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Abstract 23 

Hidden confounding bias is a major threat in identifying causal protein biomarkers for 24 

Alzheimer’s disease in non-randomized studies. Mendelian randomization (MR) 25 

framework holds the promise of removing such hidden confounding bias by leveraging 26 

protein quantitative trait loci (pQTLs) as instrumental variables (IVs) for establishing 27 

causal relationships. However, some pQTLs might violate core IV assumptions, leading 28 

to biased causal inference and misleading scientific conclusions. To address this urgent 29 

challenge, we propose a novel MR method called MR-SPI that first Selects valid pQTL 30 

IVs under the Anna Karenina Principle and then performs valid Post-selection Inference 31 

that is robust to possible pQTL selection error. We further develop a computationally 32 

efficient pipeline by integrating MR-SPI and AlphaFold3 to automatically identify 33 

causal protein biomarkers and predict protein 3D structural alterations. We apply this 34 

pipeline to analyze genome-wide summary statistics for 912 plasma proteins in 54,306 35 

participants from UK Biobank and for Alzheimer’s disease (AD) in 455,258 samples. 36 

We identified seven proteins associated with Alzheimer's disease - TREM2, PILRB, 37 

PILRA, EPHA1, CD33, RET, and CD55 - whose 3D structures are altered by missense 38 

genetic variations. Our findings offers novel insights into their biological roles in AD 39 

development and may aid in identifying potential drug targets. 40 
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1. Introduction 41 

Alzheimer's disease (AD) stands as the primary cause of dementia globally, exerting a 42 

considerable strain on healthcare resources1,2. Despite extensive efforts, the etiology 43 

and pathogenesis of AD are still unclear, and strategies aimed at impeding or delaying 44 

its clinical advancement have largely remained challenging to achieve1,3,4. The amyloid 45 

cascade hypothesis posits that AD begins with the accumulation and aggregation of 46 

amyloid-beta (Aβ) peptides in the brain, culminating in the formation of β-amyloid 47 

fibrils, leading to tau hyperphosphorylation, neurofibrillary tangle formation and 48 

neurodegeneration5,6. However, current AD therapies targeting Aβ production and 49 

amyloid formation offer only transient symptomatic relief and fail to halt disease 50 

progression, resulting in a lack of effective drugs for AD1,7. Therefore, it is imperative 51 

and urgent to identify causal protein biomarkers to elucidate the underlying 52 

mechanisms of AD, and to expedite the development of effective therapeutic 53 

interventions for AD. 54 

 55 

In causal inference, randomized controlled trials (RCTs) serve as the gold standard for 56 

evaluating the causal effect of an exposure on the health outcome of interest. However, 57 

it might be neither feasible nor ethical to perform RCTs where protein levels are 58 

considered as the exposures. Mendelian randomization (MR) leverages the random 59 

assortment of genes from parents to offspring to mimic RCTs to establish causality in 60 

non-randomized studies8-10. MR uses genetic variants, typically single-nucleotide 61 

polymorphisms (SNPs), as instrumental variables (IVs) to assess the causal association 62 

between an exposure and a health outcome11. Recently, many MR methods have been 63 

developed to investigate causal relationships using genome-wide association study 64 

(GWAS) summary statistics data that consist of effect estimates of SNP-exposure and 65 

SNP-outcome associations from two sets of samples, which are commonly referred to 66 

as the two-sample MR designs12-15. Since summary statistics are often publicly 67 

available and provide abundant information of associations between genetic variants 68 

and complex traits/diseases, two-sample MR methods become increasingly popular14,16-69 
18. In particular, recent studies with large-scale proteomics data have unveiled numerous 70 

protein quantitative traits loci (pQTLs) associated with thousands of proteins19,20, 71 

facilitating the application of two-sample MR methods, where pQTLs serve as IVs and 72 

protein levels serve as exposures, to identify proteins as causal biomarkers for complex 73 

traits and diseases. 74 

 75 
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To employ MR for identifying causal protein biomarkers, conventional MR methods 76 

require the pQTLs included in the analysis to be valid IVs for reliable causal inference. 77 

A pQTL is called a valid IV if the following three core IV assumptions hold9,21: 78 

(A1). Relevance: The pQTL is associated with the protein; 79 

(A2). Effective Random Assignment: The pQTL is not associated with any 80 

unmeasured confounder of the protein-outcome relationship; and 81 

(A3). Exclusion Restriction: The pQTL affects the outcome only through the 82 

protein in view. 83 

Among the three core IV assumptions (A1) - (A3), only the first assumption (A1) can 84 

be tested empirically by selecting pQTLs significantly associated with the protein. 85 

However, assumptions (A2) and (A3) cannot be empirically verified in general and may 86 

be violated in practice, which may lead to a biased estimate of the causal effect. For 87 

example, violation of (A2) may occur due to the presence of population stratification9,22; 88 

and violation of (A3) may occur in the presence of horizontal pleiotropy9,23, which is a 89 

widespread biological phenomenon that the pQTL IV affects the outcome through other 90 

biological pathways that do not involve the protein in view, for example, through 91 

alternative splicing or micro-RNA effects24-26. 92 

 93 

Recently, several MR methods have been proposed to handle invalid IVs under certain 94 

assumptions, as summarized in Table 1. Some of these additional assumptions for the 95 

identification of the causal effect in the presence of invalid IVs are listed below: 96 

(i) The Instrument Strength Independent of Direct Effect (InSIDE) assumption: the 97 

pQTL-protein effect is asymptotically independent of the horizontal pleiotropic 98 

effect when the number of pQTL IVs goes to infinity. For example, the random-99 

effects inverse-variance weighted (IVW) method27, MR-Egger28, MR-RAPS 100 

(Robust Adjusted Profile Score)16, and the Mendelian randomization pleiotropy 101 

residual sum and outlier (MR-PRESSO) test29. 102 

(ii) Majority rule condition: up to 50% of the candidate pQTL IVs are invalid. For 103 

example, the weighted median method30 and MR-PRESSO. 104 

(iii) Plurality rule condition or the ZEro Modal Pleiotropy Assumption (ZEMPA)15,31: 105 

a plurality of the candidate IVs are valid, which is weaker than the majority rule 106 

condition. For example, the mode-based estimation31, MRMix32 and the 107 

contamination mixture method33. 108 

(iv) Other distributional assumptions. For example, MRMix and the contamination 109 

mixture method impose normal mixture distribution assumption on the genetic 110 
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associations and the ratio estimates, respectively. 111 

 112 

Despite many existing efforts, current MR methods still face new challenges when 113 

dealing with pQTLs IVs for analyzing proteomics data. First, it’s worth noting that the 114 

number of pQTLs for each protein tends to be small. For example, in two proteomics 115 

studies, the median number of pQTLs per protein is 420,34. With such a limited number 116 

of IVs, those MR methods based on the InSIDE assumption which requires a large 117 

number of IVs or other distributional assumptions might yield unreliable results in the 118 

presence of invalid IVs15,28. Second, current MR methods require an ad-hoc set of pre-119 

determined genetic IVs, which is often obtained by selecting genetic variants with 120 

strong pQTL-protein associations in proteomics data35. Since such traditional way of 121 

selecting IVs only requires the proteomics data, hence the same set of selected IVs is 122 

used for assessing the causal relationships between the protein in view and different 123 

health outcomes. Obviously, this one-size-fits-all strategy for selecting IVs might not 124 

work well for different outcomes because the underlying genetic architecture may vary 125 

across outcomes. For example, the pattern of horizontal pleiotropy might vary across 126 

different outcomes. Therefore, it is desirable to develop an automatic and 127 

computationally efficient algorithm to select a set of valid genetic IVs for a specific 128 

protein-outcome pair to perform reliable causal inference, especially when the number 129 

of candidate pQTL IVs is small. 130 

 131 

In this paper, we develop a novel all-in-one pipeline for causal protein biomarker 132 

identification and 3D structural alteration prediction using large-scale genetics, 133 

proteomics and phenotype/disease data, as illustrated in Figure 1. Specifically, we 134 

propose a two-sample MR method and algorithm that can automatically Select valid 135 

pQTL IVs and then performs robust Post-selection Inference (MR-SPI) for the causal 136 

effect of proteins on the health outcome of interest. The key idea of MR-SPI is based 137 

on the Anna Karenina Principle which states that all valid instruments are alike, while 138 

each invalid instrument is invalid in its own way – paralleling Leo Tolstoy’s dictum that 139 

