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Abstract

Mendelian randomization (MR) uses genetic variants as instrumental variables (IVs) to

estimate the causal effect of a modifiable exposure on the outcome of interest to remove un-

measured confounding bias. However, some genetic variants might be invalid IVs due to viola-

tions of core IV assumptions, for example, in the presence of population stratification or/and

widespread horizontal pleiotropy. Inclusion of invalid genetic IVs for MR analysis might lead

to biased causal effect estimate and misleading scientific conclusions. To address this chal-

lenge, we propose a novel MR method that first Selects valid genetic IVs and then performs

Post-selection Inference (MR-SPI) based on two-sample genome-wide summary statistics.

Extensive Monte Carlo simulation studies demonstrate the superior performance of MR-SPI.

We apply MR-SPI to analyze 146 exposure-outcome pairs to establish putative causal rela-

tionships. We further analyze 912 plasma proteins using the UK Biobank proteomics data in

54,306 UK Biobank participants and identify 7 proteins significantly associated with the risk

of Alzheimer’s disease.
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1 Introduction

In epidemiological studies, it is essential to infer the causal effect of a modifiable risk factor on a

health outcome of interest1,2. Even though randomized controlled trials (RCTs) serve as the gold

standard for causal inference, it is often neither feasible nor ethical to perform RCTs for many

harmful exposures. Mendelian randomization (MR) leverages the random assortment of genes

from parents to offspring to mimic RCTs to establish causality in observational studies3,4,5. MR

uses genetic variants, typically single-nucleotide polymorphisms (SNPs), as instrumental variables

(IVs) to assess the causal association between an exposure and an outcome6. Recently, many MR

methods have been developed to investigate causal relationships using genome-wide association

study (GWAS) summary statistics data that consist of effect estimates of SNP-exposure and SNP-

outcome associations from two non-overlapping sets of samples, which are commonly referred to

as the two-sample MR methods7,8,9,10. Since summary statistics are often publicly available and

provide abundant information of associations between genetic variants and complex traits, two-

sample MR methods become increasingly popular9,11,12,13.

Conventional MR methods require the genetic variants included in the analysis to be valid

IVs for reliable causal inference. A genetic variant is called a valid IV if the following three core

assumptions hold4,14:

(A1) Relevance: The genetic variant is associated with the exposure;

(A2) Effective Random Assignment: The genetic variant is not associated with any unmea-

sured confounder of the exposure-outcome relationship; and

(A3) Exclusion Restriction: The genetic variant affects the outcome only through the exposure.

Among the three core IV assumptions (A1)-(A3), only the first assumption (A1) can be tested

empirically by selecting genetic variants associated with the exposure in GWAS. However, assump-

tions (A2) and (A3) cannot be empirically verified in general and may be violated in practice, which

may lead to a biased estimate of the causal effect. Violation of (A2) may occur due to the pres-

ence of population stratification4,15. Violation of (A3) may occur in the presence of the horizontal

pleiotropy4,16, which is a widespread biological phenomenon that the genetic variant affects the

outcome through other biological pathways that do not involve the exposure in view17,18.
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Recently, several two-sample MR methods have been proposed to handle invalid IVs under cer-

tain assumptions. The Instrument Strength Independent of Direct Effect (InSIDE) assumption has

been proposed and adopted by multiple methods, for example, the random-effects inverse-variance

weighted (IVW) method19, MR-Egger20 and MR-RAPS (Robust Adjusted Profile Score)11. The

InSIDE assumption requires that the SNP-exposure effect is asymptotically independent of the

horizontal pleiotropic effect when the number of SNPs goes to infinity. However, the InSIDE

assumption is often implausible in practice21, and thus the estimate of causal effect might be

biased using random-effects IVW, MR-Egger or MR-RAPS10. Another strand of methods im-

poses assumptions on the proportion of invalid IVs included in the analysis. For example, the

weighted median method22 and the Mendelian randomization pleiotropy residual sum and out-

lier (MR-PRESSO) test23 are based on the majority rule condition that allows up to 50% of the

candidate IVs to be invalid. However, the weighted median method and MR-PRESSO might

produce unreliable results when more than half of the candidate IVs are invalid10. Besides, the

MR-PRESSO outlier test requires that the InSIDE assumption holds and that the pleiotropic ef-

fects of genetic instruments have zero mean23. The plurality rule condition, which only requires a

plurality of the candidate IVs to be valid, is weaker than the majority rule condition24,25, and is

also termed as the ZEro Modal Pleiotropy Assumption (ZEMPA)10,26. The plurality rule condition

(or ZEMPA assumption) has been applied to some existing two-sample MR methods, for exam-

ple, the mode-based estimation26, MRMix27 and the contamination mixture method25. Among

the aforementioned methods, MRMix and the contamination mixture methods require additional

distributional assumptions on the genetic associations, or the ratio estimates to provide reliable

causal inference. Despite many efforts, most of the current MR methods require an ad-hoc set

of pre-determined genetic instruments, which is often obtained by selecting genetic variants with

strong SNP-exposure associations in GWAS28. Since the traditional way of selecting IVs only

requires the exposure data, hence the same selected set of IVs is used for assessing the causal

relationships between the exposure in view and different outcomes. Obviously, this one-size-fits-all

exposure-specific strategy for selecting IVs might not work well for different outcomes because the

genetic architecture may vary across outcomes; for example, the pattern of horizontal pleiotropy

might vary with different outcomes. It is thus desirable to develop an automatic algorithm to

select a set of valid IVs for a specific exposure-outcome pair.

In this paper, we propose a novel two-sample MR method and algorithm that can automatically
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Select valid IVs for a specific exposure-outcome pair and then performs Post-selection Inference

(MR-SPI) for the causal effect. More specifically, MR-SPI contains the following four steps: (i)

select relevant SNP IVs that are associated with the exposure; (ii) each selected relevant IV first

provides a ratio estimate for the causal effect, and then receives votes on itself to be valid from

other relevant IVs whose degrees of violation of assumptions (A2) and (A3) are smaller than a

threshold as in equation (4) (thus more likely to be valid) under this ratio estimate of the causal

effect; (iii) select valid IVs that receive a majority/plurality of votes, or by finding the maximum

clique of the voting matrix that encodes whether two relevant IVs mutually vote for each other;

to be valid IVs and (iv) perform post-selection inference to construct a confidence interval for the

causal effect that is robust to finite-sample IV selection error.

To the best of our knowledge, MR-SPI is the first two-sample MR method that utilizes both

exposure and outcome data to automatically select a valid set of exposure-outcome pair specific

SNP IVs. Moreover, our proposed selection procedure does not require additional distributional

assumptions, for example, normal mixture distributions, to model the SNP-trait associations or

ratio estimates25,27, and thus is more robust to possible violations of parametric distributional

assumptions. Extensive simulations show that our MR-SPI method outperforms other competing

MR methods under the plurality rule condition. We apply MR-SPI to infer the causal relationships

among 146 exposure-outcome pairs involving COVID-19 related traits, ischemic stroke, cholesterol

levels and heart disease, and detect significant associations among them. Furthermore, we employ

MR-SPI to perform omics MR (xMR) with 912 plasma proteins using UK Biobank proteomics

data in 54,306 UK Biobank participants and discover 7 proteins significantly associated with the

risk of Alzheimer’s disease.

2 Results

2.1 MR-SPI selects valid genetic instruments by voting procedure

MR-SPI is an automatic procedure to select valid genetic instruments and perform robust causal

inference using two-sample GWAS summary data. In brief, MR-SPI contains the following four

steps, as illustrated in Figure 1:

(i) select relevant SNPs strongly associated with the exposure in the GWAS summary data;
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(ii) each relevant SNP provides a ratio estimate of the causal effect, and all the other relevant

SNPs votes for it to be a valid IV if their degrees of violation of assumptions (A2) and (A3)

are smaller than a threshold as in equation (4) under this ratio estimate of the causal effect;

(iii) select valid IVs by majority/plurality voting or by finding the maximum clique of the voting

matrix that encodes whether two relevant IVs mutually vote for each other to be valid;

(iv) estimate the causal effect of interest using the selected valid IVs and construct a confidence

interval for the causal effect that is robust to IV selection error in finite samples.

