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Abstract

Mendelian randomization (MR) uses genetic variants as instrumental variables (IVs) to

infer the causal effect of a modifiable exposure on the outcome of interest by removing un-

measured confounding bias. However, some genetic variants might be invalid IVs due to

violations of core IV assumptions. MR analysis with invalid IVs might lead to biased causal

effect estimate and misleading scientific conclusions. To address this challenge, we propose

a novel MR method that first Selects valid genetic IVs and then performs Post-selection

Inference (MR-SPI) based on two-sample genome-wide summary statistics. We analyze 912

plasma proteins using the large-scale UK Biobank proteomics data in 54,306 participants

and identify 7 proteins (TREM2, PILRB, PILRA, EPHA1, CD33, RET, CD55) significantly

associated with the risk of Alzheimer’s disease. We employ AlphaFold2 to predict the 3D

structural alterations of these 7 proteins due to missense genetic variations, providing new

insights into their biological functions in disease etiology.
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1 Introduction

In biomedical studies, it is essential to infer the causal effect of a modifiable risk factor on a

health outcome of interest1,2. Even though randomized controlled trials (RCTs) serve as the gold

standard for causal inference, it is often neither feasible nor ethical to perform RCTs for many

harmful exposures. Mendelian randomization (MR) leverages the random assortment of genes

from parents to offspring to mimic RCTs to establish causality in observational studies3,4,5. MR

uses genetic variants, typically single-nucleotide polymorphisms (SNPs), as instrumental variables

(IVs) to assess the causal association between an exposure and an outcome6. Recently, many MR

methods have been developed to investigate causal relationships using genome-wide association

study (GWAS) summary statistics data that consist of effect estimates of SNP-exposure and SNP-

outcome associations from two non-overlapping sets of samples, which are commonly referred to

as the two-sample MR methods7,8,9,10. Since summary statistics are often publicly available and

provide abundant information of associations between genetic variants and complex traits/diseases,

two-sample MR methods become increasingly popular9,11,12,13.

Conventional MR methods require the genetic variants included in the analysis to be valid IVs

for reliable causal inference. A genetic variant is called a valid IV if the following three core IV

assumptions hold4,14:

(A1) Relevance: The genetic variant is associated with the exposure;

(A2) Effective Random Assignment: The genetic variant is not associated with any unmea-

sured confounder of the exposure-outcome relationship; and

(A3) Exclusion Restriction: The genetic variant affects the outcome only through the exposure.

Among the three core IV assumptions (A1) - (A3), only the first assumption (A1) can be tested

empirically by selecting genetic variants significantly associated with the exposure in GWAS. How-

ever, assumptions (A2) and (A3) cannot be empirically verified in general and may be violated in

practice, which may lead to a biased estimate of the causal effect. For example, violation of (A2)

may occur due to the presence of population stratification4,15; and violation of (A3) may occur

in the presence of the horizontal pleiotropy4,16, which is a widespread biological phenomenon that

the genetic variant affects the outcome through other biological pathways that do not involve the

exposure in view17,18.
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Recently, several two-sample MR methods have been proposed to handle invalid IVs under cer-

tain assumptions. The Instrument Strength Independent of Direct Effect (InSIDE) assumption has

been proposed and adopted by multiple methods, for example, the random-effects inverse-variance

weighted (IVW) method19, MR-Egger20, and MR-RAPS (Robust Adjusted Profile Score)11. The

InSIDE assumption requires that the SNP-exposure effect is asymptotically independent of the

horizontal pleiotropic effect when the number of SNPs goes to infinity. However, the InSIDE as-

sumption is often implausible in practice21, and thus the estimate of causal effect might be biased

using random-effects IVW, MR-Egger or MR-RAPS10. Another strand of methods imposes as-

sumptions on the proportion of invalid IVs included in the analysis. For example, the weighted

median method22 and the Mendelian randomization pleiotropy residual sum and outlier (MR-

PRESSO) test23 are based on the majority rule condition that allows up to 50% of the candidate