“all happy families are alike; each unhappy family is unhappy in its own way”36. In 140 

other words, valid instruments will form a group and should provide similar ratio 141 

estimates of the causal effect, while the ratio estimates of invalid instruments are more 142 

likely to be different from each other. With the application of MR-SPI, we can not only 143 

identify the causal protein biomarkers associated with disease outcomes, but can also 144 

obtain missense genetic variations (used as pQTL IVs) for those identified causal 145 
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proteins. These missense pQTL IVs will induce changes of amino acids, leading to 3D 146 

structural changes of these proteins. A classic example of a missense mutation was 147 

found in sickle cell disease, where the mutation at SNP rs334, located on chromosome 148 

11 (11p15.4), results in the change of codon 6 of the beta globin chain from [GAA] to 149 

[GTA] 37-39. This substitution leads to the replacement of glutamic acid with valine at 150 

position 6 of the beta chain of the hemoglobin protein, altering the structure and 151 

function of hemoglobin protein. Consequently, red blood cells assume a crescent or 152 

sickle-shaped morphology, impairing blood flow to various parts of the body40,41. 153 

Moreover, to further offer novel biological insights into the interpretation of the causal 154 

effect at the molecular level, we incorporate AlphaFold342-45 into our pipeline to predict 155 

the 3D structural alteration resulting from the corresponding missense pQTL IVs for 156 

the causal proteins identified by MR-SPI. Our pipeline can elucidate the mechanistic 157 

underpinnings of how missense genetic variations translate into 3D structural 158 

alterations at the protein level, thereby advancing our understanding of disease etiology 159 

and potentially informing targeted therapeutic interventions. 160 

 161 

Our pioneering pipeline for the first time integrates the identification of causal protein 162 

biomarkers for health outcomes and the subsequent analysis of their 3D structural 163 

alterations into a unified framework, leveraging increasingly publicly available GWAS 164 

summary statistics for health research. Within our framework, the proposed MR-SPI 165 

serves dual purposes: (1) identifying causal protein biomarkers; and (2) selecting valid 166 

missense pQTL IVs for subsequent 3D structural analysis. Compared to existing two-167 

sample MR methods, MR-SPI is the first MR method that utilizes both exposure and 168 

outcome data to automatically select a set of valid IVs, especially when the number of 169 

candidate IVs is small in proteomics data, which is a prominent challenge with no 170 

satisfactory solution up to date. We note that while MR-PRESSO also selects valid IVs 171 

for MR analysis, it requires both the stronger majority rule condition and the InSIDE 172 

assumption, as well as a minimum number of four candidate IVs for implementation29. 173 

In contrast, our proposed MR-SPI does not require the InSIDE assumption and only 174 

requires the plurality rule condition that is weaker than the majority rule condition, and 175 

only requires a minimum number of three IVs for the proposed voting procedure. 176 

Therefore, MR-SPI is more suitable for analyzing proteomics data. Extensive 177 

simulations show that our MR-SPI method outperforms other competing MR methods 178 

under the plurality rule condition. We employ MR-SPI to perform omics MR (xMR) 179 

with 912 plasma proteins using the large-scale UK Biobank proteomics data in 54,306 180 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 2, 2024. ; https://doi.org/10.1101/2023.02.20.23286200doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286200


UK Biobank participants20 and find 7 proteins significantly associated with the risk of 181 

Alzheimer's disease. We further use AlphaFold342-45 to predict the 3D structural 182 

alterations of these 7 proteins due to missense genetic variations, and then illustrate the 183 

structural alterations graphically using the PyMOL software (https://pymol.org ), 184 

providing new biological insights into their functional roles in AD development and 185 

may aid in identifying potential drug targets. 186 

 187 

2. Results 188 

2.1 Overview of the pipeline 189 

Our proposed all-in-one pipeline for the identification and 3D structural alteration 190 

prediction of causal protein biomarkers consists of three primary steps, as illustrated in 191 

Figure 1. First, for each protein biomarker, we employ our proposed MR-SPI to select 192 

valid pQTL IVs by incorporating the proteomics GWAS and disease outcome GWAS 193 

summary data together, and then estimate the causal effect of each protein on the 194 

outcome using the selected valid pQTL IVs. The main idea and more detailed 195 

implementation steps for MR-SPI is described in Section 2.2. Second, we perform 196 

Bonferroni correction46 for the 𝑝-values of the estimated causal effects to identify 197 

putative causal protein biomarkers associated with the outcome. Third, for each 198 

identified protein, we apply AlphaFold3 to predict and compare the 3D structures of 199 

both the wild-type protein and mutated protein resulting from missense pQTL IVs. 200 

 201 

2.2 MR-SPI selects valid genetic instruments by a voting procedure 202 

MR-SPI is an automatic procedure to select valid pQTL instruments and perform robust 203 

causal inference using two-sample GWAS and proteomics data. In summary, MR-SPI 204 

consists of the following four steps, as illustrated in Figure 2: 205 

(1). select relevant pQTL IVs that are strongly associated with the protein; 206 

(2). each relevant pQTL IV provides a ratio estimate of the causal effect, and then 207 

all the other relevant pQTL IVs votes for it to be a valid IV if their degrees of 208 

violation of assumptions (A2) and (A3) are smaller than a data-dependent 209 

threshold as in equation (4); 210 

(3). select valid pQTL IVs by majority/plurality voting or by finding the maximum 211 

clique of the voting matrix that encodes whether two relevant pQTL IVs 212 

mutually vote for each other to be valid (the voting matrix is defined in 213 

equation (6) in STAR (structured, transparent, accessible reporting) Methods); 214 

(4). estimate the causal effect using the selected valid pQTL IVs and construct a 215 
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robust confidence interval with guaranteed nominal coverage even if in the 216 

presence of possible IV selection error in finite samples. 217 

 218 

Most current two-sample MR methods only use step (1) to select (relevant) pQTL 219 

instruments for downstream MR analysis, while the selected pQTL instruments might 220 

violate assumptions (A2) and (A3), leading to possibly unreliable scientific findings. 221 

To address this issue, MR-SPI automatically select valid pQTL instruments for a 222 

specific protein-outcome pair by further incorporating the outcome GWAS data. Our 223 

key idea of selecting valid pQTL instruments is that, under the plurality rule condition, 224 

valid IVs will form the largest group and should give “similar” ratio estimates according 225 

to the Anna Karenina Principle (see STAR Methods). More specifically, we propose the 226 

following two criteria to measure the similarity between the ratio estimates of two 227 

pQTLs 𝑗 and 𝑘 in step (2): 228 

C1 We say the 𝑘 th pQTL “votes for” the 𝑗 th pQTL to be a valid IV if, by 229 

assuming the 𝑗 th pQTL is valid, the 𝑘 th pQTL's degree of violation of 230 

assumptions (A2) and (A3) is smaller than a data-dependent threshold as in 231 

equation (4); 232 

C2 We say the ratio estimates of two pQTLs 𝑗  and 𝑘  are “similar” if they 233 

mutually vote for each other to be valid. 234 

 235 

In step (3), we construct a symmetric binary voting matrix to encode the votes that each 236 

relevant pQTL receives from other relevant pQTLs: the (𝑘, 𝑗) entry of the voting 237 

matrix is 1 if pQTLs 𝑗 and 𝑘 mutually vote for each other to be valid, and 0 otherwise. 238 

We propose two ways to select valid pQTL IVs based on the voting matrix (see STAR 239 

Methods): (1) select relevant pQTLs who receive majority voting or plurality voting as 240 

valid IVs; and (2) use pQTLs in the maximum clique of the voting matrix as valid IVs47. 241 

Our simulation studies show that the maximum clique method can empirically offer 242 

lower false discovery rate (FDR)48 and higher true positive proportion (TPP) as shown 243 

in Table S4 and Supplementary Section S6.  244 

 245 

In step (4), we estimate the causal effect by fitting a zero-intercept ordinary least 246 

squares regression of pQTL-outcome associations on pQTL-protein associations using 247 

the set of selected valid pQTL IVs, and then construct a standard confidence interval 248 

for the causal effect using standard linear regression theory. In finite samples, some 249 

invalid IVs with small (but still nonzero) degrees of violation of assumptions (A2) and 250 
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(A3) might be incorrectly selected as valid IVs, commonly referred to as “locally 251 

invalid IVs”49. To address this possible issue, we propose to construct a robust 252 

confidence interval with a guaranteed nominal coverage even in the presence of IV 253 

selection error in finite-sample settings using a searching and sampling method49, as 254 

described in Supplementary Figure S17 and STAR Methods. 255 

 256 

2.3 Comparing MR-SPI to other competing MR methods in simulation studies 257 

We conduct extensive simulations to evaluate the performance of MR-SPI in the 258 

presence of invalid IVs. We simulate data in a two-sample setting under four setups: 259 

