary Table 11). The PheWAS result for PRSmix+ aligned with the list of traits 447 
from the selected PRS (Supplementary Table 10). 448 
 449 
DISCUSSION 450 
 451 
In this paper, we propose a trait-specific framework (PRSmix), and cross-trait framework 452 
(PRSmix+) to leverage the combined power of existing scores. We performed and evaluated 453 
our method using the All of Us and Genes & Health cohorts showcasing a framework to 454 
develop the most optimal PRS for a given trait in a target population leveraging all existing 455 
PRS. Across 47 traits in All of Us cohort and 32 traits in the Genes & Health cohort with 456 
either continuous traits or binary traits with prevalence > 2%, we demonstrated substantial 457 
improvement in average prediction R2 by using a linear combination with Elastic Net. The 458 
empiric observations are concordant with simulations. To our knowledge, there has been a 459 
number of emerging studies to combine PRS, but there is a limited number of frameworks 460 
that comprehensively evaluate, harmonize, and leverage the combination of these 461 
scores8,13,27. Our studies permit several conclusions for the development, implementation, 462 
and transferability of PRS. 463 
 464 
First, externally derived and validated PRS are generally not the most optimal PRS for a 465 
given cohort. Consistent with other risk predictors, recalibration within the ultimate target 466 
population improves performance28. By leveraging the PGS Catalog, our work carefully 467 
harmonizes the risk alleles to estimate PRS across all scores and provides newly estimated 468 
per-allele SNP effects (provided to the PGS Catalog) to assist the interpretability of the 469 
models. 470 
 471 
Second, previous studies selected an arbitrary training sample size to estimate the mixing 472 
weights, which may lead to a poor power of the combination frameworks and inaccurate 473 
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estimate of sampling variance10. We assessed the expected sample sizes to estimate the 474 
mixing weights via simulations and real data. Our results demonstrated that while low 475 
heritability traits benefit the most, they require a greater training sample size.  476 
 477 
Third, we leveraged all PRS, including those not trained on the primary trait, to 478 
systematically optimize PRS for a target cohort. We showed that PRSmix improved the 479 
prediction by combining the scores matching the outcome trait. In addition, we showed that 480 
PRSmix+ was able to leverage the power of cross-traits, which highlighted the contribution 481 
of pleiotropic effects to enhance PRS performance. We leverage prior work demonstrating 482 
the effects of pleiotropy on complex traits15,29,30.  483 
 484 
Fourth, we demonstrated that our method outperformed previous methods combining 485 
scores. We showed that PRSmix+ outperformed wMT-SBLUP19 using a limited number of 486 
correlated traits. wMT-SBLUP required GWAS’s sample sizes, heritability, and genetic 487 
correlation between all traits. LDpred2-auto required GWAS summary statistics and 488 
initialized heritability and proportion of causal SNPs. Krapohl et al.20 and Abraham et al.8 489 
proposed to use Elastic Net to combine the scores developed from summary statistics, and 490 
correlated traits were selected with prior knowledge. However, these strategies consider 491 
scores developed from a particular methods using predefined summary statistics. Our 492 
framework utilizes all PRSs available in the PGS Catalog which were optimized for their 493 
target traits. Additional summary statistics and PRS scores could be added to further 494 
enhance the models. We let our Elastic Net model penalize the component PRSs without the 495 
need for prior knowledge. Elastic Net can select PRSs to include and efficiently handle multi-496 
collinearity31–33. Furthermore, PRSmix and PRSmix+ only required a set of SNPs effect to 497 
estimate the PRSs and estimated the prediction accuracy to the target trait to select the best 498 
scores for the combination. Additionally, compared to the preselected traits for stroke by 499 
Abraham et al.8 we also observed that our method could identify more related risk factors to 500 
include compared to previous work conducted on stroke (Supplementary Fig. 8). Therefore, 501 
our method is more comprehensive in an unbiased way in terms of choosing the risk factors 502 
and traits to include with empirically improved performance.  503 
 504 
Fifth, greater performance is observed even for non-European ancestry groups 505 
underrepresented in GWAS and PRS studies. We empirically demonstrate the value of 506 
training and incorporating pleiotropy with all available PRS to improve performance, 507 
including multiple metrics of clinical utility for CAD prediction in multiple ancestries. In South 508 
Asian ancestry, we observed that PRSmix and PRSmix+ demonstrated a significant 509 