IVs to be invalid. However, the weighted median method and MR-PRESSO might produce unre-

liable results when more than half of the candidate IVs are invalid10. Besides, the MR-PRESSO

outlier test requires that the InSIDE assumption holds and that the pleiotropic effects of genetic

instruments have zero mean23. The plurality rule condition, which only requires a plurality of the

candidate IVs to be valid, is weaker than the majority rule condition24,25, and is also termed as

the ZEro Modal Pleiotropy Assumption (ZEMPA)10,26. The plurality rule condition (or ZEMPA

assumption) has been applied to some existing two-sample MR methods, for example, the mode-

based estimation26, MRMix27 and the contamination mixture method25. Among those methods,

MRMix and the contamination mixture method require additional distributional assumptions on

the genetic associations, or the ratio estimates to provide reliable causal inference. Despite many

efforts, most current MR methods require an ad-hoc set of pre-determined genetic instruments,

which is often obtained by selecting genetic variants with strong SNP-exposure associations in

GWAS28. Since such traditional way of selecting IVs only requires the exposure data, hence the

same set of selected IVs is used for assessing the causal relationships between the exposure in view

and different outcomes. Obviously, this one-size-fits-all exposure-specific strategy for selecting IVs

might not work well for different outcomes because the underlying genetic architecture may vary

across outcomes. For example, the pattern of horizontal pleiotropy might vary across different

outcomes. Therefore, it is desirable to develop an automatic algorithm to select a set of valid

genetic IVs for a specific exposure-outcome pair.

In this paper, we propose a novel two-sample MR method and algorithm that can automatically
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Select valid genetic IVs for a specific exposure-outcome pair and then performs honest Post-

selection Inference (MR-SPI) for the causal effect of interest. The key idea of MR-SPI is based on

the Anna Karenina Principle which states that all valid instruments are alike, while each invalid

instrument is invalid in its own way – paralleling Leo Tolstoy’s dictum that “all happy families

are alike; each unhappy family is unhappy in its own way”29. In other words, valid instruments

will form a group and should provide similar ratio estimates of the causal effect, while the ratio

estimates of invalid instruments are more likely to be different from each other. Operationally,

MR-SPI consists of the following four steps: (1) select relevant genetic IVs that are associated

with the exposure; (2) each selected relevant IV first provides a ratio estimate for the causal effect,

and then receives votes on itself to be valid from other relevant IVs whose degrees of violation

of assumptions (A2) and (A3) are smaller than a threshold as in equation (4) (thus more likely

to be valid) under this ratio estimate of the causal effect; (3) select valid IVs that receive a

majority/plurality of votes, or by finding the maximum clique of the voting matrix that encodes

whether two relevant IVs mutually vote for each other to be valid IVs; and (4) perform post-

selection inference to construct an honest confidence interval for the causal effect that is robust to

any potential finite-sample IV selection error.

To the best of our knowledge, MR-SPI is the first two-sample MR method that utilizes both

exposure and outcome data to automatically select a set of valid genetic IVs for a specific exposure-

outcome pair. Moreover, our proposed selection procedure does not require additional distribu-

tional assumptions, for example, normal mixture distributions, to model the SNP-trait associations

or ratio estimates25,27, and is more robust to possible violations of parametric distributional as-

sumptions. Extensive simulations show that our MR-SPI method outperforms other competing

MR methods under the plurality rule condition. We apply MR-SPI to infer causal relationships

among 146 exposure-outcome pairs involving COVID-19 (Coronavirus disease 2019) related traits,

ischemic stroke, cholesterol levels and heart diseases, and detect significant associations among

them. Furthermore, we employ MR-SPI to perform omics MR (xMR) with 912 plasma pro-

teins using the large-scale UK Biobank proteomics data in 54,306 UK Biobank participants30

and discover 7 proteins significantly associated with the risk of Alzheimer’s disease. We also use

AlphaFold231,32,33 to predict the 3D structural changes of these 7 proteins due to missense ge-

netic variations, and then illustrate the structural changes graphically using the PyMOL software

(https://pymol.org).
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2 Results

2.1 MR-SPI selects valid genetic instruments by a voting procedure

MR-SPI is an automatic procedure to select valid genetic instruments and perform robust causal

inference using two-sample GWAS summary data. In brief, MR-SPI consists of the following four

steps, as illustrated in Figure 1:

(i) select relevant SNPs that are strongly associated with the exposure;

(ii) each relevant SNP provides a ratio estimate of the causal effect, and then all the other

relevant SNPs votes for it to be a valid IV if their degrees of violation of assumptions (A2)

and (A3) are smaller than a data-dependent threshold as in equation (4);

(iii) select valid SNP IVs by majority/plurality voting or by finding the maximum clique of the

voting matrix that encodes whether two relevant SNP IVs mutually vote for each other to

be valid (the voting matrix is defined in equation (6) in Online Methods);

(iv) estimate the causal effect of interest using the selected valid SNP IVs and construct an honest

confidence interval for the causal effect that is robust to any potential IV selection error in

finite samples.