(S1) majority rule condition holds, and no locally invalid IVs exist; (S2) plurality rule 260 

condition holds, and no locally invalid IVs exist; (S3) majority rule condition holds, 261 

and locally invalid IVs exist; (S4) plurality rule condition holds, and locally invalid IVs 262 

exist. More detailed simulation settings are described in STAR Methods. We compare 263 

MR-SPI to the following competing MR methods: (1) the random-effects IVW 264 

method27, (2) MR-RAPS16, (3) MR-PRESSO29, (4) the weighted median method30, (5) 265 

the mode-based estimation31, (6) MRMix32, and (7) the contamination mixture 266 

method33. We exclude MR-Egger in this simulation since it is heavily biased in our 267 

simulation settings. For simplicity, we shall use IVW to represent the random-effects 268 

IVW method hereafter. 269 

 270 

In Figure 3, we present the percent bias, empirical coverage, and average lengths of 95% 271 

confidence intervals of those MR methods in simulated data with a sample size of 5,000 272 

for both the exposure and the outcome. Additional simulation results under a range of 273 

sample sizes (n=5,000, 10,000, 20,000, 40,000, 80,000) can be found in Supplementary 274 

Figure S1 and Tables S1-S3. When the plurality rule condition holds and no locally 275 

invalid IVs exist, MR-SPI has small bias and short confidence interval, and the 276 

empirical coverage can attain the nominal level. When locally invalid IVs exist, the 277 

standard confidence interval might suffer from finite-sample IV selection error, and 278 

thus the empirical coverage is lower than 95% if the sample sizes are not large (e.g., 279 

5,000). In practice, we can perform sensitivity analysis of the causal effect estimate by 280 

changing the threshold in the voting step (see STAR Methods and Supplementary 281 

Figure S14). If the causal effect estimate is sensitive to the choice of the threshold, then 282 

there might exists finite-sample IV selection error. In such cases, the proposed robust 283 

confidence interval of MR-SPI can still attain the 95% coverage level and thus is 284 

recommended for use. We also examine the performance of MR-SPI in overlapped 285 
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samples mimicking real data settings with simulation set-up and results given in 286 

Supplementary Section S8, and we find that our MR-SPI can still provide valid 287 

statistical inference. 288 

 289 

2.4 Identifying plasma proteins associated with the risk of Alzheimer's disease  290 

Omics MR (xMR) aims to identify omics biomarkers (e.g., proteins) causally associated 291 

with complex traits and diseases. In particular, xMR with proteomics data enables the 292 

identification of disease-associated proteins, facilitating crucial advancements in 293 

disease diagnosis, monitoring, and novel drug target discovery. In this section, we apply 294 

MR-SPI to identify putative causal plasma protein biomarkers associated with the risk 295 

of Alzheimer's disease (AD). The proteomics data used in our analysis comprises 296 

54,306 participants from the UK Biobank Pharma Proteomics Project (UKB-PPP)20. In 297 

the UKB-PPP consortium, up to 22.6 million imputed autosomal variants across 1,463 298 

proteins post quality control were analyzed, discovering 10,248 primary associations 299 

through LD (Linkage Disequilibrium) clumping ±1Mb around the significant variants, 300 

including 1,163 in the cis region and 9,085 in the trans region20. As described in Sun, 301 

et al. 20, the following filtering steps are used to retain pQTLs in the UKB-PPP summary 302 

level proteomics data: (1)genome-wide significant (𝑝 -value< 3.40 × 10!"" ), after 303 

Bonferroni correction; and (2) independent pQTLs using LD clumping (𝑟# < 0.01). 304 

Thus, all these candidates pQTL IVs are independent and strongly associated with the 305 

proteins. Summary statistics for AD are obtained from a meta-analysis of GWAS 306 

studies for clinically diagnosed AD and AD-by-proxy, comprising 455,258 samples in 307 

total50. For MR method comparison, we analyze 912 plasma proteins that share four or 308 

more candidate pQTLs within the summary statistics for AD, because the 309 

implementation of MR-PRESSO requires a minimum of four candidate IVs 29. 310 

 311 

As presented in Figure 4(a), MR-SPI identifies 7 proteins that are significantly 312 

associated with AD after Bonferroni correction, including CD33, CD55, EPHA1, 313 

PILRA, PILRB, RET, and TREM2. The detailed information of the selected pQTL IVs 314 

for these 7 proteins can be found in Supplementary Table S6. Among them, four 315 

proteins (CD33, PILRA, PILRB, and RET) are positively associated with the risk of 316 

AD while the other three proteins (CD55, EPHA1, and TREM2) are negatively 317 

associated with the risk of AD. We also note that some competing MR methods may 318 

detect additional proteins, which are likely spurious due to invalid pQTL IVs, as 319 

demonstrated in Supplementary Section 11. Previous studies have revealed that some 320 
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of those 7 proteins and the corresponding protein-coding genes might contribute to the 321 

pathogenesis of AD51-56, as shown in Supplementary Table S8. For example, it has been 322 

found that CD33 plays a key role in modulating microglial pathology in AD, with 323 

TREM2 acting downstream in this regulatory pathway53. Besides, a recent study has 324 

shown that a higher level of soluble TREM2 is associated with protection against the 325 

progression of AD pathology57. Additionally, RET at mitochondrial complex I is 326 

activated during ageing, which might contribute to an increased risk of ageing-related 327 

diseases including AD55. Using the UniProt database58, we also find that genes encoding 328 

these 7 proteins are overexpressed in tissues including hemopoietic tissues and brain, 329 

as well as cell types including microglial, macrophages and dendritic cells. These 330 

findings highlight the potential therapeutic opportunities that target these proteins for 331 

the treatment of AD. Furthermore, in the Therapeutic Target Database (TTD)59 and 332 

DrugBank database60, we find existing US Food and Drug Administration (FDA)-333 

approved drugs that target these proteins identified by MR-SPI. For example, 334 

gemtuzumab ozogamicin is a drug that targets CD33 and has been approved by FDA 335 

for acute myeloid leukemia therapy61,62. Besides, pralsetinib and selpercatinib are two 336 

RET inhibitors that have been FDA-approved for the treatment of non-small-cell lung 337 

cancers63,64. Therefore, these drugs might be potential drug repurposing candidates for 338 

the treatment of AD. 339 

 340 

In Figure 4(b), we present the 3D structural alterations of CD33 due to missense genetic 341 

variation of pQTL rs2455069, as predicted by AlphaFold342,43,45. The 3D structures are 342 

shown in blue when the allele is A, and in red when the allele is G at pQTL rs2455069 343 

A/G, which is a cis-SNP located on chromosome 19 (19q13.41) and is selected as a 344 

valid IV by MR-SPI. The presence of the G allele at pQTL rs2455069 results in the 345 

substitution of the 69th amino acid of CD33, changing it from Arginine (colored in 346 

green if the allele is A) to Glycine (colored in yellow if the allele is G), consequently 347 

causing a local change in the structure of CD33 (R69G). Previous studies have found 348 

that CD33 is overexpressed in microglial cells in the brain65, and the substitution of 349 

Arginine to Glycine in the 69th amino acid of CD33 might lead to the accumulation of 350 

amyloid plaques in the brain66, thus the presence of the G allele at pQTL rs2455069 351 

might contribute to an increased risk of AD. We also apply AlphaFold3 to predict the 352 

3D structures of the other proteins that are detected to be significantly associated with 353 

AD by MR-SPI, which are presented in Supplementary Figure S16. 354 

 355 
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In Figure 4(c), we present the point estimates and 95% confidence intervals of the 356 

causal effects (on the log odds ratio scale) of these 7 proteins on AD using the other 357 

competing MR methods. In Figure 4(c), these proteins are identified by most of the 358 

competing MR methods, confirming the robustness of our findings. To the best of our 359 

knowledge, there may be two reasons for the differences in results between MRMix 360 

and other MR methods for some proteins: (1) MRMix assumes that the pQTL-protein 361 

and pQTL-outcome associations follow a bivariate normal-mixture model with four 362 

mixture components while the contamination mixture models assume that the ratio 363 

estimator follows a normal distribution with two mixture components, and therefore it 364 

may be more challenging to obtain reliable causal effect estimates using the MRMix 365 

model with a small number of pQTLs per protein; and (2) the default grid search values 366 

implemented in the MRMix R package might not be optimal for some proteins. Notably, 367 

MR-SPI detects one possibly invalid IV pQTL rs10919543 for TREM2-AD 368 

relationship, which is associated with red blood cell count according to PhenoScanner67. 369 