improvement with the best improvement for CAD. Of note for CAD, the relative 510 
improvements in South Asian ancestry were higher than in European ancestry for PRSmix 511 
and equivalent for PRSmix+. Transferability of PRS has been shown to improve the clinical 512 
utility of PRS in non-European ancestry16,34. Although the prediction accuracy for South 513 
Asian ancestry is still limited, our results highlighted the transferability of predictive 514 
improvement with PRSmix and PRSmix+ to South Asian ancestry. We anticipate that 515 
ongoing and future efforts to improve our understanding of the genetic architecture in non-516 
European ancestries will further improve the transferability of PRS across ancestry. 517 
 518 
Lastly, traits with low heritability or generally low-performing single PRS benefit the most 519 
from this approach, especially with PRSmix+, such as migraine in both European and South 520 
Asian ancestries. Additionally, our results showed that pleiotropic effects play an important 521 
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role in understanding and improving prediction accuracies of complex traits. However, 522 
anthropometric traits, which are highly polygenic35 and have good predictive performance 523 
using the best PGS Catalog, also showed improvement with the combination framework in 524 
both European and South Asian ancestries.  525 
 526 
Given that PRSmix+ outperformed PRSmix, one might consider if there is a reason to use 527 
PRSmix instead of PRSmix+.  We observed that in cases of highly heritable traits or high 528 
performance with a single PRS, there was only marginal improvement of PRSmix+ over 529 
PRSmix. In this scenario, PRSmix could provide similar predictive performance while being 530 
less time-consuming because trait-specific PRS inputs only are required. However, for traits 531 
with lower heritability PRSmix+ shows a marked improvement over PRSmix and would be 532 
preferred. Wang et al.36 showed that the theoretical prediction accuracy of the target trait 533 
using the PRS from the correlated trait is a function of genetic correlation, heritability, 534 
number of genetic variants and sample size. Future directions could include defining the 535 
minimum parameters required for the performance of the PRSmix+ model to improve on 536 
single trait-specific PRS. 537 
 538 
Our work has several limitations. First, the majority of scores from PGS Catalog were 539 
developed in European ancestry populations. Further non-European SNP effects will likely 540 
improve the single PRS power, which may in turn, also improve the prediction accuracy of 541 
our proposed methods. Second, the Elastic Net makes a strong assumption that the 542 
outcome trait depends on a linear association with the PRS and covariates. However, a 543 
recent study demonstrated there is no statistical significance difference between linear and 544 
non-linear combinations for neuropsychiatric disease13. Third, we did not validate the mixing 545 
weights in an independent cohort. We expect that in the future, there will be emerging large 546 
independent biobanks, but prior non-genetic work demonstrates the value of internal 547 
calibration for optimal risk prediction. Fourth, we estimated the mixing weights for each 548 
single SNP as a mixing weight of the PRS. Future studies could consider linkage 549 
disequilibrium between the SNPs and functional annotations of each SNP. Fifth, our 550 
frameworks were conducted on binary traits with a prevalence > 2%. Additional combination 551 
PRS models are emerging that seek to use preexisting genotypic data from genetically 552 
related, but low prevalence conditions, to improve the prediction accuracy of rare 553 
conditions13. Sixth, the baseline demographic characteristics (i.e., age, sex, social economic 554 
status) in the target cohort might limit the validation and transferability of PRS37. Although 555 
these factors were considered by using a subset of the target cohorts as training data, it is 556 
necessary to have PRS developed on similar baseline characteristics. Lastly, with the 557 
expanding of all biobanks, there might be no perfect distinction between the samples 558 
deriving PRS and the testing cohort, future studies may consider the potential intersection 559 
samples to train the linear combination.  560 
 561 
In conclusion, our framework demonstrates that leveraging different PRS either trait-specific 562 
or cross-trait can substantially improve model stability and prediction accuracy beyond all 563 
existing PRS for a target population. Importantly, we provide software to achieve this goal in 564 
independent cohorts. 565 
 566 
METHODS 567 
 568 
Data 569 
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 570 
The All of Us Research Program  571 
 572 
The All of Us Research Program is a longitudinal cohort continuously enrolling (starting May 573 
2017) U.S. adults ages 18 years and older from across the United States, with an emphasis 574 