Most current two-sample MR methods only use step (i) to select (relevant) genetic instruments

for downstream MR analysis, while the selected genetic instruments might violate assumptions

(A2) and (A3), leading to possibly unreliable scientific findings. To address this issue, MR-SPI

automatically select valid genetic instruments for a specific exposure-outcome pair by further

incorporating the outcome data. Our key idea of selecting valid genetic instruments is that, under

the plurality rule condition, valid IVs will form the largest group and should give “similar” ratio

estimates according to the Anna Karenina Principle (see Online Methods). More specifically, we

propose the following two criteria to measure the similarity between the ratio estimates of two

SNPs j and k in step (ii):

C1: We say the kth SNP “votes for” the jth SNP to be a valid IV if, by assuming the jth SNP

is valid, the kth SNP’s degree of violation of assumptions (A2) and (A3) is smaller than a

data-dependent threshold as in equation (4);
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C2: We say the ratio estimates of two SNPs j and k are “similar” if they mutually vote for each

other to be valid.

In step (iii), we construct a symmetric binary voting matrix to encode the votes that each

relevant SNP receives from other relevant SNPs: the (k, j) entry of the voting matrix is 1 if

SNPs j and k mutually vote for each other to be valid, and 0 otherwise. We propose two ways

to select valid genetic instruments based on the voting matrix (see Online Methods): (1) select

relevant SNPs who receive majority voting or plurality voting as valid IVs; and (2) use SNPs in

the maximum clique of the voting matrix as valid IVs34. Our simulation studies show that the

maximum clique method can empirically offer lower false discovery rate (FDR)35 and higher true

positive proportion (TPP) as shown in Table S4 and Supplementary Section S6.

In step (iv), we estimate the causal effect by fitting a zero-intercept ordinary least squares (OLS)

regression of SNP-outcome associations on SNP-exposure associations using the set of selected

valid genetic instruments, and then construct a standard confidence interval for the causal effect

using standard linear regression theory. In finite samples, some invalid IVs with small (but still

nonzero) degrees of violation of assumptions (A2) and (A3) might be incorrectly selected as valid

IVs, commonly referred to as “locally invalid IVs”36. To address this possible issue, we propose to

construct a robust confidence interval with a guaranteed nominal coverage even in the presence of

IV selection error in finite-sample settings using a searching and sampling method36, as described

in Figure 5 and Online Methods.

2.2 Comparing MR-SPI to other competing MR methods in simulation studies

We conduct extensive simulations to evaluate the performance of MR-SPI in the presence of invalid

IVs. We simulate data in a two-sample setting under four setups: (S1) majority rule condition

holds, and no locally invalid IVs exist; (S2) plurality rule condition holds, and no locally invalid

IVs exist; (S3) majority rule condition holds, and locally invalid IVs exist; (S4) plurality rule

condition holds, and locally invalid IVs exist. More detailed simulation settings are described in

Online Methods. We compare MR-SPI to the following competing MR methods: (i) the random-

effects IVW method19, (ii) MR-RAPS11, (iii) MR-PRESSO23, (iv) the weighted median method22,

(v) the mode-based estimation26, (vi) MRMix27, and (vii) the contamination mixture method25.

We exclude MR-Egger in this simulation since it is heavily biased under our simulation settings.
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For simplicity, we shall use IVW to represent the random-effects IVW method hereafter.