Red blood cell count is a known risk factor for AD68,69, and thus pQTL rs10919543 370 

might exhibit pleiotropy in the relationship of TREM2 on AD. After excluding this 371 

potentially invalid IV, MR-SPI suggests that TREM2 is negatively associated with the 372 

risk of AD ( 𝛽1 = −0.04, 𝑝-value= 1.20 × 10!"$). Additionally, we perform the gene 373 

ontology (GO) enrichment analysis using the g:Profiler web server70 374 

(https://biit.cs.ut.ee/gprofiler/gost) to gain more biological insights for the 7 proteins 375 

identified by MR-SPI, and the results are presented in Figure 4(d) and Supplementary 376 

Table S7. After Bonferroni correction, the GO analysis indicates that these 7 proteins 377 

are significantly enriched in 20 GO terms, notably, the positive regulation of 378 

phosphorus metabolic process and major histocompatibility complex (MHC) class I 379 

protein binding. It has been found that increased phosphorus metabolites (e.g., 380 

phosphocreatine) are associated with aging, and that defects in metabolic processes for 381 

phospholipid membrane function is involved in the pathological progression of 382 

Alzheimer's disease71,72. In addition, MHC class I proteins may play a crucial role in 383 

preserving brain integrity during post-developmental stages, and modulation of the 384 

stability of MHC class I proteins emerges as a potential therapeutic target for restoring 385 

synaptic function in AD73-75. 386 

 387 

3. Discussion 388 

In this paper, we develop a novel integrated pipeline that combines our proposed MR-389 

SPI method with AlphaFold3 to identify putative causal protein biomarkers for complex 390 
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traits/diseases and to predict the 3D structural alterations induced by missense pQTL 391 

IVs. Specifically, MR-SPI is an automatic algorithm to select valid pQTL IVs under the 392 

plurality rule condition for a specific protein-outcome pair from two-sample GWAS 393 

summary statistics. MR-SPI first selects relevant pQTL IVs with strong pQTL-protein 394 

associations to minimize weak IV bias, and then applies the proposed voting procedure 395 

to select valid pQTL IVs whose ratio estimates are similar to each other. In the possible 396 

presence of locally invalid IVs in finite-sample settings, MR-SPI further provides a 397 

robust confidence interval constructed by the searching and sampling method49, which 398 

is immune to finite-sample IV selection error. The valid pQTL IVs selected by MR-SPI 399 

serve dual purposes: (1) facilitating more reliable scientific discoveries in identifying 400 

putative causal proteins associated with diseases; and (2) shedding new light on the 401 

molecular-level mechanism of causal proteins in disease etiology through the 3D 402 

structural alterations of mutated proteins induced by missense pQTL IVs. We employ 403 

MR-SPI to conduct xMR analysis with 912 plasma proteins using the proteomics data 404 

in 54,306 UK Biobank participants and identify 7 proteins significantly associated with 405 

the risk of Alzheimer's disease. The 3D structural changes in these proteins, as predicted 406 

by AlphaFold3 in response to missense genetic variations of selected pQTL IVs, 407 

offering new insights into their biological functions in the etiology of Alzheimer’s 408 

disease. We also found existing FDA-approved drugs that target some of our identified 409 

proteins, which provide opportunities for potential existing drug repurposing for the 410 

treatment of Alzheimer’s disease. These findings highlight the great potential of our 411 

proposed pipeline for identifying protein biomarkers as new therapeutic targets and 412 

drug repurposing for disease prevention and treatment. 413 

 414 

We emphasize three main advantages of MR-SPI. First, MR-SPI incorporates both 415 

proteomics and outcome data to automatically select a set of valid pQTL instruments 416 

in genome-wide studies, and the selection procedure does not rely on any additional 417 

distributional assumptions on the genetic effects nor require a large number of candidate 418 

IVs. Therefore, MR-SPI is the first method to offer such a practically robust approach 419 

to selecting valid pQTL IVs for a specific exposure-outcome pair from GWAS studies 420 

for more reliable MR analyses, which is especially advantageous in the presence of 421 

wide-spread horizontal pleiotropy and when only a small number of candidate IVs are 422 

available in xMR studies. While our real data application specifically focuses on the 423 

identification of putative causal protein biomarkers for Alzheimer's disease through the 424 

integration of MR-SPI with AlphaFold3, it's important to highlight that MR-SPI holds 425 
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broader applicability in elucidating causal relationships across complex traits and 426 

diseases. For additional data analysis results and insights into the utility of MR-SPI in 427 

this context, please refer to Supplementary Sections S9 and S10. Second, we propose a 428 

robust confidence interval for the causal effect using the searching and sampling 429 

method, which is immune to finite-sample IV selection error. Therefore, when locally 430 

invalid IVs are incorrectly selected, MR-SPI can still provide reliable statistical 431 

inference for the causal effect using the proposed robust confidence interval. Third, 432 

MR-SPI is computationally efficient. The average computation time for constructing 433 

the standard CI and the robust CI with 20 candidate IVs is 0.02 seconds and 10.60 434 

seconds, respectively, using a server equipped with an Intel Xeon Silver 4116 CPU and 435 

64 GB RAM memory.  436 

 437 

MR-SPI has some limitations. First, MR-SPI uses independent pQTLs as candidate IVs 438 

after LD clumping, which might exclude strong and valid pQTL IVs. We plan to extend 439 

MR-SPI to include correlated pQTLs with arbitrary LD structure to increase statistical 440 

power. Second, the proposed robust confidence interval is slightly more conservative, 441 

which is the price to pay for the gained robustness to finite-sample IV selection error. 442 

We plan to construct less conservative confidence intervals with improved power to 443 

detect more putative causal proteins. Third, we will incorporate colocalization 444 

analysis76-79 into our pipeline to better understand the shared genetic architecture 445 

between proteins and disease outcomes when unfiltered GWAS summary statistics are 446 

available in future studies. 447 

 448 

In conclusion, MR-SPI is a powerful tool for identifying putative causal protein 449 

biomarkers for complex traits and diseases. The integration of MR-SPI with 450 

AlphaFold3 as a computationally efficient pipeline can further predict the 3D structural 451 

alterations caused by missense pQTL IVs, improving our understanding of molecular-452 

level disease mechanisms. Therefore, our pipeline holds promising implications for 453 

drug target discovery, drug repurposing, and therapeutic development. 454 

 455 

STAR Methods 456 

Key resources table 457 

REAGENT or 

RESOURCE 

SOURCE IDENTIFIER 

Deposited data 
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UK Biobank proteomics 

data 

Sun, et al. 20 http://ukb-ppp.gwas.eu/  

Genome-wide association 

studies of Alzheimer’s 

disease 

Jansen, et al. 50 https://www.nature.com/articles/s41588-018-

0311-9  

Software and algorithms 

AlphaFold3 Abramson, et 

al. 45 

https://alphafoldserver.com  

g:Profiler Raudvere, et 

al. 70 

https://biit.cs.ut.ee/gprofiler/gost  

MendelianRandomization Yavorska and 

Burgess 80 

https://github.com/cran/MendelianRandomization  

MRMix Qi and 

Chatterjee 32 

https://github.com/gqi/MRMix  

MR-PRESSO Verbanck, et 

al. 29 

https://github.com/rondolab/MR-PRESSO  

MR-RAPS Zhao, et al. 16 https://github.com/qingyuanzhao/mr.raps  

MR-SPI This study https://github.com/MinhaoYaooo/MR-SPI  

PLINK Purcell, et al. 
81 

https://www.cog-genomics.org/plink/1.9  

PyMol PyMOL 

Molecular 

Graphics 

System 

https://pymol.org 

R The R 

Foundation for 

Statistical 

Computing 

https://www.r-project.org/  

 458 

Resource availability 459 

Lead contact 460 

Further information and requests for resources and reagents should be directed to and 461 

will be fulfilled by the lead contact, Zhonghua Liu (zl2509@cumc.columbia.edu) 462 

 463 

Materials availability 464 
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The materials that support the findings of this study are available from the 465 

corresponding authors upon reasonable request. Please contact the lead contact, 466 

Zhonghua Liu (zl2509@cumc.columbia.edu) for additional information. 467 

 468 

Data and code availability 469 

All the GWAS data analyzed are publicly available with the following URLs: 470 

l GWAS for Alzheimer's disease: https://ctg.cncr.nl/software/summary_statistics; 471 

l UK Biobank proteomics data: 472 

https://www.biorxiv.org/content/10.1101/2022.06.17.496443v1.supplementary-473 

material 474 

The R package MR.SPI is publicly available at https://github.com/MinhaoYaooo/MR-475 