Current two-sample MR methods only use step (i) to select (relevant) genetic instruments

for downstream MR analysis, while the selected genetic instruments might violate assumptions

(A2) and (A3), leading to possibly unreliable scientific findings. To address this issue, MR-SPI

automatically select valid genetic instruments for a specific exposure-outcome pair by further

incorporating the outcome data. Our key idea of selecting valid genetic instruments is that, under

the plurality rule condition, valid IVs will form the largest group of relevant IVs and give “similar”

ratio estimates (see Online Methods). Specifically, we propose the following two criteria to measure

the similarity between the ratio estimates of two SNPs j and k in step (ii):

C1: We say the kth SNP “votes for” the jth SNP to be a valid IV if, by assuming the jth SNP

is valid, the kth SNP’s degree of violation of assumptions (A2) and (A3) is smaller than a

data-dependent threshold as in equation (4);

C2: We say the ratio estimates of two SNPs j and k are “similar” if they mutually vote for each

other to be valid.

In step (iii), we construct a symmetric and binary voting matrix to encode the votes that each

relevant SNP receives from other relevant SNPs: the (k, j) entry of the voting matrix is 1 if SNPs

j and k mutually vote for each other to be valid, and 0 otherwise. There are two ways to select

valid genetic instruments based on the voting matrix (see Online Methods): (1) we can select

relevant SNPs who receive majority voting or plurality voting as valid IVs; (2) we can use SNPs

in the maximum clique of the voting matrix as valid IVs29. Our simulation studies show that the

maximum clique method can empirically offer lower false discovery rate (FDR)30 and higher true

positive proportion (TPP) as shown in Table 1.
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Figure 1: The framework of MR-SPI. In the first step, MR-SPI selects the relevant IVs with strong SNP-
exposure associations. In the second step, each relevant IV provides a ratio estimate of the causal effect
and receives votes on itself to be valid from the other relevant IVs whose degrees of violation of (A2) and
(A3) are small under this ratio estimate. For example, by assuming SNP 1 is valid, the slope of the line
connecting SNP 1 and the origin represents the ratio estimate of SNP 1, and SNPs 2 and 3 vote for SNP
1 to be valid because they are close to that line, while SNPs 4, 5 and 6 vote against it since they are far
away from that line. In the third step, MR-SPI selects valid IVs according to majority voting, plurality
voting or by finding the maximum clique. In the inference step, MR-SPI estimates the causal effect and
constructs the confidence interval using the selected valid IVs.
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In step (iv), we estimate the causal effect and construct a confidence interval for this causal

effect using the selected valid genetic instruments. In finite samples, some invalid IVs with small

(but still nonzero) degrees of violation of assumptions (A2) and (A3) might be incorrectly selected

as valid IVs in finite-sample settings, and we refer to them as “locally invalid IVs”31. We then

propose to construct a robust confidence interval with guaranteed nominal coverage even in the

presence of IV selection error in finite-sample settings, as described in Figure 6 and Online Methods.

2.2 Comparing MR-SPI to other competing methods in simulation studies

We conduct extensive simulations to evaluate the performance of MR-SPI in the presence of invalid

IVs. We simulate data in a two-sample setting under four setups: (S1) majority rule condition

holds, and no locally invalid IVs exist; (S2) plurality rule condition holds, and no locally invalid

IVs exist; (S3) majority rule condition holds, and locally invalid IVs exist; (S4) plurality rule

condition holds, and locally invalid IVs exist. More detailed simulation settings are described in

Online Methods.

We compare the percent bias, empirical coverage and average lengths of 95% confidence in-

tervals of MR-SPI to the following competing methods: (i) the random-effects IVW method that

performs random-effects meta-analysis to account for pleiotropy19, (ii) MR-RAPS that assumes

pleiotropic effects are normally distributed and applies the maximum profile likelihood estimation

to obtain the causal effect estimate11, (iii) MR-PRESSO that detects the SNPs that substantially

reduce the residual sum of squares of the regression when omitted from the analysis as outliers23,

(iv) the weighted median method that takes the weighted median of the ratio estimates as the

causal effect22, (v) the mode-based estimation that takes the mode of the smoothed empirical

density function of the ratio estimates as the causal effect26, (vi) MRMix that models the SNP-

exposure and SNP-outcome effects with a bivariate normal mixture distribution27, and (vii) the

contamination mixture method that models the ratio estimates of SNPs with a normal mixture

distribution25. We exclude MR-Egger in this simulation since it is heavily biased under our sim-

ulation settings. Among those methods, the random-effects IVW method and MR-RAPS require

the InSIDE assumption, MR-PRESSO and the weighted median method require the majority rule

condition, while MR-SPI, the mode-based estimation, MRMix and the contamination mixture

method require the plurality rule condition (or the ZEMPA assumption). For simplicity, we shall

use IVW to represent the random-effects IVW method here and after.
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Figure 2: Performance of MR-SPI and the other competing MR methods in simulated data with sample
sizes of 5000. (a) Boxplot of the percent bias in causal effect estimates. (b) Empirical coverage of 95%
confidence intervals. The green dashed line in (b) represents the nominal level (95%). (c) Average lengths
of 95% confidence intervals.

In Figure 2(a), we present the percent bias of those MR methods in simulated data with sample

sizes of 5000 for both the exposure and the outcome. Moreover, Supplementary Figure S1(a) and

Supplementary Table S1 provide a comparison of percent bias of those MR methods across different

sample sizes (n = 5000, 10000, 2000, 40000, 80000). Generally, the proposed MR-SPI has small bias

in all four settings. IVW and MR-RAPS are biased since the InSIDE assumption does not hold

in our simulation settings. When the InSIDE assumption holds and the pleiotropic effects have

zero mean, both IVW and MR-RAPS can give a nearly unbiased estimate of the causal effect11,19.

Besides, the biases of these two methods are smaller in settings (S3) and (S4) compared to (S1) and
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(S2), as the degree of violation of (A2) and (A3) is generally smaller when some of the candidate

IVs are only locally invalid. MR-PRESSO yields biased estimates as it fails to remove outliers in

most of our settings. As discussed in Verbanck et al. 23 , MR-PRESSO performs well when (1) both

the majority rule condition and the InSIDE assumption hold, and (2) the pleiotropic effects have

zero mean. The weighted median estimator is biased when only the plurality rule condition holds,

since it requires more than half of the candidate IVs to be valid. The mode-based estimation,

MRMix and the contamination mixture method are all nearly unbiased, as these three methods

only require the plurality rule condition to hold, which is satisfied in all the four simulation settings.

Figure 2(b) reports the empirical coverage of the confidence intervals of those methods in

simulated data with sample sizes of 5000. Additional results for empirical coverage of those methods

under different sample sizes (n = 5000, 10000, 2000, 40000, 80000) can be found in Supplementary

Figure S1(b) and Supplementary Table S2. Under settings (S1) and (S2) where locally invalid

IV does not exist, the confidence interval of MR-SPI can attain 95% coverage level even when

the sample sizes are small (e.g., 5000). In the presence of locally invalid IVs, i.e., under settings

(S3) and (S4), the empirical coverage of the confidence interval of MR-SPI can still attain the

nominal level when sample sizes are 80000, as MR-SPI can correctly distinguish locally invalid

IVs from valid IVs when sample sizes are large enough. However, MR-SPI fails to identify those

locally invalid IVs under (S3) and (S4) if the sample sizes are small (e.g., 5000), and therefore the

empirical coverage of MR-SPI is lower than 95%. In such cases, our proposed robust confidence

interval constructed by Algorithm 2 in Online Methods, can attain the 95% coverage level and

thus is less vulnerable to the IV selection error in finite samples. The empirical coverage of the

weighted median method is lower than MR-SPI even in setting (S1) where the majority rule

condition holds. For example, when the sample sizes are 20000, the empirical coverage of the

weighted median method is 0.638. Compared to the confidence interval of MR-SPI, the confidence

interval of the mode-based estimation is generally more conservative with coverage above the

nominal level in our simulation settings, which is the price to pay for being less affected by the

invalid instruments26. Both MRMix and the contamination mixture method cannot attain the

95% coverage level in all the four simulation settings. These two methods make distributional

assumptions for either the genetic associations or the ratio estimates, which might be violated in

our simulation settings, and thus the coverage levels are below the nominal level. However, when

the underlying distributional assumption is satisfied, both MRMix and the contamination mixture
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method can attain the nominal level under the plurality rule condition, as shown in additional

simulations in Supplementary Section S7.