on promoting inclusion of diverse populations traditionally underrepresented in biomedical 575 
research, including gender and sexual minorities, racial and ethnic minorities, and 576 
participants with low levels of income and educational attainment.38  Participants in the 577 
program can opt-in to providing self-reported data, linking electronic health record data, and 578 
providing physical measurement and biospecimen data.39  Details about the All of Us study 579 
goals and protocols, including survey instrument development,40 participant recruitment, data 580 
collection, and data linkage and curation were previously described in detail.39,41  581 
 582 
Data can be accessed through the secure All of Us Researcher Workbench platform, which 583 
is a cloud-based analytic platform that was built on the Terra platform.42  Researchers gain 584 
access to the platform after they complete a 3-step process including registration, 585 
completion of ethics training, and attesting to a data use agreement attestation.43 All of Us 586 
uses a tiered approach based on what genomic data is accessible through the Controlled 587 
Tier, and includes both whole genome sequencing (WGS), genotyping array variant data in 588 
multiple formats, as well as variant annotations, access to computed ancestry, and quality 589 
reports.44 This study includes data on the 98,600 participants with (WGS) data in the All of 590 
Us v6 Curated Data Repository release.  Participant data in this data release was collected 591 
between May 6, 2018 and April 1, 2021. This project is registered in the All of Us program 592 
under the workspace name “Polygenic risk score across diverse ancestries and biobanks.” 593 
 594 
The Genes & Health Biobank  595 
 596 
Genes & Health is a community-based genetics study enrolling British South Asian, with an 597 
emphasis on British Bangladeshi (two-thirds) and British Pakistani (remaining) people, with a 598 
goal of recruiting at least 100,000 participants. Currently, over 52,000 participants have 599 
enrolled since 2015. All participants have consented for lifelong electronic health record 600 
access and genetic analysis. The study was approved by the London South East National 601 
Research Ethics Service Committee of the Health Research Authority. 97.4% of participants 602 
in Genes & Health are in the lowest two quintiles of the Index of Multiple Deprivation in the 603 
United Kingdom. The cohort is broadly representative of the background population with 604 
regard to age, but slightly over-sampled with females and those with medical problems since 605 
two-thirds of people were recruited in healthcare settings such as General Practitioner 606 
surgeries45. 607 
 608 
The Polygenic Score (PGS) Catalog 609 
 610 
Polygenic risk scores were obtained from the Polygenic Score (PGS) Catalog17, which is a 611 
publicly accessible resource cataloging published PRS, including the metadata. The 612 
metadata provides information describing the computational algorithms used to generate the 613 
score, and performance metrics to evaluate a PRS17. At the time of this study, over 2,600 614 
PRS were cataloged in the PGS Catalog (version July 18, 2022) designed to predict 538 615 
distinct traits. 616 
 617 
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Clinical Outcomes 618 
 619 
Clinical phenotypes were curated using a combination of electronic health record data, direct 620 
physical measurements, and/or self-reported personal medical history data, from the All of 621 
Us v6 Data Release as detailed in Supplementary Table 16. Individuals in the Genes and 622 
Health cohort were also curated with similar definitions based on ICD10, SNOMED and 623 
operation codes (Supplementary Table 17). Traits with the best performing single trait-624 
specific PRS with power < 0.95 such as hemoglobin, sleep apnea, and depression were 625 
removed. Binary traits with a prevalence < 2% were removed. 626 
 627 
A linear combination of scores 628 
 629 
We proposed PRSmix to combine PRS of outcome traits and PRSmix+ to combine high-630 
power PRS (defined in the following subsection) from all traits obtained from PGS Catalog. 631 
The linear combination was conducted by using an Elastic Net algorithm from the “glmnet” R 632 
package46 (version 4.1) to combine the estimated PRS. First, we randomly split the 633 
independent cohorts into 80% of training and 20% testing. The PRS in the training set was 634 
standardized with mean 0 and variance 1. Before conducting linear combination, we first 635 
evaluated the performance of each individual PRS by their power and P-value (see below). 636 
An Elastic Net algorithm was used with 5-fold cross-validation and default parameters to 637 
estimate the mixing weights of each PRS. The mixing weights were then divided by the 638 
corresponding original standard deviation of the PRS in the training set. 639 
 640 