SPI. 476 

 477 

Method details 478 

Two-sample GWAS summary statistics 479 

Suppose that we obtain 𝑝  independent pQTLs 𝒁 = 6𝑍", ⋯ , 𝑍%9
&  by using LD 480 

clumping that retains one representative pQTL per LD region81. We also assume that 481 

the pQTLs are standardized82 such that 𝔼𝑍' = 0 and Var	6𝑍'9 = 1 for 1 ≤ 𝑗 ≤ 𝑝. 482 

Let 𝐷 denote the exposure and 𝑌 denote the outcome. We assume that 𝐷 and 𝑌 483 

follow the exposure model 𝐷 = 𝒁&𝜸 + 𝛿 and the outcome model 𝑌 = 𝐷𝛽 + 𝒁&𝝅 +484 

𝑒 , respectively, where 𝛽  represents the causal effect of interest, 𝜸 = 6𝛾", ⋯ , 𝛾%9
& 485 

represents the IV strength, and 𝝅 = 6𝜋", ⋯ , 𝜋%9
&  encodes the violation of 486 

assumptions (A2) and (A3)83,84. If assumptions (A2) and (A3) hold for pQTL 𝑗, then 487 

𝜋' = 0 and otherwise 𝜋' ≠ 0 (see Supplementary Section S1 for details). The error 488 

terms 𝛿 and 𝑒 with respective variances 𝜎(# and 𝜎)# are possibly correlated due to 489 

unmeasured confounding factors. By plugging the exposure model into the outcome 490 

model, we obtain the reduced-form outcome model 𝑌 = 𝒁&(𝛽𝜸 + 𝝅) + 𝜖, where 𝜖 =491 

𝛽𝛿 + 𝑒. Let 𝚪 = 6Γ", ⋯ , Γ%9
& denote the pQTL-outcome associations, then we have 492 

𝚪 = 𝛽𝜸 + 𝝅. If 𝛾' ≠ 0, then pQTL 𝑗 is called a relevant IV. If both 𝛾' ≠ 0 and 𝜋' =493 

0, then pQTL 𝑗 is called a valid IV. Let 𝒮 = O𝑗: 𝛾' ≠ 0,1 ≤ 𝑗 ≤ 𝑝Q denote the set of 494 

all relevant IVs, and 𝒱 = O𝑗: 𝛾' ≠ 0 and 𝜋' = 0,1 ≤ 𝑗 ≤ 𝑝Q denote the set of all valid 495 
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IVs. The majority rule condition can be expressed as |𝒱| > "
#
|𝒮|84, and the plurality 496 

rule condition can be expressed as |𝒱| > max*+,  XO𝑗 ∈ 𝒮: 𝜋'/𝛾' = 𝑐QX	 83. If the 497 

plurality rule condition holds, then valid IVs with the same ratio of pQTL-outcome 498 

effect to pQTL-protein effect will form a plurality. Based on this key observation, our 499 

proposed MR-SPI selects the largest group of pQTLs as valid IVs with similar ratio 500 

estimates of the causal effect using a voting procedure described in detail in the next 501 

subsection. 502 

Let 𝛾\' and Γ]' be the estimated marginal effects of pQTL 𝑗 on the protein and the 503 

outcome, and 𝜎\.!  and 𝜎\/!  be the corresponding estimated standard errors 504 

respectively. Let �̂� = 6𝛾\", ⋯ , 𝛾\%9
&  and 𝚪] = 6Γ]", ⋯ , Γ]%9

&  denote the vector of 505 

estimated pQTL-protein and pQTL-outcome associations, respectively. In the two-506 

sample setting, the summary statistics _𝛾\' , 𝜎\.!`"0'0%
 and _Γ]' , 𝜎\/!`"0'0%

 are 507 

calculated from two non-overlapping samples with sample sizes 𝑛"  and 𝑛# 508 

respectively. When all the pQTLs are independent of each other, the joint asymptotic 509 

distribution of �̂� and 𝚪]  is 510 

b�̂� − 𝜸
𝚪] − 𝚪

c →
1
𝑁

⎣
⎢
⎢
⎡
𝟎,

⎝

⎛

1
𝑛"
𝐕. 𝟎

𝟎
1
𝑛#
𝐕/⎠

⎞

⎦
⎥
⎥
⎤
 511 

where the diagonal entries of 𝐕.  and 𝐕/  are 𝐕.,'' = Var	6𝑍3'# 9𝛾'# + ∑4+'  𝛾4# + 𝜎(# 512 

and 𝐕/,'' = Var	6𝑍3'# 9Γ'# + ∑4+'  Γ4# + 𝜎5#, respectively, and the off-diagonal entries of 513 

𝐕.  and 𝐕/  are 𝐕.,'"'# =  𝛾'"𝛾'#  and 𝐕/,'"'# = Γ'"Γ'#(𝑗" ≠ 𝑗#) , respectively. The 514 

derivation of the limit distribution can be found in Supplementary Section S2. Therefore, 515 

with the summary statistics of the protein and the outcome, we estimate the covariance 516 

matrices "
6"
𝐕. and "

6#
𝐕/ as: 517 

1
𝑛"
𝐕s.,'"'# = t

𝜎\.!"
#  if 𝑗" = 𝑗#,
1
𝑛"
𝛾\'"𝛾\'#  if 𝑗" ≠ 𝑗#.

	 and 
1
𝑛#
𝐕s/,'"'# = t

𝜎\/!"
#  if 𝑗" = 𝑗#
1
𝑛#
Γ]'"Γ]'#  if 𝑗" ≠ 𝑗#

(1) 518 
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After obtaining O�̂�, 𝐕s. , 𝚪], 𝐕s/Q, we then perform the proposed IV selection procedure as 519 

illustrated in Figure 2 in the main text. 520 

 521 

Selecting valid instruments by voting 522 

The first step of MR-SPI is to select relevant pQTLs with large IV strength using 523 

proteomics data. Specifically, we estimate the set of relevant IVs 𝒮 by: 524 

𝒮1 = u1 ≤ 𝑗 ≤ 𝑝:
X𝛾\'X
𝜎\.!

> Φ!" b1 −
𝛼∗

2 cx (2) 525 

where 𝜎\.!  is the standard error of 𝛾\'  in the summary statistics, Φ!"(⋅)  is the 526 

quantile function of the standard normal distribution, and 𝛼∗  is the user-specified 527 

threshold with the default value of 1 × 10!8. This step is equivalent to filtering the 528 

pQTLs in the proteomics data with 𝑝-value < 𝛼∗ , and is adopted by most of the 529 

current two-sample MR methods to select (relevant) genetic instruments for 530 

downstream MR analysis. Note that the selected pQTL instruments may not satisfy the 531 

IV independence and exclusion restriction assumptions and thus maybe invalid. In 532 

contrast, our proposed MR-SPI further incorporates the outcome data to automatically 533 

select a set of valid genetic instruments from 𝒮1 for a specific protein-outcome pair. 534 

Under the plurality rule condition, valid pQTL instruments with the same ratio of 535 

pQTL-outcome effect to pQTL-protein effect (i.e., Γ'/𝛾' ) will form a plurality and 536 

yield “similar” ratio estimates of the causal effect. Based on this key observation, MR-537 

SPI selects a plurality of relevant IVs whose ratio estimates are “similar” to each other 538 

as valid IVs. Specifically, we propose the following two criteria to measure the 539 

similarity between the ratio estimates of two pQTLs 𝑗 and 𝑘 : 540 

C1: We say the 𝑘th pQTL “votes for” the 𝑗th pQTL to be a valid IV if, by assuming 541 

the 𝑗th pQTL is valid, the 𝑘th pQTL’s degree of violation of assumptions (A2) and 542 

(A3) is smaller than a threshold as in equation (4); 543 

C2: We say the ratio estimates of two pQTLs 𝑗 and 𝑘 are “similar” if they mutually 544 

vote for each other to be valid IVs. 545 

The ratio estimate of the 𝑗th pQTL is defined as 𝛽1 ['] = Γ]'/𝛾\'. By assuming the 𝑗th 546 
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pQTL is valid, the plug-in estimate of the 𝑘th pQTL’s degree of violation of (A2) and 547 

(A3) can be obtained by 548 

𝜋\;
['] = Γ]; − 𝛽1 [']𝛾\; = 6𝛽1 [;] − 𝛽1 [']9𝛾\; (3) 549 

as we have Γ; = 𝛽𝛾; + 𝜋; for the true causal effect 𝛽, and Γ]; = 𝛽1 [;]𝛾\; for the ratio 550 

estimate 𝛽1 [;]  of the 𝑘 th pQTL. From equation (3), 𝜋\;
[']  has two noteworthy 551 

implications. First, 𝜋\;
['] measures the difference between the ratio estimates of pQTLs 552 