We report the average lengths of 95% confidence intervals of MR-SPI and the other competing

methods under sample sizes = 5000 in Figure 2(c), and additional results for various sample

sizes are provided in Supplementary Figure S1(c) and Supplementary Table S3. Although MR-

RAPS generally has the shortest confidence interval, it is biased and the coverage level is close

to zero, because the InSIDE assumption does not hold in our simulation settings. Among the

methods except MR-RAPS, MR-SPI generally has the shortest confidence interval under all the

four simulation settings. The average length of confidence interval of IVW is not decreasing as the

sample sizes increase, since we apply the random-effects IVW method here, which scales up the

standard error of the causal effect estimate when there exists heterogeneity in the ratio estimates19.

In setting (S4), MR-PRESSO has longer confidence interval as the sample sizes increase, since it

tends to treat none of the candidate SNPs as outlier under this simulation setting, i.e., when

the majority rule does not hold and locally invalid IV exists. When no outlier is identified, MR-

PRESSO uses all candidate SNPs, and thus the standard error of MR-PRESSO under (S4) will

be close to that of IVW when the sample sizes are large.

In Table 1, we report (1) the FDR that is defined by the proportion of invalid IVs in the set of

SNPs selected by MR-SPI, and (2) the TPP that is defined by the proportion of valid IVs selected

by MR-SPI in the true set of valid IVs. In our simulation, we select valid IVs by finding the

maximum clique in the voting matrix. The TPP of MR-SPI is close to 1 under all settings, and

the FDR of MR-SPI is close to 0 if locally invalid IV does not exist and the plurality rule condition

holds. Under settings (S3) and (S4), MR-SPI might incorrectly select those locally invalid IVs

when the sample sizes are small (e.g., 5000). As the sample sizes increase, the FDR of MR-SPI

would be close to 0 even in the presence of locally invalid IVs. For example, the FDR is 0.005

under setting (S4) when the sample size is 80000. Therefore, even when locally invalid IV exists,

MR-SPI can still correctly identify valid IVs if the sample sizes are large enough.
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Table 1: The FDR and TPP of valid IV selection by MR-SPI under different settings and sample sizes.
The FDR is close to 0 in the absence of locally invalid IV or when the sample sizes are large. The TPP
is close to 1 under all settings.

Sample Sizes
FDR TPP

S1 S2 S3 S4 S1 S2 S3 S4
5000 0.000 0.018 0.225 0.298 0.996 0.998 0.987 0.996
10000 0.000 0.009 0.198 0.251 0.998 1.000 0.981 0.997
20000 0.000 0.005 0.124 0.195 0.999 1.000 0.987 0.999
40000 0.000 0.006 0.022 0.072 1.000 1.000 0.997 0.999
80000 0.000 0.005 0.000 0.005 0.999 0.999 1.000 1.000

The simulation studies demonstrate that MR-SPI performs better compared to the other com-

peting MR methods under the plurality rule condition. When locally invalid IV does not exist,

MR-SPI can select valid IVs correctly and provide nearly unbiased estimates of the causal effect,

and the confidence interval of MR-SPI can attain the nominal coverage level. In practice, we can

perform a sensitivity analysis of the causal effect estimate to the threshold in the voting step (see

Online Methods and Supplementary Figure S12). If the causal effect estimate is sensitive to the

choice of the threshold, then MR-SPI might suffer from the finite-sample IV selection error, and

thus the robust confidence interval of MR-SPI is recommended for use in this case.

2.3 Evaluation of the performance of MR-SPI using two benchmark datasets

In this section, we apply the proposed MR-SPI method to two benchmark datasets to evaluate its

performance. These two datasets serve as the benchmark because the exposure and the outcome

are the same trait in each dataset, and thus the horizontal pleiotropic effects are expected to be

zero. We first apply MR-SPI to the dataset in which both the exposure and the outcome are coro-

nary artery disease (CAD), and we refer to it as the CAD-CAD dataset. Since both the exposure

and the outcome are CAD, the causal effect is expected to be one. The exposure data come from

the Coronary Artery Disease (C4D) Genetics Consortium32, and the outcome data come from the

Coronary ARtery DIsease Genome-wide Replication and Meta-analysis (CARDIoGRAM) consor-

tium33. We first perform linkage disequilibrium (LD)-based clumping to SNPs in the exposure

data using the software Plink34 with r2 < 0.01 to obtain independent genetic instruments, and

then use 1 × 10−6 as the p-value threshold to select relevant instruments. In total, five relevant

instruments are included for downstream analysis. We compare MR-SPI to the other eight com-
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peting MR methods including IVW, MR-Egger, MR-RAPS, MR-PRESSO, the weighted median

method, the mode-based estimation, MRMix and the contamination mixture method. The causal

effect estimates and the corresponding 95% confidence intervals using those methods are presented

in Figure 3(a). Generally, the confidence intervals of MR-SPI, IVW and MR-Egger all cover 1,

and MR-SPI provides the shortest confidence interval. In addition, none of the relevant IVs is

excluded in the voting step, which is in line with the expectation that horizontal pleiotropy should

not exist in this dataset.

Figure 3: Point estimates and 95% confidence intervals for the causal effects of (a) CAD-CAD dataset
and (b) BMI-BMI dataset using different MR methods. Confidence intervals are clipped to arrows if they
exceed axis limits. CAD: coronary artery disease; BMI: body mass index.

Next, we apply MR-SPI to the dataset where the exposure data and the outcome data are

the body mass index (BMI) GWAS data for physically active men and women respectively, and

we refer to this dataset as the BMI-BMI dataset. In the BMI-BMI dataset, both the exposure

data and the outcome data come from the GIANT consortium35. After LD clumping and filtering

SNPs with the same parameters as in the CAD-CAD dataset, 64 candidate SNPs are selected as

relevant IVs and none of them is detected to be invalid by MR-SPI. The point estimates of the

causal effect and corresponding 95% confidence intervals using MR-SPI and the other competing

methods are shown in Figure 3(b). Overall, all the above methods except MR-Egger provide causal
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effect estimates that are below one. As discussed in previous studies35, some significant loci of

BMI might exhibit heterogeneity in genetic effects between men and women. Therefore, the “true”

effect might not be equal to one in this dataset due to the difference in the genetic architecture of

BMI between men and women.

2.4 Learning causal relationships of 146 exposure-outcome pairs

In this section, we examine the causal relationships between complex traits and diseases from

four categories including ischemic stroke, cholesterol levels, heart disease, and coronavirus disease

2019 (COVID-19) related traits. Since MR-SPI requires that the GWAS summary statistics of

the exposure and the outcome come from two non-overlapping samples, we exclude the trait pairs

whose exposure and outcome are in the same consortium. In addition, we also exclude trait pairs

whose exposure and outcome are two similar phenotypes (for example, heart failure and coronary

artery disease), and we finally obtain 146 pairwise exposure-outcome combinations. All the GWAS

summary statistics used for MR analysis are publicly available with more detailed description of

each dataset given in Supplementary Table S4.