��� � ���  / ��  
 641 

Where ��� and ��  is the mixing weight estimated from the Elastic Net and standard deviation 642 
of PRSi in the training set, respectively. ��� is the adjusted mixing weight for PRSi. To derive 643 
the per-allele effect sizes from the combination framework, we multiplied the SNP effects 644 
with the corresponding adjusted mixing weights:  645 

	�� � 
 ��� � ���
�

���

  
Where 	��  is the adjusted effect size of SNPj and ���   is the original effect sizes of SNPj in 646 

PRSi. We set ��� � 0 if SNPj is not in PRSi. The adjusted effect sizes were then utilized to 647 

calculate the final PRS.  648 
 649 
The mixing weights for PGS Catalog scores for PRSmix and PRSmix+ in European ancestry 650 
are provided in Supplementary Table 12 and Supplementary Table 13, respectively. For 651 
South Asian ancestry, the mixing weights for PRSmix and PRSmix+ in European ancestry 652 
are provided in Supplementary Table 14 and Supplementary Table 15, respectively. 653 
 654 
Power and variance of PRS accuracy 655 
 656 
We selected high-power PRS to conduct the combination by assessing the power and 657 
variance of prediction accuracy. The power of PRS can be estimated based on the power of 658 
the two-tailed test of association as follow3,47: 659 
 660 

1 � ������1 � �/2� � √�� � �������/2� � √��   (1) 661 
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 662 
where � is the Chi-squared distribution function, � is the significance level, and � is the non-663 
centrality parameter which can be estimated as 664 

 665 

� � ���

����
    (2) 666 

 667 
where N, �	 is the sample size and estimated prediction accuracy in the testing set, 668 
respectively. �	 can be estimated as partial �	 or liability �	 for continuous traits and binary 669 
traits, respectively. Briefly, partial �	 compared the difference in goodness-of-fit between a 670 
full model with PRS and covariates including age, sex, and first 10 PCs, and a null model 671 
with only covariates. Additionally, for binary traits, liability �	 was estimated with the disease 672 
prevalence approximated as the prevalence in the samples. The theoretical variance and 673 
standard error of �	 can be estimated as follow48–50: 674 
 675 

����	� � ������	� � �
�����������	��

����������
   (3) 676 

 677 
Therefore, we can analytically estimate the confidence interval of prediction accuracy for 678 
each of the score. We selected high-power scores defined as power > 0.95 with P-value <= 679 
0.05 or P-value <= 1.9 x 10-5 (0.05/2600) for the combination with Elastic Net. 680 
 681 
To compare the improvement, for instance between PRSmix and the best PGS Catalog, we 682 
estimate the mean fold-ratio of R2 across different traits with its 95% confidence interval and 683 
evaluated the significance difference from 1 using a two-tailed paired t-test. 684 
 685 
Simulations 686 
 687 
We used UK Biobank European ancestry to conduct simulations for trait-specific and cross-688 
trait combinations. Overall, we simulated 7 traits with heritability �	 equal to 0.05, 0.1, 0.2, 689 
and 0.5. We randomly selected M=1000 causal SNPs among 1.1 million HapMap3 variants 690 
with INFO > 0.6, MAF > 0.01 and P-value Hardy-Weinberg equilibrium > 10-7. We removed 691 
individuals with PC1 and PC2 > 3 standard deviation from the mean. We randomly remove 692 
one in a pair of related individuals with closer than 2nd degree. The genetic components 693 
were simulated as PRSs where PRS1, PRS2, and PRS3 are considered trait-specific scores 694 
with genetic correlations are 0.8 and 0.4 for cross-trait scores. PRS4, PRS5 and PRS6 are 695 
simulated as pleiotropic effects on the outcome traits with genetic correlation equal to 0.4. 696 
The SNP effects for PRSs are simulated by a multivariate normal distribution MVN(0,  ) 697 
where   is the covariance matrix between PRSs. The main diagonal contains the heritability 698 
of the traits as �	 / ! and the covariance between PRSs are simulated as ��  �  �	 / ! where 699 