𝑗 and 𝑘 (multiplied by the 𝑘th pQTL-protein effect estimate 𝛾\; ), and a small 𝜋\;
['] 553 

implies that the difference scaled by 𝛾\; is small. Second, 𝜋\;
['] represents the 𝑘th IV's 554 

degree of violation of assumptions (A2) and (A3) by regarding the 𝑗th pQTL’s ratio 555 

estimate 𝛽1 ['] as the true causal effect, thus a small 𝜋\;
['] implies a strong evidence that 556 

the 𝑘th IV supports the 𝑗th IV to be valid. Therefore, we say the 𝑘th IV votes for the 557 

𝑗th IV to be valid if: 558 

z𝜋\;
[']z

SE} ~𝜋\;
[']�

≤ �log	min(𝑛", 𝑛#) (4) 559 

where SE} ~𝜋\;
[']� is the standard error of 𝜋\;

['], which is given by: 560 

SE} ~𝜋\;
[']�561 

= �
1
𝑛#
�𝐕s/,;; + �

𝛾\;
𝛾\'
�
#

𝐕s/,'' − 2
𝛾\;
𝛾\'
𝐕s/,';� +

1
𝑛"
6𝛽1 [']9

#
�𝐕s.,;; + �

𝛾\;
𝛾\'
�
#

𝐕s.,'' − 2
𝛾\;
𝛾\'
𝐕s.,';�		(5) 562 

and the term �log	min(𝑛", 𝑛#) in equation (4) ensures that the violation of (A2) and 563 

(A3) can be correctly detected with probability one as the sample sizes go to infinity, 564 

as shown in Supplementary Section S3. 565 

For each relevant IV in 𝒮1, we collect all relevant IVs' votes on whether it is a valid IV 566 

according to equation (4). Then we construct a voting matrix 𝚷s ∈ ℝ|�̂�|×|𝒮@|  to 567 

summarize the voting results and evaluate the similarity of two pQTLs’ ratio estimates 568 
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according to criterion C2. Specifically, we define the (𝑘, 𝑗) entry of 𝚷s  as: 569 

Πs;,' = 𝐼 �max t
z𝜋\;

[']z

SE} ~𝜋\;
[']�

,
z𝜋\'

[;]z

SE} ~𝜋\'
[;]�

� ≤�logmin(𝑛", 𝑛#)�														(6) 570 

where 𝐼(⋅)  is the indicator function such that 𝐼(𝐴) = 1  if event 𝐴  happens and 571 

𝐼(𝐴) = 0  otherwise. From equation (6), we can see that the voting matrix 𝚷s  is 572 

symmetric, and the entries of 𝚷s  are binary: Πs;,' = 1 represents pQTLs 𝑗 and 𝑘 573 

vote for each other to be a valid IV, i.e., the ratio estimates of these two pQTLs are close 574 

to each other; Πs;,' = 0 represents that they do not. For example, in Figure 2, Πs",# =575 

1 since the ratio estimates of pQTLs 1 and 2 are similar, while Πs",A = 0 because the 576 

ratio estimates of pQTLs 1 and 4 differ substantially, as pQTLs 1 and 4 mutually “vote 577 

against” each other to be valid according to equation (4). 578 

After constructing the voting matrix 𝚷s , we select the valid IVs by applying 579 

majority/plurality voting or finding the maximum clique of the voting matrix47. Let 580 

𝐕𝐌; = ∑'∈𝒮  Πs;,' be the total number of pQTLs whose ratio estimates are similar to 581 

pQTL 𝑘. For example, 𝐕𝐌" = 3 in Figure 2, since three pQTLs (including pQTL 1 582 

itself) yield similar ratio estimates to pQTL 1 according to criterion C2. A large 𝐕𝐌; 583 

implies strong evidence that pQTL 𝑘 is a valid IV, since we assume that valid IVs form 584 

a plurality of the relevant IVs. Let 𝒱]C = O𝑘 ∈ 𝒮1: 𝐕𝐌; > |𝒮1|/2Q denote the set of IVs 585 

with majority voting, and 𝒱]D = O𝑘 ∈ 𝒮1: 𝐕𝐌; = max4∈𝒮@  𝐕𝐌4Q denote the set of IVs 586 

with plurality voting, then the union 𝒱] = 𝒱]C ∪ 𝒱]D can be a robust estimate of 𝒱 in 587 

practice. Alternatively, we can also find the maximum clique in the voting matrix as an 588 

estimate of 𝒱. A clique in the voting matrix is a group of IVs who mutually vote for 589 

each other to be valid, and the maximum clique is the clique with the largest possible 590 

number of IVs47. 591 

Estimation and inference of the causal effect 592 

After selecting the set of valid pQTL instruments 𝒱] , the causal effect 𝛽 is estimated 593 

by 594 

𝛽1EFG =
𝚪]𝒱I
J�̂�𝒱I
�̂�𝒱I
&�̂�𝒱I

(7) 595 
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where �̂�𝒱I  and 𝚪]𝒱I  are the estimates of pQTL-protein associations and pQTL-outcome 596 

associations of the selected valid IVs in 𝒱] , respectively. The MR-SPI estimator in 597 

equation (7) is the regression coefficient obtained by fitting a zero-intercept ordinary 598 

least squares regression of 𝚪]𝒱I  on �̂�KL. Since the pQTLs are standardized, the genetic 599 

associations 𝛾\'  and Γ]'  are scaled by �2𝑓'61 − 𝑓'9  (compared to the genetic 600 

associations calculated using the unstandardized pQTLs, denoted by �̌�'  and Γ̌'  ), 601 

where 𝑓' is the minor allele frequency of pQTL 𝑗. As 𝑓'61 − 𝑓'9 is approximately 602 

proportional to the inverse variance of Γ̌' when each pQTL IV explains only a small 603 

proportion of variance in the outcome85, the MR-SPI estimator of the causal effect in 604 

equation (7) is approximately equal to the inverse-variance weighted estimator27  605 

calculated with O�̌�' , Γ̌'Q'∈�̂�. 606 

Let 𝛼 ∈ (0,1) be the significance level and 𝑧"!M/# be the (1 − 𝛼/2)-quantile of the 607 

standard normal distribution, then the (1 − 𝛼) confidence interval for 𝛽 is given by: 608 

CI = �𝛽1EFG − 𝑧"!M#
�Var} 6𝛽1EFG9, 𝛽1EFG + 𝑧"!M#

�Var} 6𝛽1EFG9� (8) 609 

where Var} 6𝛽1EFG9  is the estimated variance of 𝛽1EFG , which can be found in 610 

Supplementary Section S4. As min{𝑛", 𝑛#} → ∞ , we have ℙu𝛽 ∈ �𝛽1EFG −611 

𝑧"!$#
�Var} 6𝛽1EFG9, 𝛽1EFG + 𝑧"!$#

�Var} 6𝛽1EFG9�x → 1 − 𝛼  under the plurality rule 612 

condition, as shown in Supplementary Section S5. Hence, MR-SPI provides a 613 

theoretical guarantee for the asymptotic coverage probability of the confidence interval 614 

under the plurality rule condition. 615 

We summarize the proposed procedure of selecting valid IVs and constructing the 616 

corresponding confidence interval by MR-SPI in Algorithm 1. 617 

 618 

A robust confidence interval via searching and sampling 619 
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In finite-sample settings, the selected set of relevant IVs 𝒮1 might include some invalid 620 

IVs whose degrees of violation of (A2) and (A3) are small but nonzero, and we refer to 621 

them as “locally invalid IVs”49. When locally invalid IVs exist and are incorrectly 622 

selected into 𝒱] , the confidence interval in equation (8) becomes unreliable, since its 623 

validity (i.e., the coverage probability attains the nominal level) requires that the invalid 624 

IVs are correctly filtered out. In practice, we can multiply the threshold 625 

�log	min(𝑛", 𝑛#)  in the right-hand side of equation (4) by a scaling factor 𝜂  to 626 

examine whether the confidence interval calculated by equation (8) is sensitive to the 627 

choice of the threshold. If the confidence interval varies substantially to the choice of 628 

the scaling factor 𝜂, then there might exist finite-sample IV selection error especially 629 

with locally invalid IVs. We demonstrate this issue with two numerical examples 630 

presented in Supplementary Figure S14. Supplementary Figure S14(a) shows an 631 

example in which MR-SPI provides robust inference across different values of the 632 

scaling factor, while Supplementary Figure S14(b) shows an example that MR-SPI 633 

might suffer from finite-sample IV selection error, as the causal effect estimate and the 634 

corresponding confidence interval are sensitive to the choice of the scaling factor 𝜂. 635 