We first perform LD clumping using the software Plink34 to obtain independent SNPs with

r2 < 0.01, and then use 1× 10−6 as the p-value threshold to select relevant IVs that are associated

with each exposure trait. Among the 146 exposure-outcome pairs, MR-SPI detects invalid IVs in

16 exposure-outcome pairs. For example, MR-SPI detects one invalid SNP (rs616154, marked by

red triangle) in the causal relationship from cardioembolic stroke (CES) to SARS-CoV-2 infection,

as illustrated in the left panel of Figure 4(a). SNP rs616154 is identified to be invalid since its

ratio estimate of the causal effect is 0.525, which is far away from other SNPs’ ratio estimates and

thus no other relevant SNP votes for it to be a valid IV. We search for the human phenotypes

that are strongly associated with SNP rs616154 using the PhenoScanner tool36,37, and find that

this SNP is also associated with the Interleukin-6 (IL-6) levels which is a potential biomarker of

COVID-19 progression38, indicating that SNP rs616154 might exhibit horizontal pleiotropy in the

relationship of cardioembolic stroke on SARS-CoV-2 infection and thus is a potentially invalid IV.

After excluding SNP rs616154, the point estimate of the causal effect by MR-SPI (represented

by the slope of the green solid line in the left panel of Figure 4(a)) is nearly zero, suggesting

that cardioembolic stroke might not be a risk factor for SARS-CoV-2 infection. The causal effect

estimate of MR-PRESSO (represented by the slope of the blue dashed line in the left panel of
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Figure 4(a)) is also close to zero, as MR-PRESSO detects SNP rs616154 as an outlier and excludes

it from analysis. However, IVW and MR-RAPS include SNP rs616154 in the MR analysis, and

thus their causal effect estimates (represented by the slopes of the black and orange dashed line in

the left panel of Figure 4(a), respectively) might be biased. In contrast, the right panel of Figure

4(a) illustrates the causal effect estimates for the relationship of heart failure (HF) on any ischemic

stroke (AIS) by MR-SPI, IVW, MR-PRESSO and MR-RAPS. In this relationship, MR-SPI does

not identify any invalid IV, and thus MR-SPI gives a causal effect estimate that is similar to IVW

and MR-RAPS.
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Figure 4: (a) Scatter plot of cardioembolic stroke on SARS-CoV-2 infection (left panel), and heart failure
on any ischemic stroke (right panel). The slope of the green solid line represents the causal effect estimate
of MR-SPI. The slopes of the black, blue and orange dashed line represent the causal effect estimates
of IVW, MR-PRESSO and MR-RAPS, respectively. Green circles represent valid IVs and red triangles
represent invalid IVs detected by MR-SPI. (b) Direction of causal associations detected by MR-SPI.
The significant positive and negative associations after Bonferroni correction are marked by blue filled
circles and red filled circles, respectively. The radius of a circle is proportional to the − log10(p-value)
of the corresponding exposure-outcome pair. Those pairs whose exposure and outcome come from the
same consortium or are two similar phenotypes are marked as grey cells. (c) Venn diagram of significant
associations detected by MR-SPI, the mode-based estimation, MRMix and the contamination mixture
method after Bonferroni correction. (d) Significant associations detected by MR-SPI using the robust
confidence interval. The red bars represent the default confidence interval calculated using the causal
effect estimates and the corresponding standard errors by MR-SPI, and the blue bars represent the
robust confidence interval constructed by the searching and sampling method. AIS: any ischemic stroke;
LAS: large-artery atherosclerotic stroke; SVS: small vessel stroke; CES: cardioembolic stroke; LDL: low-
density lipoprotein; HDL: high-density lipoprotein; TC: total cholesterol; TG: triglycerides; HF: heart
failure; CAD: coronary artery disease; AF: atrial fibrillation; SEVERE: severe COVID-19; HOSPITAL:
COVID-19 hospitalization; INFECTION: SARS-CoV-2 infection.

Figure 4(a) illustrates that the inclusion of invalid IVs might lead to misleading scientific find-

ings, and thus MR-SPI selects only valid IVs for downstream analysis to provide reliable causal

inference. After excluding those invalid IVs, MR-SPI identifies 27 significant associations after Bon-

ferroni correction for multiple comparison39, which are summarized in Figure 4(b). We also apply

the other eight competing MR methods including IVW, MR-Egger, MR-RAPS, MR-PRESSO,
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the weighted median method, the mode-based estimation, MRMix and the contamination mix-

ture method to infer the causal relationships among these exposure-outcome pairs, and the results

are presented in Supplementary Figures S2-S9. Among the 146 exposure-outcome pairs, MR-SPI

detects invalid IVs in 16 exposure-outcome pairs. Some of our findings are in line with previous

studies, for example, an increase in LDL level might be associated with increased risks of CAD and

HF40,41. In addition, MR-SPI also detects significant associations that cannot be discovered by

other competing MR methods. For example, MR-SPI suggests that SARS-CoV-2 infection might

be a risk factor for HF (β̂ = 0.14, p-value = 1.43× 10−4), which cannot be identified by the other

competing MR methods considered in this paper. Our finding is consistent with a former study

that reported a significant increase in the risk of developing acute heart failure in patients with

confirmed COVID-19 infection42.

To demonstrate the similarities and differences in the results of MR-SPI and other MR methods,

we plot the Venn diagrams to show the number of significant associations that are either shared or

uniquely detected by these methods. We present the Venn diagram of the significant pairs using

MR-SPI, the mode-based estimation, MRMix and the contamination mixture method in Figure

4(c), as these four methods are all based on the plurality rule condition. Venn diagrams that com-

pare MR-SPI and the other competing MR methods can be found in Supplementary Figures S10

and S11. From Figure 4(c), MR-SPI detects more significant associations than the mode-based esti-

mation, MRMix and the contamination mixture method among these 146 exposure-outcome pairs.

Indeed, these three competing MR methods fail to discover some causal relationships that have

been supported from previous literature. For example, the mode-based estimation, MRMix and

the contamination mixture method fail to detect that an increased HDL level might be associated

with a decreased risk of CAD, which is identified by MR-SPI (β̂ = −0.18, p-value = 3.73× 10−17)

and has been supported with evidence by previous epidemiological studies43,44. Supplementary

Figure S10 compares the significant relationships detected by MR-SPI and three MR methods

that require InSIDE assumption (IVW, MR-Egger and MR-RAPS). MR-RAPS detects 17 signifi-

cant associations that are not identified by MR-SPI, of which some associations might be spurious.

For example, MR-RAPS suggests significant associations of AIS on low-density lipoprotein (LDL),

high-density lipoprotein (HDL) and total cholesterol (TC) level. However, the reverse association,

i.e., cholesterol level on the risk of stroke, has been reported in previous epidemiological studies40,45.

In Supplementary Figure S11, we compare MR-SPI with MR-PRESSO and the weighted median
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method that both require the majority rule condition. MR-PRESSO and the weighted median

detect 14 and 10 significant associations, respectively, all of which are also identified by MR-SPI.

Besides, MR-SPI identifies 11 more significant associations, most of which are in line with previous

epidemiological studies, for example, HF might be a risk factor for ischemic stroke46,47.

To deal with the issue of potential finite-sample IV selection error, we also construct robust

confidence intervals of these exposure-outcome pairs by MR-SPI according to Algorithm 2 in Online

Methods. MR-SPI discovers four significant associations whose robust confidence intervals do not

include zero (CES on HF, LDL on CAD, TC on CAD, and atrial fibrillation (AF) on CES), and

we compare the robust confidence intervals (represented by blue bars) with the default confidence

intervals calculated by equation (8) in Online Methods (represented by red bars) in Figure 4(d).

As shown in Figure 4(d), the robust confidence intervals are longer than the default confidence

intervals of MR-SPI, indicating that locally invalid IVs might exist and might be incorrectly

selected as valid IVs in these datasets. Therefore, we suggest using the robust confidence intervals

for these four relationships to provide more reliable causal findings.