In Figure 2, we present the percent bias, empirical coverage, and average lengths of 95%

confidence intervals of the aforementioned MR methods in simulated data with a sample size of

5,000 for both the exposure and the outcome. Additional simulation results under a range of

sample sizes (n = 5,000, 10,000, 20,000, 40,000, 80,000) can be found in Supplementary Figure

S1 and Tables S1-S3. When the plurality rule condition holds and no locally invalid IVs exist,

MR-SPI has small bias and short confidence interval, and the empirical coverage can attain the

nominal level, suggesting the superior performance of MR-SPI. When locally invalid IVs exist,

the standard confidence interval might suffer from finite-sample IV selection error, and thus the

empirical coverage is lower than 95% if the sample sizes are not large (e.g., 5,000). In practice,

we can perform sensitivity analysis of the causal effect estimate by changing the threshold in the

voting step (see Online Methods and Supplementary Figure S13). If the causal effect estimate is

sensitive to the choice of the threshold, then there might exist finite-sample IV selection error. In

such cases, the proposed robust confidence interval of MR-SPI can still attain the 95% coverage

level and thus is recommended for use.

2.3 Learning causal relationships of 146 exposure-outcome pairs

In this section, we examine the causal relationships between complex traits and diseases from

four categories including ischemic stroke, cholesterol levels, heart diseases, and coronavirus disease

2019 (COVID-19) related traits. We exclude the trait pairs whose exposure and outcome are in

the same consortium or are two similar phenotypes (for example, heart failure and coronary artery

disease), and we finally obtain 146 pairwise exposure-outcome combinations. Among the 146

exposure-outcome pairs, MR-SPI detects invalid IVs for 16 exposure-outcome pairs. For example,

MR-SPI detects one invalid SNP (rs616154, marked by red triangle) in the causal relationship

from cardioembolic stroke (CES) to SARS-CoV-2 infection, as illustrated in Figure 3(a). Using

the PhenoScanner tool37,38, we find that SNP rs616154 is also associated with the Interleukin-6

(IL-6) levels which is a potential biomarker of COVID-19 progression39, indicating that this SNP

might exhibit horizontal pleiotropy in the relationship of cardioembolic stroke on SARS-CoV-2

infection and might be an invalid IV.

After excluding those potentially invalid IVs, MR-SPI identifies 27 significant associations after

Bonferroni correction for multiple comparison40, with results summarized in Figure 3(c). MR-SPI
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detects some significant associations that cannot be discovered by other competing MR methods

considered in this paper. For example, MR-SPI suggests that SARS-CoV-2 infection might be a

risk factor for HF, which is consistent with a former study that reported a significant increase in

the risk of developing acute heart failure in patients with confirmed COVID-19 infection41. We

also present the Venn diagram of the significant pairs using MR-SPI, the mode-based estimation,

MRMix and the contamination mixture method in Figure 3(b), as these four methods are all based

on the plurality rule condition. Using the robust confidence intervals constructed by Algorithm 2

in Online Methods, MR-SPI also discovers four significant associations that are immune to finite-

sample IV selection error (CES on heart failure (HF), low-density lipoprotein (LDL) on coronary

artery disease (CAD), total cholesterol (TC) on CAD, and atrial fibrillation (AF) on CES), as

shown in Figure 3(d). More detailed results can be found in Supplementary Section S10.

2.4 Identifying plasma proteins associated with the risk of Alzheimer’s disease

Omics MR (xMR) aims to identify omics biomarkers (e.g., proteins) causally associated with

complex traits and diseases. In particular, xMR with proteomics data enables the identification of

disease-associated proteins, facilitating crucial advancements in disease diagnosis, monitoring, and

novel drug target discovery. In this section, we apply MR-SPI to identify plasma protein biomarkers

putatively causally associated with the risk of Alzheimer’s disease (AD). The proteomics data used

in our analysis comprises 54,306 participants from the UK Biobank Pharma Proteomics Project

(UKB-PPP)30. Following the guidelines30, significant (p-value < 3.40 × 10−11, accounting for

Bonferroni correction) and independent (r2 < 0.01) SNPs are extracted from the proteomics data

as candidate genetic instruments, and thus all of these candidates SNPs are strongly associated

with the exposures (proteins). Summary statistics for AD are obtained from a meta-analysis of

GWAS studies for clinically diagnosed AD and AD-by-proxy, comprising 455,258 samples in total42.

For MR method comparison, we analyze 912 plasma proteins that share four or more candidate

SNPs within the summary statistics for AD, because the implementation of MR-PRESSO requires

a minimum of four SNPs as candidate IVs23.