�� is the genetic correlation between PRSs (0.8 for trait-specific scores and 0.4 for cross-trait 700 

scores). The PRSs of the outcome are estimated by the weighted combination of PRS where 701 
the weights follow U(0,1). 7 phenotypes were simulated as " � # � �, � ~ &�0,1 � �	� where 702 
g is PRS and e is the residuals.  703 
 704 
We split the simulated cohort into 3 data sets for: 1) GWAS 2) training set: training the 705 
mixing weights with a linear combination and 3) testing set: testing the combined PRS. We 706 
incorporated PRS1, PRS2 and PRS3 to assess the trait-specific PRSmix framework. We 707 
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combined all 6 single PRS to evaluate the cross-trait PRSmix+ framework. We compared 708 
the fold-ratio of the R2 of the combined PRS to the R2 of best single PRS to assess the 709 
improvement of the combination strategy. To evaluate the improvement across different 710 
heritabilities, we estimated the slope of improvement per log10(N) increase of training 711 
sample sizes on the fold-ratio of predictive improvement. 712 
 713 
Sample and genotyping quality control 714 
 715 
The AoU data version 5 contains more than 700 million variants from whole genome 716 
sequencing39. We curated European ancestry by predicted genetic ancestry with a 717 
probability > 90% provided by AoU yielding 48,112 individuals in the AoU. For variant quality 718 
control beyond AoU central efforts, we further filtered SNPs to include MAF > 0.001 which 719 
retained 12,416,130 SNPs. We performed a similar quality control for imputed genotype data 720 
for South Asian ancestry in the Genes & Health cohort with additional criteria of INFO score 721 
> 0.6 and genotype missing rate < 5%. Individuals with a missing rate > 5% were removed. 722 
Eventually, 44,396 individuals and 8,935,207 SNPs remained in Genes & Health. 723 
 724 
Assessment of clinical utility 725 
 726 
We applied PRSmix and PRSmix+ for coronary artery disease as a clinical application. The 727 
phenotypic algorithm includes at least one ICD or CPT code below: ICD9 410x, 411x, 412x; 728 
ICD10 I22x, I23x, I24.1, I25.2 CPT 92920-92979 (PCI), 33533-33536, 33517-33523, 33510-729 
33516 (CABG) or self-reported personal history of MI or CAD. CAD in Genes and Health 730 
cohort was defined with at least one ICD10 I22x, I23x, I24.1, I25 or operation codes K401, 731 
K402, K403, K404, K411, K451, K452, K453, K454, K455, K491, K492, K499, K502, K751, 732 
K752, K753, K754, K758, K759 or SNOMED codes 1755008, 22298006, 54329005, 733 
57054005, 65547006, 70211005, 70422006, 73795002, 233838001, 304914007, 734 
401303003, 401314000. 735 
 736 
The category-free NRI was used to evaluate the clinical utility. NRI was calculated by adding 737 
the PRS to the baseline logistic model including age, sex, the first 10 principal components, 738 
and clinical risk factors. The clinical risk factors include total cholesterol, HDL-C, BMI, type 2 739 
diabetes, and current smoking status or model includes only age, sex, and 10 principal 740 
components. NRI was calculated as the sum of NRI for cases and NRI for controls:  741 
 742 