2.5 Identifying proteins associated with Alzheimer’s disease using MR-SPI

Omics MR (xMR) aims to identify omics biomarkers (e.g., proteins) causally associated with

complex traits and diseases. In particular, xMR with proteomics data enables the identification

of disease-associated proteins, facilitating crucial advancements in novel drug target discovery or

drug repurposing, targeted prevention, and better treatment strategies. In this section, we apply

MR-SPI to identify protein biomarkers putatively causally associated with the risk of Alzheimer’s

disease (AD). The proteomics data used in our analysis comprises 54,306 participants from the

UK Biobank Pharma Proteomics Project (UKB-PPP)48. Following the guidelines proposed by Sun

et al. 48 , significant (p-value < 3.40×10−11, accounting for Bonferroni correction) and independent

(r2 < 0.01) SNPs are extracted from the proteomics data as candidate genetic instruments, and

thus all of these candidates SNPs are strongly associated with the exposures (proteins). Summary

statistics for AD are obtained from a meta-analysis of GWAS studies for clinically diagnosed AD

and AD-by-proxy, comprising 455,258 samples in total49. For MR method comparison, we analyze

912 plasma proteins that share four or more candidate SNPs within the summary statistics for

AD.
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Figure 5: (a) Volcano plot of associations of proteins with Alzheimer’s disease using MR-SPI. The x-axis
represents the estimated effect size (on the log odds ratio scale), and the y-axis represents the − log10(p-
value). Positive and negative associations are represented by green and red points, respectively. The
size of a point is proportional to the − log10(p-value). The blue dashed line represents the significance
threshold using Bonferroni correction (p-value< 5.48 × 10−5). (b) Forest plot of significant associations
of proteins with Alzheimer’s disease identified by MR-SPI. Point estimates and 95% confidence intervals
for the associations using the other competing MR methods are presented in different colors. Confidence
intervals are clipped to y-axis limits. (c) Bubble plot of GO analysis results using the 7 significant
proteins detected by MR-SPI. The x-axis represents the z-score of the enriched GO term, and the y-axis
represents the − log10(p-value) after Bonferroni correction. Each point represents one enriched GO term.
The blue dashed line represents the significance threshold (adjusted p-value< 0.05). (d) Table of the
GO ID, description and source of the significant GO terms using the 7 significant proteins detected by
MR-SPI. BP: biological process; CC: cellular component; MF: molecular function.

As presented in Figure 5(a), MR-SPI identifies 7 proteins that are significantly associated

with AD after Bonferroni correction, including CD33, CD55, EPHA1, PILRA, PILRB, PRSS8,

RET, and TREM2. Among them, 4 proteins contribute to an increased risk of AD (CD33, PILRA,
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PILRB, and RET), while the other 3 proteins contribute to a decreased risk of AD (CD55, EPHA1,

and TREM2). Previous studies have revealed that these proteins and the corresponding protein-

coding genes might contribute to the pathogenesis of AD50,51,52,53,54. For example, it has been

found that CD33 plays a key role in modulating microglial pathology in AD, with TREM2 act-

ing downstream in this regulatory pathway52. Additionally, RET at mitochondrial complex I is

activated during ageing, which might contribute to an increased risk of ageing-related diseases

including AD54. These findings highlight the potential therapeutic opportunities that target these

proteins for the treatment of AD.

In Figure 5(b), we present the point estimates and 95% confidence intervals of the effects

(on the log odds ratio scale) of these 7 proteins on AD using the other competing MR methods.

From Figure 5(b), these proteins are identified by most of the competing MR methods, confirming

the robustness of our findings. Notably, in the relationship of TREM2 on AD, MR-SPI detects

one possibly invalid IV, SNP rs10919543, which is associated with red blood cell count accord-

ing to PhenoScanner. Red blood cell count is a known risk factor for AD55,56, and thus SNP

rs10919543 might exhibit pleiotropy in the relationship of TREM2 on AD. After excluding this

potentially invalid IV, MR-SPI suggests that TREM2 is negatively associated with the risk of AD

(β̂ = −0.04, p-value = 1.20×10−18). Additionally, we perform the gene ontology (GO) enrichment

analysis using the g:Profiler web server57(https://biit.cs.ut.ee/gprofiler/gost) to gain bi-

ological insights for the set of proteins identified by MR-SPI, and the results are presented in

Figure 5(c) and 5(d). After Bonferroni correction, the GO analysis indicates that these proteins

are significantly enriched in 21 GO terms, such as the metabolic process, MHC protein binding,

and transmembrane receptor protein kinase activity.

3 Discussion

In this paper, we develop a novel two-sample MR method and algorithm, named MR-SPI, to

automatically select valid genetic instruments from GWAS studies and perform post-selection

inference. MR-SPI first selects relevant IVs with strong SNP-exposure associations, and then

applies the voting procedure to select a plurality of the relevant IVs whose ratio estimates are

similar to each other as valid IVs. In case that the causal effect estimate of MR-SPI is biased due

to the selection of locally invalid IVs in finite samples, MR-SPI can provide a robust confidence
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interval constructed by the searching and sampling method31, which is less vulnerable to finite-

sample IV selection error. We show with extensive simulation studies that MR-SPI can be helpful

to select valid genetic instruments among candidate SNPs for a specific exposure-outcome pair and

provide robust confidence interval for the causal effect when locally invalid IVs exist. Through real

data analyses, we demonstrate that MR-SPI can provide reliable causal findings by automatically

selecting valid genetic instruments. We apply MR-SPI to infer the causal relationships among

146 trait pairs and detect significant associations. Furthermore, we employ MR-SPI to conduct

xMR analysis with 912 plasma proteins using the proteomics data from UK Biobank in 54,306 UK

Biobank participants and identify 7 proteins significantly associated with the risk of Alzheimer’s

disease. These findings highlight the potential of MR-SPI as a powerful tool in the identification

of new therapeutic targets for disease prevention and treatment.

We emphasize two main advantages of MR-SPI. First, MR-SPI can incorporate both expo-

sure and outcome data to automatically select a set of valid genetic instruments in genome-wide

studies, and the selection procedure does not rely on additional distributional assumptions on the

genetic effects. Therefore, MR-SPI is the first to offer such a practical approach to selecting valid

instruments for a specific exposure-outcome pair from GWAS studies for MR analyses, which is

especially advantageous in the presence of wide-spread horizontal pleiotropy. Second, we propose

a robust confidence interval for the causal effect using the searching and sampling method, which

is less vulnerable to finite-sample IV selection error. Therefore, when locally invalid IVs are in-

correctly selected and the causal effect estimate is biased in finite samples, we can still provide

reliable inference for the causal effect using the robust confidence interval.

MR-SPI also has some limitations. First, MR-SPI can only perform causal inference using

independent SNPs from two non-overlapping samples. As a future work, we plan to extend MR-

SPI to include SNPs with linkage disequilibrium (LD) structure from summary statistics of two

possibly overlapping samples. Second, the robust confidence interval is slightly more conservative

than the confidence interval calculated from the limiting distribution of the causal effect estimate,

which is the price to pay for the gained robustness to finite-sample IV selection error. Further

studies are needed to construct less conservative confidence intervals that are robust to finite-

sample IV selection error.

In conclusion, MR-SPI provides an automatic approach to selecting valid instruments among

candidate SNPs and perform reliable causal inference using two-sample GWAS summary statistics.
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Simulation studies and real data analyses have shown that MR-SPI can provide reliable inference

for the causal relationships even in the presence of invalid IVs. Our developed software is user-

friendly and computationally efficient. Therefore, MR-SPI can detect more trustworthy causal

relationships with increasingly rich and publicly available GWAS and multi-omics datasets.

Software availability

The R package MR.SPI is publicly available at https://github.com/MinhaoYaooo/MR-SPI.