As presented in Figure 4(a), MR-SPI identifies 7 proteins that are significantly associated

with AD after Bonferroni correction, including CD33, CD55, EPHA1, PILRA, PILRB, RET, and

TREM2. The detailed information of the selected SNP IVs for these 7 proteins can be found

in Supplementary Table S6. Among them, four proteins (CD33, PILRA, PILRB, and RET)
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are positively associated with the risk of AD while the other three proteins (CD55, EPHA1,

and TREM2) are negatively associated with the risk of AD. Previous studies have revealed that

some of those 7 proteins and the corresponding protein-coding genes might contribute to the

pathogenesis of AD43,44,45,46,47,48. For example, it has been found that CD33 plays a key role

in modulating microglial pathology in AD, with TREM2 acting downstream in this regulatory

pathway45. Besides, a recent study has shown that a higher level of soluble TREM2 is associated

with protection against the progression of AD pathology49. Additionally, RET at mitochondrial

complex I is activated during ageing, which might contribute to an increased risk of ageing-related

diseases including AD47. Using the UniProt database50, we also find that genes encoding these

7 proteins are overexpressed in tissues including hemopoietic tissues and brain, as well as cell

types including microglial, macrophages and dendritic cells. These findings highlight the potential

therapeutic opportunities that target these proteins for the treatment of AD. Furthermore, in the

Therapeutic Target Database (TTD)51 and DrugBank database52, we find existing US Food and

Drug Administration (FDA)-approved drugs that target these proteins identified by MR-SPI. For

example, gemtuzumab ozogamicin is a drug that targets CD33 and has been approved by FDA for

acute myeloid leukemia therapy53,54. Besides, pralsetinib and selpercatinib are two RET inhibitors

that have been FDA-approved for the treatment of non-small-cell lung cancers55,56. Therefore,

these drugs might be potential drug repurposing candidates for the treatment of AD.

In Figure 4(b), we present the 3D structural alterations of CD33 due to missense genetic

variation of SNP rs2455069, as predicted by AlphaFold231,32. The 3D structures are shown in blue

when the allele is A, and in red when the allele is G at SNP rs2455069 A/G, which is a cis-SNP

located on chromosome 19 (19q13.41) and is selected as a valid IV by MR-SPI. The presence of

the G allele at SNP rs2455069 results in the substitution of the 69th amino acid of CD33, changing

it from Arginine (colored in green if the allele is A) to Glycine (colored in yellow if the allele is

G), consequently causing a local change in the structure of CD33. Previous studies have found

that CD33 is overexpressed in microglial cells in the brain57, and the substitution of Arginine to

Glycine in the 69th amino acid of CD33 might lead to the accumulation of amyloid plaques in the

brain58, thus the presence of the G allele at SNP rs2455069 might contribute to an increased risk

of AD. We also apply AlphaFold2 to predict the 3D structures of the other 6 proteins that are

detected to be significantly associated with AD by MR-SPI, which are presented in Supplementary

Figure S15.
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In Figure 4(c), we present the point estimates and 95% confidence intervals of the causal

effects (on the log odds ratio scale) of these 7 proteins on AD using the other competing MR

methods. In Figure 4(b), these proteins are identified by most of the competing MR methods,

confirming the robustness of our findings. Notably, in the relationship of TREM2 on AD, MR-SPI

detects one possibly invalid IV SNP rs10919543, which is associated with red blood cell count

according to PhenoScanner. Red blood cell count is a known risk factor for AD59,60, and thus SNP

rs10919543 might exhibit pleiotropy in the relationship of TREM2 on AD. After excluding this

potentially invalid IV, MR-SPI suggests that TREM2 is negatively associated with the risk of AD

(β̂ = −0.04, p-value = 1.20×10−18). Additionally, we perform the gene ontology (GO) enrichment

analysis using the g:Profiler web server61 (https://biit.cs.ut.ee/gprofiler/gost) to gain

more biological insights for the 7 proteins identified by MR-SPI, and the results are presented in

Figure 4(d) and Supplementary Table S7. After Bonferroni correction, the GO analysis indicates

that these 7 proteins are significantly enriched in 20 GO terms, notably, the positive regulation

of phosphorus metabolic process and major histocompatibility complex (MHC) class I protein

binding. It has been found that increased phosphorus metabolites (e.g., phosphocreatine) are

associated with aging, and that defects in metabolic processes for phospholipid membrane function

is involved in the pathological progression of Alzheimer’s disease62,63. In addition, MHC class I

proteins may play a crucial role in preserving brain integrity during post-developmental stages,

and modulation of the stability of MHC class I proteins emerges as a potential therapeutic target

for restoring synaptic function in AD64,65,66.