This issue motivates us to develop a more robust confidence interval. 636 

To construct a confidence interval that is robust to finite-sample IV selection error, we 637 

borrow the idea of searching and sampling49, with main steps described in 638 

Supplementary Figure S17. The key idea is to sample the estimators of 𝜸 and 𝚪 639 

repeatedly from the following distribution: 640 

b�̂�
(P)

𝚪] (P)
c ∼ 𝑁

⎣
⎢
⎢
⎡
b�̂�
𝚪]
c ,

⎝

⎛

1
𝑛"
𝐕s. 𝟎

𝟎
1
𝑛#
𝐕s/⎠

⎞

⎦
⎥
⎥
⎤
,𝑚 = 1,⋯ ,𝑀 (9) 641 

where 𝑀 is the number of sampling times (by default, we set 𝑀 = 1,000 ). Since �̂� 642 

and 𝚪]  follow distributions centered at 𝜸 and 𝚪, there exists 𝑚∗  such that �̂�(P∗) 643 

and 𝚪] (P∗) are close enough to the true values 𝜸 and 𝚪 when the number of sampling 644 

times 𝑀 is sufficiently large, and thus the confidence interval obtained by using �̂�(P∗) 645 

and 𝚪] (P∗) instead of �̂� and 𝚪]  might have a larger probability of covering 𝛽. 646 

For each sampling, we construct the confidence interval by searching over a grid of 𝛽 647 

values such that more than half of the selected IVs in 𝒱]  are detected as valid. As for 648 

the choice of grid, we start with the smallest interval [𝐿, 𝑈]  that contains all the 649 
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following intervals: 650 

�𝛽1 ['] − �log	min(𝑛", 𝑛#)Var} 6𝛽1 [']9, 𝛽1 ['] + �log	min(𝑛", 𝑛#)Var} 6𝛽1 [']9� 	 for 	𝑗 ∈ 𝒱](10) 651 

where 𝛽1 [']  is the ratio estimate of the 𝑗 th pQTL IV, Var} 6𝛽[R]} 9 = ~𝐕s/,''/𝑛# +652 

6𝛽1 [']9
#
𝐕s.,''/𝑛"� /𝛾\'# is the variance of 𝛽1	['], and �log	min(𝑛", 𝑛#) serves the same 653 

purpose as in equation (4). Then we discretize [𝐿, 𝑈] into ℬ = {𝑏", 𝑏#, ⋯ , 𝑏S} as the 654 

grid set such that 𝑏" = 𝐿, 𝑏S = 𝑈  and |𝑏;T" − 𝑏;| = 𝑛UVW!,.8  for 1 ≤ 𝑘 ≤ 𝐾 − 2 , 655 

where 𝑛UVW = min(𝑛", 𝑛#). We set the grid size 𝑛UVW!,.8  so that the error caused by 656 

discretization is smaller than the parametric rate 𝑛UVW
!"/#. 657 

For each grid value 𝑏 ∈ ℬ and sampling index 1 ≤ 𝑚 ≤ 𝑀, we propose an estimate 658 

of 𝜋'  by 𝜋\'
(P)(𝑏) = ~Γ]'

(P) − 𝑏𝛾\'
(P)� ⋅ 𝐼 ~zΓ]'

(P) − 𝑏𝛾\'
(P)z ≥ 𝜆𝜌\'(𝑏, 𝛼)�  for 𝑗 ∈ 𝒱] , 659 

where 𝜌\'(𝑏, 𝛼) =  Φ!" ~1 − M
#|�̂�|

��6𝐕s/,''/𝑛# + 𝑏#𝐕s.,''/𝑛"9  is a data-dependent 660 

threshold, Φ!"(⋅) is the inverse of the cumulative distribution function of the standard 661 

normal distribution, 𝛼 ∈ (0,1) is the significance level, and 𝜆 = (log	min(𝑛", 𝑛#)/662 

𝑀)
"

#|'(|(𝜆 < 1  when 𝑀  is sufficiently large) is a scaling factor to make the 663 

thresholding more stringent so that the confidence interval in each sampling is shorter, 664 

as we will show shortly. Here, 𝜋\'
(P)(𝑏) = 0 indicates that the 𝑗th pQTL is detected as 665 

a valid IV in the 𝑚 th sampling if we take O�̂�(P), 𝚪] (P)Q as the estimates of genetic 666 

associations and 𝑏 as the true causal effect. Let �̂�𝒱I
(P)(𝑏) = ~𝜋\'

(P)(𝑏)�
'∈𝒱I

, then we 667 

construct the 𝑚 th sampling's pseudo confidence interval pCI(P) by searching for the 668 

smallest and largest 𝑏 ∈ ℬ such that more than half of pQTLs in 𝒱]  are detected to be 669 

valid. Define 𝛽min 
(P) = min _𝑏 ∈ ℬ: ∥∥�̂�𝒱I

(P)(𝑏)∥∥, < |𝒱]|/2`  and 𝛽max 
(P) = max _𝑏 ∈670 

ℬ: ∥∥�̂��̂�
(P)(𝑏)∥∥, < |𝒱]|/2` , then the 𝑚  th sampling's pseudo confidence interval is 671 

constructed as pCI(P) = ~𝛽UVW
(P), 𝛽UYZ

(P)�. 672 

From the definitions of 𝜋\'
(P)(𝑏) and pCI(P) , we can see that, when 𝜆 is smaller, 673 
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there will be fewer pQTLs in 𝒱]  being detected as valid for a given 𝑏 ∈ ℬ, which leads 674 

to fewer 𝑏 ∈ ℬ satisfying ∥∥�̂��̂�
(P)(𝑏)∥∥, < |𝒱]|/2, thus the pseudo confidence interval 675 

in each sampling will be shorter. If there does not exist 𝑏 ∈ ℬ such that the majority 676 

of IVs in 𝒱]  are detected as valid, we set pCI(P) = ∅ . Let ℳ = O1 ≤ 𝑚 ≤677 

𝑀:pCI(P) ≠ ∅Q denote the set of all sampling indexes corresponding to non-empty 678 

searching confidence intervals, then the proposed robust confidence interval is given 679 

by: 680 

CI[\]^_` = ~min
P∈ℳ

 𝛽UVW
(P), max

P∈ℳ
 𝛽UYZ
(P)� (11) 681 

We summarize the procedure of constructing the proposed robust confidence interval 682 

in Algorithm 2. 683 

 684 

Simulation settings 685 

We set the number of candidate IVs 𝑝 = 10, as the average number of candidate pQTL 686 

IVs for the plasma proteins in the UK Biobank proteomics data is around 7.4. We set 687 

the sample sizes 𝑛" = 𝑛# = 5,000, 10,000, 20,000, 40,000, or	80,000. We generate 688 

the 𝑗 th genetic instruments 𝑍' and 𝑋' independently from a binomial distribution 689 

Bin	62, 𝑓'9, where 𝑓' ∼ 𝑈(0.05,0.50) is the minor allele frequency of pQTL 𝑗. Then 690 

we generate the protein level 𝑫 = 6𝐷", ⋯ , 𝐷6"9
& and the outcome 𝒀 = 6𝑌", ⋯ , 𝑌6#9

& 691 

according to the exposure model and the outcome model, respectively. Finally, we 692 

calculate the genetic associations and their corresponding standard errors for the protein 693 

and the outcome, respectively. As for the parameters, we fix the causal effect 𝛽 = 1, 694 

and we consider 4 settings for 𝛾 ∈ ℝ% and 𝝅 ∈ ℝ% : 695 

(S1): set 𝜸 = 0.2 ⋅ (𝟏b, −𝟏b)& and 𝝅 = 0.2 ⋅ (𝟎8, 𝟏A)&. 696 

(S2): set 𝜸 = 0.2 ⋅ (𝟏b, −𝟏b)& and 𝝅 = 0.2 ⋅ (𝟎A, 𝟏c, −𝟏c)&. 697 

(S3): set 𝜸 = 0.2 ⋅ (𝟏b, −𝟏b)& and 𝝅 = 0.2 ⋅ (𝟎8, 𝟏#, 0.25,0.25)&. 698 

(S4): set 𝜸 = 0.2 ⋅ (𝟏b, −𝟏b)& and 𝝅 = 0.2 ⋅ (𝟎A, 𝟏#, 0.25, 𝟏#, −0.25)&. 699 

Settings (S1) and (S3) satisfy the majority rule condition, while (S2) and (S4) only 700 
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satisfy the plurality rule condition. In addition, (S3) and (S4) simulate the cases where 701 

locally invalid IVs exist, as we shrink some of the pQTLs’ violation degrees of 702 

assumptions (A2) and (A3) down to 0.25 times in these two settings. In total, we run 703 