Data availability

All the GWAS data analyzed are publicly available with the following URLs:

• CARDIoGRAMplusC4D consortium: http://www.cardiogramplusc4d.org/data-downloads/;

• GIANT consortium: https://portals.broadinstitute.org/collaboration/giant/index.

php/GIANT_consortium_data_files;

• MEGASTROKE consortium: http://megastroke.org/download.html;

• Global Lipids Genetics Consortium (GLGC): http://csg.sph.umich.edu/willer/public/

lipids2013/;

• GWAS for heart failure: https://www.ebi.ac.uk/gwas/publications/31919418;

• GWAS for atrial fibrillation: https://www.ebi.ac.uk/gwas/publications/30061737;

• The COVID-19 Host Genetics Initiative: https://www.covid19hg.org/;

• GWAS for Alzheimer’s disease: https://ctg.cncr.nl/software/summary_statistics;

• UK Biobank proteomics data: https://europepmc.org/article/ppr/ppr508031.
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Online Methods

Two-sample GWAS summary statistics

Suppose that we obtain p independent SNPs Z = (Z1, · · · , Zp)
⊺ by using LD clumping that retains

one representative SNP per LD region34. We also assume that the SNPs are standardized58 such

that EZj = 0 and Var(Zj) = 1 for 1 ≤ j ≤ p. Let D denote the exposure and Y denote the

outcome. We assume thatD and Y follow the exposure modelD = Z⊺γ+δ and the outcome model

Y = Dβ+Z⊺π+ e, respectively, where β represents the causal effect of interest, γ = (γ1, · · · , γp)⊺

represents the IV strength, and π = (π1, · · · , πp)
⊺ encodes the violation of assumptions (A2) and
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(A3)24,59. If assumptions (A2) and (A3) hold for SNP j, then πj = 0 and otherwise πj ̸= 0

(see Supplementary Section S1 for details). The error terms δ and e with respective variances σ2
δ

and σ2
e are possibly correlated due to unmeasured confounding factors. By plugging the exposure

model into the outcome model, we obtain the reduced-form outcome model Y = Z⊺(βγ + π) + ϵ,

where ϵ = βδ + e. Let Γ = (Γ1, · · · ,Γp)
⊺ denote the SNP-outcome associations, then we have

Γ = βγ + π. If γj ̸= 0, then SNP j is called a relevant IV. If both γj ̸= 0 and πj = 0, then

SNP j is called a valid IV. Let S = {j : γj ̸= 0, 1 ≤ j ≤ p} denote the set of all relevant IVs,

and V = {j : γj ̸= 0 and πj = 0, 1 ≤ j ≤ p} denote the set of all valid IVs. The majority rule

condition can be expressed as |V| > 1
2
|S|59, and the plurality rule condition can be expressed as

|V| > maxc ̸=0 |{j ∈ S : πj/γj = c}|24. If the plurality rule condition holds, then valid IVs with the

same ratio of SNP-outcome effect to SNP-exposure effect will form a plurality. Based on this key

observation, our proposed MR-SPI selects the largest group of SNPs as valid IVs with similar ratio

estimates of the causal effect using a voting procedure described in detail in the next subsection.

Let γ̂j and Γ̂j be the estimated marginal effects of SNP j on the exposure and the outcome, and

σ̂γj and σ̂Γj
be the corresponding estimated standard errors respectively. Let γ̂ = (γ̂1, · · · , γ̂p)⊺ and

Γ̂ = (Γ̂1, · · · , Γ̂p)
⊺ denote the vector of estimated SNP-exposure and SNP-outcome associations,

respectively. In the two-sample setting, the summary statistics {γ̂j, σ̂γj}1≤j≤p and {Γ̂j, σ̂Γj
}1≤j≤p

are calculated from two non-overlapping samples with sample sizes n1 and n2 respectively. When

all the SNPs are independent of each other, the joint asymptotic distribution of γ̂ and Γ̂ isγ̂ − γ

Γ̂− Γ

 d→ N

0,
 1

n1
Vγ 0

0 1
n2
VΓ

 ,

where the diagonal entries of Vγ and VΓ are Vγ
jj = Var(Z2

ij)γ
2
j +

∑
l ̸=j γ

2
l + σ2

δ and VΓ
jj =

Var(Z2
ij)Γ

2
j+
∑

l ̸=j Γ
2
l +σ2

ϵ , respectively, and the off-diagonal entries ofVγ andVΓ areVγ
j1j2

= γj1γj2

and VΓ
j1j2

= Γj1Γj2 (j1 ̸= j2), respectively. The derivation of the limit distribution can be found

in Supplementary Section S2. Therefore, with the summary statistics of the exposure and the

outcome, we estimate 1
n1
Vγ and 1

n2
VΓ as:

1

n1

V̂γ
j1j2

=

 σ̂2
γj1

if j1 = j2,

1
n1
γ̂j1 γ̂j2 if j1 ̸= j2.

and
1

n2

V̂Γ
j1j2

=

 σ̂2
Γj1

if j1 = j2,

1
n2
Γ̂j1Γ̂j2 if j1 ̸= j2.

(1)
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After obtaining {γ̂, V̂γ, Γ̂, V̂Γ}, we can perform the proposed IV selection procedure as illustrated

in Figure 1 in the main text.

Selecting valid instruments by voting

The first step of MR-SPI is to select relevant SNPs with large IV strength using GWAS summary

statistics for the exposure. Specifically, we estimate the set of relevant IVs S by:

Ŝ =

{
1 ≤ j ≤ p :

|γ̂j|
σ̂γj

> Φ−1

(
1− α∗

2

)}
, (2)

where σ̂γj is the standard error of γ̂j in the summary statistics, Φ−1(·) is the quantile function of

the standard normal distribution, and α∗ is the user-specified threshold with the default value of

1×10−6. This step is equivalent to filtering the SNPs in the exposure data with p-value < α∗, and

is adopted by most of the current two-sample MR methods to select (relevant) genetic instruments

for downstream MR analysis. Note that the selected genetic instruments may not satisfy the

IV independence and exclusion restriction assumptions and thus maybe invalid. In contrast, our

proposed MR-SPI further incorporates the outcome data to automatically select a set of valid

genetic instruments from Ŝ for a specific exposure-outcome pair.

Under the plurality rule condition, valid genetic instruments with the same ratio of SNP-

outcome effect to SNP-exposure effect (i.e., Γj/γj) will form a plurality and yield “similar” ratio

estimates of the causal effect. Based on this key observation, MR-SPI selects a plurality of relevant

IVs whose ratio estimates are “similar” to each other as valid IVs. Specifically, we propose the

following two criteria to measure the similarity between the ratio estimates of two SNPs j and k:

C1: We say the kth SNP “votes for” the jth SNP to be a valid IV if, by assuming the jth SNP

is valid, the kth SNP’s degree of violation of assumptions (A2) and (A3) is smaller than a

threshold as in equation (4);

C2: We say the ratio estimates of two SNPs j and k are “similar” if they mutually vote for each

other to be valid IVs.

The ratio estimate of the jth SNP is defined as β̂[j] = Γ̂j/γ̂j. By assuming the jth SNP is valid,
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the plug-in estimate of the kth SNP’s degree of violation of (A2) and (A3) can be obtained by

π̂
[j]
k = Γ̂k − β̂[j]γ̂k = (β̂[k] − β̂[j])γ̂k, (3)

as we have Γk = βγk + πk for the true causal effect β, and Γ̂k = β̂[k]γ̂k for the ratio estimate

β̂[k] of the kth SNP. From equation (3), π̂
[j]
k has two noteworthy implications. First, π̂

[j]
k measures

the difference between the ratio estimates of SNPs j and k (multiplied by the kth SNP-exposure

effect estimate γ̂k), and a small π̂
[j]
k implies that the difference scaled by γ̂k is small. Second, π̂

[j]
k

represents the kth IV’s degree of violation of assumptions (A2) and (A3) by regarding the jth

SNP’s ratio estimate β̂[j] as the true causal effect, thus a small π̂
[j]
k implies a strong evidence that

the kth IV supports the jth IV to be valid. Therefore, we say the kth IV votes for the jth IV to

be valid if:
|π̂[j]

k |
ŜE(π̂

[j]
k )
≤
√

logmin(n1, n2), (4)

where ŜE(π̂
[j]
k ) is the standard error of π̂

[j]
k , which is given by:

ŜE(π̂
[j]
k ) =

√√√√ 1

n2

(
V̂Γ

kk +

(
γ̂k
γ̂j

)2

V̂Γ
jj − 2

γ̂k
γ̂j

V̂Γ
jk

)
+

1

n1

(β̂[j])2

(
V̂γ

kk +

(
γ̂k
γ̂j

)2

V̂γ
jj − 2

γ̂k
γ̂j

V̂γ
jk

)
,

(5)

and the term
√

logmin(n1, n2) in equation (4) ensures that the violation of (A2) and (A3) can be

correctly detected with probability one as the sample sizes go to infinity, as shown in Supplementary

Section S3.