3 Discussion

In this paper, we develop a novel two-sample MR method called MR-SPI, to automatically select

valid genetic instruments for a specific exposure-outcome pair from GWAS studies and perform

valid post-selection inference. MR-SPI first selects relevant IVs with strong SNP-exposure associa-

tions, and then applies the proposed voting procedure to select valid IVs whose ratio estimates are

similar to each other as valid IVs. In the possible presence of locally invalid IVs in finite-sample

settings, MR-SPI provides a robust confidence interval constructed by the searching and sampling

method36, which is immune to finite-sample IV selection error. We employ MR-SPI to conduct

xMR analysis with 912 plasma proteins using the proteomics data in 54,306 UK Biobank partici-
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pants and identify 7 proteins significantly associated with the risk of Alzheimer’s disease. The 3D

structural changes in these proteins, as predicted by AlphaFold2 in response to missense genetic

variations of selected SNP IVs, shed new insights to their biological functions in the etiology of

Alzheimer’s disease. We also find existing FDA-approved drugs that target some of our identified

proteins, which provide opportunities for potential existing drug repurposing for the treatment of

Alzheimer’s disease. These findings highlight the great potential of MR-SPI as a powerful tool

for identifying protein biomarkers as new therapeutic targets and drug repurposing for disease

prevention and treatment.

We emphasize two main advantages of MR-SPI. First, MR-SPI incorporates both exposure and

outcome data to automatically select a set of valid genetic instruments in genome-wide studies, and

the selection procedure does not rely on any additional distributional assumptions on the genetic

effects. Therefore, MR-SPI is the first to offer such a practically robust approach to selecting valid

genetic instruments for a specific exposure-outcome pair from GWAS studies for more reliable MR

analyses, which is especially advantageous in the presence of wide-spread horizontal pleiotropy.

Second, we propose a robust confidence interval for the causal effect using the searching and

sampling method, which is immune to finite-sample IV selection error. Therefore, when locally

invalid IVs are incorrectly selected and the causal effect estimate is biased in finite samples, MR-

SPI can still provide reliable inference for the causal effect using the proposed robust confidence

interval.

MR-SPI also has some limitations. First, MR-SPI uses independent SNPs from two non-

overlapping samples. For future work, we plan to extend MR-SPI to include SNPs with arbitrary

linkage disequilibrium (LD) structure from GWAS summary statistics of two possibly overlapping

samples. Second, the proposed robust confidence interval is slightly more conservative than the

confidence interval calculated from the limiting distribution of the causal effect estimate, which

is the price to pay for the gained robustness to finite-sample IV selection error. Future work

is needed to construct less conservative confidence intervals that are robust to finite-sample IV

selection error.

In conclusion, MR-SPI provides an automatic approach to selecting valid genetic instruments

among candidate SNPs and performs reliable causal inference using two-sample GWAS summary

statistics. Our software is user-friendly and computationally efficient. Therefore, MR-SPI can help

detect more trustworthy causal relationships with increasingly rich and publicly available GWAS
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and multi-omics datasets.

Software availability

The R package MR.SPI is publicly available at https://github.com/MinhaoYaooo/MR-SPI.

Data availability

All the GWAS data analyzed are publicly available with the following URLs:

• CARDIoGRAMplusC4D consortium: http://www.cardiogramplusc4d.org/data-downloads/;

• GIANT consortium: https://portals.broadinstitute.org/collaboration/giant/index.

php/GIANT_consortium_data_files;

• MEGASTROKE consortium: http://megastroke.org/download.html;

• Global Lipids Genetics Consortium (GLGC): http://csg.sph.umich.edu/willer/public/

lipids2013/;

• GWAS for heart failure: https://www.ebi.ac.uk/gwas/publications/31919418;

• GWAS for atrial fibrillation: https://www.ebi.ac.uk/gwas/publications/30061737;

• The COVID-19 Host Genetics Initiative: https://www.covid19hg.org/;

• GWAS for Alzheimer’s disease: https://ctg.cncr.nl/software/summary_statistics;

• UK Biobank proteomics data: https://www.biorxiv.org/content/10.1101/2022.06.17.