1,000 replications in each setting. 704 

 705 

Implementation of existing MR methods 706 

We compare the performance of MR-SPI with eight other MR methods in simulation 707 

studies and real data analyses. These methods are implemented as follows: 708 

• Random-effects IVW, MR-Egger, the weighted median method, the mode-709 

based estimation and the contamination mixture method are implemented in the 710 

R  package “MendelianRandomization” (https://github.com/cran/ 711 

MendelianRandomization). The mode-based estimation is run with “iteration 712 

= 1000”. All other methods are run with the default parameters. 713 

• MR-PRESSO is implemented in the R package “MR-PRESSO” 714 

(https://github.com/ rondolab/MR-PRESSO) with outlier test and distortion test. 715 

• MR-RAPS is performed using the R package “mr.raps” 716 

(https://github.com/qingyuanzhao/ mr.raps) with the default options. 717 

• MRMix is run with the R package “MRMix” (https://github.com/gqi/MRMix) 718 

using the default options. 719 

 720 

721 
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Algorithm 1: Selecting pQTL IVs and Performing Causal Inference by MR-SPI 
 Input: Summary statistics of independent pQTLs _𝛾\' , 𝜎\.! , Γ]' , 𝜎\/!`"0'0%

; 

Sample sizes 𝑛" for the proteomics data and 𝑛# for the outcome; 
Threshold 𝛼∗  for selecting relevant IVs; Significance level 𝛼 ∈
(0,1). 

 Output: An estimate of the set of valid IVs 𝒱] , the causal effect estimate 𝛽1SPI  
and the corresponding confidence interval CI. 

1 Estimate the variance-covariance matrices 𝐕s. and 𝐕s/ as in equation (1); 

2 Select the set of relevant IVs 𝒮1 as in equation (2); 

3 for 𝑗 ∈ 𝒮1 do 

4  
Calculate 𝛽1 ['] = Γ]'/𝛾\' and 𝜋\;

['] = Γ]; − 𝛽1 [']𝛾\; 	 for 	𝑘 ∈ 𝒮1; 

5  Each relevant IV 𝑘 ∈ 𝒮1  votes for the 𝑗  th IV to be valid if 

z𝜋\;
[']z /SE} ~𝜋\;

[']� ≤ �log	min(𝑛", 𝑛#); 

6 end  

7 
Construct the symmetric voting matrix 𝚷s ∈ ℝ|�̂�|×|𝒮@| as in equation (6); 

8 Select the set of valid IVs 𝒱]  by majority voting, plurality voting or finding the 
maximum clique in the voting matrix; 

9 Estimate the causal effect as in equation (7), and construct the corresponding 

confidence interval as in equation (8) using the selected valid IVs in 𝒱] . 
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Algorithm 2: Constructing A Robust Confidence Interval via Searching and 
Sampling 
 Input: Summary statistics of independent pQTLs _𝛾\' , 𝜎\.! , Γ]' , 𝜎\/!`"0'0%

; 

Sample sizes 𝑛" for the proteomics data and 𝑛# for the outcome; 
Threshold 𝛼∗  for selecting relevant IVs; Significance level 𝛼 ∈
(0,1); Sampling number 𝑀. 

 Output: The robust confidence interval CIrobust . 

1 Estimate the set of valid IVs 𝒱]  as in Algorithm 1; 
2 Construct the initial interval [𝐿, 𝑈]  as in equation (10) and obtain the 

corresponding grid set ℬ; 

3 for 𝑚 ← 1 to 𝑀 do 

4  Sample �̂�(P) and 𝚪] (P) from the distribution in equation (9); 

5  Calculate _�̂�𝒱I
(P)(𝑏)`

d∈ℬ
 by 𝜋\'

(P)(𝑏) = ~Γ]'
(P) − 𝑏𝛾\'

(P)� ⋅

𝐼 ~zΓ]'
(P) − 𝑏𝛾\'

(P)z ≥ 𝜆𝜌\'(𝑏, 𝛼)� , 𝑗 ∈ 𝒱] ; 

6  Construct pCI(P) by grid search over ℬ; 

7 end 

8 Construct the robust confidence interval CIrobust  as in equation (11). 
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Table 1: Comparison of MR methods and the underlying assumptions for handling 
invalid IVs. Balanced pleiotropy means on average the pleiotropic effects have zero 
mean. NOME assumption refers to NO Measurement Error in the exposure data. 

MR Method InSIDE 
assumption 

Majority/plurality 
rule condition 

Other 
distributional 
assumptions 

Random-effects 
IVW Required Not required 

Balanced 
pleiotropy, 
NOME 
assumption 

MR-Egger Required Not required NOME 
assumption 

MR-RAPS Required Not required Balanced 
pleiotropy 

MR-PRESSO Required Majority rule 
condition Not required 

Weighed median Not required Majority rule 
condition Not required 

Mode-based 
estimation Not required Plurality rule 

condition Not required 

MRMix Not required Plurality rule 
condition 

Direct effects of a 
SNP on the 
exposure and 
outcome follow a 
mixture of normal 
distributions 

Contamination 
mixture method Not required Plurality rule 

condition 

Ratio estimate of a 
SNP follow a 
mixture of normal 
distributions, 
NOME 
assumption 

MR-SPI Not required Plurality rule 
condition Not required 
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Figure 1. Overview of the pipeline. First, we apply MR-SPI for each protein to (1) 
select valid pQTL IVs under the plurality condition, and (2) estimate the causal effect 
on the outcome of interest. Second, we perform the Bonferroni correction procedure 
for causal protein identification. Third, for each causal protein biomarker, we apply 
AlphaFold3 to predict the 3D structural alterations due to missense pQTL IVs 
selected by MR-SPI. 
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Figure 2. The MR-SPI framework. First, MR-SPI selects relevant IVs with strong 
pQTL-protein associations. Second, each relevant IV provides a ratio estimate of the 
causal effect and then receives votes on itself to be valid from the other relevant IVs 
whose degrees of violation of (A2) and (A3) are small under this ratio estimate of causal 
effect. For example, by assuming pQTL 1 is valid, the slope of the line connecting 
pQTL 1 and the origin represents the ratio estimate of pQTL 1, and pQTLs 2 and 3 vote 
for pQTL 1 to be valid because they are close to that line, while pQTLs 4, 5 and 6 vote 
against it since they are far away from that line. Third, MR-SPI estimates the causal 
effect by fitting a zero-intercept OLS regression of pQTL-outcome associations on 
pQTL-protein associations and construct the robust confidence interval using selected 
valid pQTL IVs in the maximum clique of the voting matrix, which encodes whether 
two pQTLs mutually vote for each other to be valid IVs. 
 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 2, 2024. ; https://doi.org/10.1101/2023.02.20.23286200doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286200


 
Figure 3. Empirical performance of MR-SPI and the other competing MR methods in 
simulated data with sample size 5,000. (a) Boxplot of the percent bias in causal effect 
estimates. (b) Empirical coverage of 95% confidence intervals. The black dashed line 
in (b) represents the nominal level (95%). (c) Average lengths of 95% confidence 
intervals. 
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Figure 4. (a) Volcano plot of associations of plasma proteins with Alzheimer's disease 
using MR-SPI. The horizontal axis represents the estimated effect size (on the log odds 
ratio scale), and the vertical axis represents the − log",(𝑝-value). Positive and negative 
associations are represented by green and red points, respectively. The size of a point is 
proportional to 	− log",(𝑝 -value). The blue dashed line represents the significance 
threshold using Bonferroni correction (𝑝 -value< 5.48 × 10!b ). (b) 3D Structural 
alterations of CD33 predicted by AlphaFold3 due to missense genetic variation of pQTL 
rs2455069. The ribbon representation of 3D structures of CD33 with Arginine and 
Glycine at position 69 are colored in blue and red, respectively. The amino acids at 
position 69 are displayed in stick representation, with Arginine and Glycine colored in 
green and yellow, respectively. The predicted template modeling (pTM) yields a score 
of 0.6 for both structures, which suggests that AlphaFold3 provides good predictions 
for these two 3D structures. (c) Forest plot of significant associations of proteins with 
Alzheimer's disease identified by MR-SPI. Confidence intervals are clipped to vertical 
axis limits. (d) Bubble plot of GO analysis results using the 7 significant proteins 
detected by MR-SPI. The horizontal axis represents the 𝑧-score of the enriched GO 
term, and the vertical axis represents the − log",(𝑝-value) after Bonferroni correction. 
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Each point represents one enriched GO term. The blue dashed line represents the 
significance threshold (adjusted 𝑝-value< 0.05 after Bonferroni correction).  
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