For each relevant IV in Ŝ, we collect all relevant IVs’ votes on whether it is a valid IV according

to equation (4). Then we construct a voting matrix Π̂ ∈ R|Ŝ|×|Ŝ| to summarize the voting results

and evaluate the similarity of two SNPs’ ratio estimates according to criterion C2. Specifically,

we define the (k, j) entry of Π̂ as:

Π̂k,j = I

(
max

{
|π̂[j]

k |
ŜE(π̂

[j]
k )

,
|π̂[k]

j |
ŜE(π̂

[k]
j )

}
≤
√

logmin(n1, n2)

)
, (6)

where I(·) is the indicator function such that I(A) = 1 if event A happens and I(A) = 0 otherwise.

From equation (6), we can see that the voting matrix Π̂ is symmetric, and the entries of Π̂ are

binary: Π̂k,j = 1 represents SNPs j and k vote for each other to be a valid IV, i.e., the ratio
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estimates of these two SNPs are close to each other; Π̂k,j = 0 represents that they do not. For

example, in Figure 1, Π̂1,2 = 1 since the ratio estimates of SNPs 1 and 2 are similar, while Π̂1,4 = 0

because the ratio estimates of SNPs 1 and 4 differ substantially, as SNPs 1 and 4 mutually “vote

against” each other to be valid according to equation (4).

After constructing the voting matrix Π̂, we select the valid IVs by applying majority/plurality

voting or finding the maximum clique of the voting matrix29. Let VMk =
∑

j∈Ŝ Π̂k,j be the total

number of SNPs whose ratio estimates are similar to SNP k. For example, VM1 = 3 in Figure 1,

since 3 SNPs (including SNP 1 itself) yield similar ratio estimates to SNP 1 according to criterion

C2. A large VMk implies a strong evidence that SNP k is a valid IV, since we assume that

valid IVs form a plurality of the relevant IVs. Let V̂M =
{
k ∈ Ŝ : VMk > |Ŝ|/2

}
denote the

set of IVs with majority voting, and V̂P =
{
k ∈ Ŝ : VMk = maxl∈Ŝ VMl

}
denote the set of IVs

with plurality voting, then the union V̂ = V̂M ∪ V̂P can be a robust estimate of V in practice.

Alternatively, we can also find the maximum clique in the voting matrix as an estimate of V . A

clique in the voting matrix is a group of IVs who mutually vote for each other to be valid, and the

maximum clique is the clique with the largest possible number of IVs.

Estimation and inference of the causal effect

After selecting the set of valid genetic instruments V̂ , the causal effect β is estimated by

β̂SPI =
Γ̂⊺

V̂
γ̂V̂

γ̂⊺

V̂
γ̂V̂

, (7)

where γ̂V̂ and Γ̂V̂ are the estimates of SNP-exposure associations and SNP-outcome associations

of the selected valid IVs in V̂ , respectively. Let α ∈ (0, 1) be the significance level and z1−α/2 be

the (1−α/2)-quantile of the standard normal distribution, then the (1−α) confidence interval for

β is given by:

CI =

(
β̂SPI − z1−α

2

√
V̂ar(β̂SPI), β̂SPI + z1−α

2

√
V̂ar(β̂SPI)

)
, (8)

where V̂ar(β̂SPI) is the estimated variance of β̂SPI, which can be found in Supplementary Section S4.

As min{n1, n2} → ∞, we have P
{
β ∈

(
β̂SPI − z1−α

2

√
V̂ar(β̂SPI), β̂SPI + z1−α

2

√
V̂ar(β̂SPI)

)}
→

1− α under the plurality rule condition, as shown in Supplementary Section S5. Hence, MR-SPI

provides a theoretical guarantee for the asymptotic coverage probability of the confidence interval
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under the plurality rule condition.

We summarize the proposed procedure of selecting valid IVs and constructing the corresponding

confidence interval by MR-SPI in Algorithm 1.

Algorithm 1: Selection of Valid Instruments and Inference by MR-SPI

input : GWAS summary statistics of independent SNPs {γ̂j , σ̂γj , Γ̂j , σ̂Γj}1≤j≤p; Sample sizes n1

for the exposure and n2 for the outcome; Threshold α∗ for selecting relevant IVs;

Significance level α ∈ (0, 1).

output: An estimate of the set of valid IVs V̂, the causal effect estimate β̂SPI and the

corresponding confidence interval CI.

1 Estimate the variance-covariance matrices V̂γ and V̂Γ as in equation (1);

2 Select the set of relevant IVs Ŝ as in equation (2);

3 for j ∈ Ŝ do

4 Calculate β̂[j] = Γ̂j/γ̂j and π̂
[j]
k = Γ̂k − β̂[j]γ̂k for k ∈ Ŝ;

5 Each relevant IV k ∈ Ŝ votes for the jth IV to be valid if |π̂[j]
k |/ŜE(π̂

[j]
k ) ≤

√
logmin(n1, n2);

6 end

7 Construct the symmetric voting matrix Π̂ ∈ R|Ŝ|×|Ŝ| as in equation (6);

8 Select the set of valid IVs V̂ by majority voting, plurality voting or finding the maximum clique

in the voting matrix;

9 Estimate the causal effect as in equation (7), and construct the corresponding confidence interval

as in equation (8) using the selected valid IVs in V̂.

A robust confidence interval via searching and sampling

In finite-sample settings, the selected set of relevant IVs Ŝ might include some invalid IVs whose

degrees of violation of (A2) and (A3) are small but nonzero, and we refer to them as “locally invalid

IVs”31. When locally invalid IVs exist and are incorrectly selected into V̂ , the confidence interval in

equation (8) becomes unreliable, since its validity (i.e., the coverage probability attains the nominal

level) requires that the invalid IVs are correctly filtered out. In practice, we can multiply the

threshold
√

logmin(n1, n2) in the right-hand side of equation (4) by a scaling factor η to examine

whether the confidence interval calculated by equation (8) is sensitive to the choice of the threshold.

If the confidence interval varies substantially to the choice of the scaling factor η, then there might

exist finite-sample IV selection error especially with locally invalid IVs. We demonstrate this

issue with two numerical examples presented in Supplementary Figure S12. Supplementary Figure

S12(a) shows an example in which MR-SPI provides robust inference across difference values of the

scaling factor, while Supplementary Figure S12(b) shows an example that MR-SPI might suffer
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from finite-sample IV selection error, as the causal effect estimate and the corresponding confidence

interval are sensitive to the choice of the scaling factor η. This issue motivates us to develop a

more robust confidence interval.

To construct a confidence interval that is robust to finite-sample IV selection error, we borrow

the idea of searching and sampling31, with main steps described in Figure 6. The key idea is to

sample the estimators of γ and Γ repeatedly from the following distribution:γ̂(m)

Γ̂(m)

 i.i.d.∼ N

γ̂

Γ̂

 ,

 1
n1
V̂γ 0

0 1
n2
V̂Γ

 , m = 1, · · · ,M, (9)

where M is the number of sampling times. Since γ̂ and Γ̂ follow distributions centered at γ and

Γ, there exists m∗ such that γ̂(m∗) and Γ̂(m∗) are close enough to the true genetic effects γ and

Γ when the number of sampling times M is sufficiently large, and thus the confidence interval

obtained by using γ̂(m∗) and Γ̂(m∗) instead of γ̂ and Γ̂ might have a larger probability of covering

β.