&�' � (�)*|,���� � (�-./0|,���� � (�-./0|,.01�.2� � (�)*|,.01�.2� 
 743 
(�)*|,���� and (�-./0|,���� estimate the proportion of cases that had higher or lower risk 744 
after classification with logistic regression, respectively. The confidence interval for NRI was 745 
estimated with 500 bootstraps. We also compared the risk increase between individuals in 746 
the top decile of PRS versus those remaining in the population. In addition to liability R2 to 747 
compare the PRS performance, we also used the incremental area under the curve (AUC) to 748 
compare the PRS. The incremental AUC was estimated as the difference between the AUC 749 
of models with the integrative score versus the model with only clinical variables. 750 
 751 
wMT-SBLUP and linear combination of LDpred2-auto derived scores 752 
 753 
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LDpred2-auto: LDpred2 is a Bayesian method that computes the adjusted SNP effect sizes 754 
from GWAS summary statistics. LDpred2 utilizes the SNP effect sizes as prior and 755 
incorporates LD between markers to infer the posterior effect sizes. In our work, we 756 
implemented LDpred2-auto51 since this method can infer heritability and the proportion of 757 
causal variants. LDpred2-auto was conducted with 800 burn-in iterations and 500 iterations. 758 
The proportion of causal variants was initialized between 10-4 and 0.9. Furthermore, 759 
LDpred2-auto does not require a validation set, the SNP effect sizes were averaged 760 
between scores. We used 1,138,726 HapMap3 variants that overlapped with SNPs from 761 
whole-genome sequencing data in the All of Us cohort. The LD reference panel developed 762 
from European ancestry was provided by the LDpred2-tutorial. 763 
 764 
wMT-SBLUP: wMT-SBLUP19 calculates the mixing weights of PRS using sample sizes from 765 
GWAS summary statistics, SNP-heritability and genetic correlation. We compared wMT-766 
SBLUP with our method using 5 traits that were originally assessed with wMT-SBLUP 767 
including CAD, T2D, depression, height, and BMI. We curated 26 publicly available GWAS 768 
summary statistics (Supplementary Table 18) and performed LDpred2-auto with quality 769 
controls suggested by Privé et al5,51. We used LD score regression to estimate SNP-770 
heritability and genetic correlation across 26 traits. For each of the 5 outcome traits, we 771 
selected correlated traits with P-value of genetic correlation less than 0.05.  772 
 773 
Elastic Net for linear combination: we also implemented linear combination by Elastic Net 774 
with the LDpred2-auto-derived PRSs for contributing traits since this strategy was proposed 775 
by several works8,13,20. We selected scores with significant variance explained (P-776 
value<0.05) to the outcome trait and conducted Elastic Net using the glmnet R package46. 777 
 778 
Phenome-wide association study 779 
 780 
We obtained the list of 1815 phecodes from the PheWAS website (last accessed December  781 
2022)52. The phecodes were based on ICD-9 and ICD-10 to classify individuals. PheWAS 782 
was conducted on European ancestry only in AoU. For each phecodes as the outcome, we 783 
conducted an association analysis using logistic regression on PRS and adjusted for age, 784 
sex, and first 10 PCs. The significance threshold for PheWAS was estimated as 2.75 x 10-5 785 
(0.05/1815) after Bonferroni correction.  786 
 787 
Data availability 788 
 789 
The PGS Catalog is freely available at https://www.pgscatalog.org/. Our new scores are 790 
deposited in the PGS Catalog. The All of Us and Genes & Health individual-level data is a 791 
controlled access dataset and may be granted at https://www.researchallofus.org/ and 792 
https://www.genesandhealth.org/, respectively.  793 
 794 
The weights from the PRSmix and PRSmix+ scores in this manuscript have been returned to 795 
the PGS Catalog. The R package to implement PRSmix and PRSmix+ in independent 796 
datasets is at https://github.com/buutrg/PRSmix. 797 
 798 
Software/analyses: 799 
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Analyses were performed on the AoU Researcher Workbench in Jupyter Notebook 14 using 800 
R version 4.0.0 programming language. Results are reported in compliance with the AoU 801 
Data and Statistics Dissemination Policy.   802 
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