For each sampling, we construct the confidence interval by searching over a grid of β values

such that more than half of the selected IVs in V̂ are detected as valid. As for the choice of grid,

we start with the smallest interval [L,U ] that contains all the following intervals:

(
β̂[j] −

√
logmin(n1, n2)V̂ar(β̂[j]), β̂[j] +

√
logmin(n1, n2)V̂ar(β̂[j])

)
for j ∈ V̂ , (10)

where β̂[j] is the ratio estimate of the jth SNP, V̂ar(β̂[j]) =
(
V̂Γ

jj/n2 + (β̂[j])2V̂γ
jj/n1

)
/γ̂2

j is the vari-

ance of β̂[j], and
√

logmin(n1, n2) serves the same purpose as in equation (4). Then we discretize

[L,U ] into B = {b1, b2, · · · , bK} as the grid set such that b1 = L, bK = U and |bk+1 − bk| = n−0.6

for 1 ≤ k ≤ K − 2. We set the grid size n−0.6 so that the error caused by discretization is smaller

than the parametric rate n−1/2.

For each grid value b ∈ B and sampling index 1 ≤ m ≤ M , we propose an estimate of

πj by π̂
(m)
j (b) =

(
Γ̂
(m)
j − bγ̂

(m)
j

)
· 1
(
|Γ̂(m)

j − bγ̂
(m)
j | ≥ λρ̂j(b, α)

)
for j ∈ V̂ , where ρ̂j(b, α) =

Φ−1
(
1− α

2|V̂|

)√(
V̂Γ

jj/n2 + b2V̂γ
jj/n1

)
is a data-dependent threshold, Φ−1(·) is the inverse of the

cumulative distribution function of the standard normal distribution, α ∈ (0, 1) is the signifi-

cance level, and λ = (logmin{n1, n2}/M)
1

2|V̂| (λ < 1 when M is sufficiently large) is a scaling
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Figure 6: The procedure of constructing the robust confidence interval by MR-SPI. When locally invalid
IVs exist in finite samples, MR-SPI might incorrectly select invalid IVs as valid ones (marked by the red
cross). In such cases, a robust confidence interval can be constructed to improve the coverage probability.
First, we construct an initial interval using SNPs in V̂ and discretize it to a grid set. Second, we repeatedly
sample the estimators of γ and Γ. Third, we find a confidence interval for each sampling (marked by
blue line segments) by grid search, and then aggregate these confidence intervals to construct the robust
confidence interval (marked by the green line segment). Note that the confidence interval in the third
sampling is empty since the majority rule is violated.
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factor to make the thresholding more stringent so that the confidence interval in each sampling

is shorter, as we will show shortly. Here, π̂
(m)
j (b) = 0 indicates that the jth SNP is detected

as a valid IV in the mth sampling if we take {γ̂(m), Γ̂(m)} as the estimates of genetic effects

and b as the true causal effect. Let π̂
(m)

V̂
(b) = (π̂

(m)
j (b))j∈V̂ , then we construct the mth sam-

pling’s confidence interval CI(m) by searching for the smallest and largest b ∈ B such that more

than half of SNPs in V̂ are detected to be valid. Define β
(m)
min = min{b ∈ B : ∥π̂(m)

V̂
(b)∥0 < |V̂|/2}

and β
(m)
max = max{b ∈ B : ∥π̂(m)

V̂
(b)∥0 < |V̂|/2}, then the mth sampling’s confidence interval is con-

structed as CI(m) =
(
β
(m)
min , β

(m)
max

)
.

From the definitions of π̂
(m)
j (b) and CI(m), we can see that, when λ is smaller, there will be

fewer SNPs in V̂ being detected as valid for a given b ∈ B, which leads to fewer b ∈ B satisfying

∥π̂(m)

V̂
(b)∥0 < |V̂|/2, thus the confidence interval in each sampling will be shorter. If there does

not exist b ∈ B such that the majority of IVs in V̂ are detected as valid, we set CI(m) = ∅.

Let M = {1 ≤ m ≤ M : CI(m) ̸= ∅} denote the set of all sampling indexes corresponding to

non-empty searching confidence intervals, then the proposed robust confidence interval is given by:

CIrobust =

(
min
m∈M

β
(m)
min ,max

m∈M
β(m)
max

)
. (11)

We summarize the procedure of constructing the proposed robust confidence interval in Algo-

rithm 2.

Algorithm 2: Constructing A Robust Confidence Interval via Searching and Sampling

input : GWAS summary statistics of independent SNPs {γ̂j , σ̂γj , Γ̂j , σ̂Γj}1≤j≤p; Sample sizes n1

for the exposure and n2 for the outcome; Threshold α∗ for selecting relevant IVs;

Significance level α ∈ (0, 1); Sampling number M .

output: The robust confidence interval CIrobust.

1 Estimate the set of valid IVs V̂ as in Algorithm 1;

2 Construct the initial interval [L,U ] as in equation (10) and obtain the corresponding grid set B;
3 for m← 1 to M do

4 Sample γ̂(m) and Γ̂(m) from the distribution in equation (9);

5 Calculate {π̂(m)

V̂
(b)}b∈B by π̂

(m)
j (b) =

(
Γ̂
(m)
j − bγ̂

(m)
j

)
· 1
(
|Γ̂(m)

j − bγ̂
(m)
j | ≥ λρ̂j(b, α)

)
, j ∈ V̂;

6 Construct CI(m) by grid search over B;
7 end

8 Construct the robust confidence interval CIrobust as in equation (11);
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Simulation settings

We set the number of candidate IVs p = 10 and the sample sizes n1 = n2 ∈ {5000, 10000, 20000, 40000, 80000}.

We generate the jth genetic instruments Zj and Xj independently from a binomial distribution

Bin(2, fj), where fj ∼ U(0.05, 0.50) is the minor allele frequency of SNP j. Then we generate

the exposure D = (D1, · · · , Dn1)
⊺ and the outcome Y = (Y1, · · · , Yn2)

⊺ according to the exposure

model and the outcome model, respectively. Finally, we calculate the genetic associations and

their corresponding standard errors for the exposure and the outcome, respectively. As for the

parameters, we fix the causal effect β = 1, and we consider 4 settings for γ ∈ Rp and π ∈ Rp:

(S1) : set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (06,14)

⊺.

(S2) : set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (04,13,−13)

⊺.

(S3) : set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (06,12, 0.25, 0.25)

⊺.

(S4) : set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (04,12, 0.25,12,−0.25)⊺.

Settings (S1) and (S3) satisfy the majority rule condition, while (S2) and (S4) only satisfy the

plurality rule condition. In addition, (S3) and (S4) simulate the cases where locally invalid IVs

exist, as we shrink some of the SNPs’ violation degrees of assumptions (A2) and (A3) down to

0.25 times in these two settings. In total, we run 1000 replications in each setting.

Implementation of existing MR methods

We compare the performance of MR-SPI with eight other MR methods in simulation studies and

real data analyses. These methods are implemented as follows:

• Random-effects IVW, MR-Egger, the weighted median method, the mode-based estimation

and the contamination mixture method are implemented in the R package “MendelianRan-

domization” (https://github.com/cran/MendelianRandomization). The mode-based es-

timation is run with iteration=1000. All other methods are run with the default parameters.

• MR-PRESSO is implemented in the R package “MR-PRESSO” (https://github.com/

rondolab/MR-PRESSO) with outlier test and distortion test.
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• MR-RAPS is performed using the R package “mr.raps” (https://github.com/qingyuanzhao/

mr.raps) with the default options.

• MRMix is run with the R package “MRMix” (https://github.com/gqi/MRMix) using the

default options.
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