496443v1.supplementary-material.
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Figure 1: The MR-SPI framework. First, MR-SPI selects relevant IVs with strong SNP-exposure asso-
ciations. Second, each relevant IV provides a ratio estimate of the causal effect and then receives votes
on itself to be valid from the other relevant IVs whose degrees of violation of (A2) and (A3) are small
under this ratio estimate of causal effect. For example, by assuming SNP 1 is valid, the slope of the line
connecting SNP 1 and the origin represents the ratio estimate of SNP 1, and SNPs 2 and 3 vote for SNP
1 to be valid because they are close to that line, while SNPs 4, 5 and 6 vote against it since they are far
away from that line. Third, MR-SPI estimates the causal effect by fitting a zero-intercept OLS regression
of SNP-outcome associations on SNP-exposure associations and construct the robust confidence interval
using selected valid SNP IVs in the maximum clique of the voting matrix, which encodes whether two
SNPs mutually vote for each other to be valid IVs.
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Figure 2: Empirical performance of MR-SPI and the other competing MR methods in simulated data with
sample sizes of 5,000. (a) Boxplot of the percent bias in causal effect estimates. (b) Empirical coverage
of 95% confidence intervals. The black dashed line in (b) represents the nominal level (95%). (c) Average
lengths of 95% confidence intervals.
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Figure 3: (a) Scatter plot of cardioembolic stroke on SARS-CoV-2 infection. The horizontal and vertical
axes represent the SNP-exposure and SNP outcome associations, respectively. The slope of the green solid
line represents the causal effect estimate of MR-SPI. The slopes of the black, blue and orange dashed line
represent the causal effect estimates of IVW, MR-PRESSO and MR-RAPS, respectively. Green circles
represent valid IVs and red triangles represent invalid IVs detected by MR-SPI. (b) Venn diagram of
significant associations detected by MR-SPI, the mode-based estimation, MRMix and the contamination
mixture method after Bonferroni correction. (c) Direction of causal associations detected by MR-SPI.
The significant positive and negative associations after Bonferroni correction are marked by blue filled
circles and red filled circles, respectively. The radius of a circle is proportional to the − log10(p-value) of
the corresponding exposure-outcome pair. Those pairs whose exposure and outcome come from the same
consortium or are two similar phenotypes are marked as grey cells. (d) Significant associations detected
by MR-SPI using the robust confidence interval. The light blue bars represent the standard confidence
interval calculated using the causal effect estimates and the corresponding standard errors using standard
linear regression theory. The dark blue bars represent the robust confidence interval constructed by the
searching and sampling method, which allows for finite-sample IV selection error.
AIS: any ischemic stroke; LAS: large-artery atherosclerotic stroke; SVS: small vessel stroke; CES: car-
dioembolic stroke; LDL: low-density lipoprotein; HDL: high-density lipoprotein; TC: total cholesterol;
TG: triglycerides; HF: heart failure; CAD: coronary artery disease; AF: atrial fibrillation; SEVERE: se-
vere COVID-19; HOSPITAL: COVID-19 hospitalization; INFECTION: SARS-CoV-2 infection.
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Figure 4: (a) Volcano plot of associations of plasma proteins with Alzheimer’s disease using MR-SPI.
The horizontal axis represents the estimated effect size (on the log odds ratio scale), and the vertical
axis represents the − log10(p-value). Positive and negative associations are represented by green and
red points, respectively. The size of a point is proportional to the − log10(p-value). The blue dashed line
represents the significance threshold using Bonferroni correction (p-value< 5.48×10−5). (b) 3D Structural
alterations of CD33 predicted by AlphaFold2 due to missense genetic variation of SNP rs2455069. The
ribbon representation of 3D structures of CD33 with Arginine and Glycine at position 69 are colored in
blue and red, respectively. The amino acids at position 69 are displayed in stick representation, with
Arginine and Glycine colored in green and yellow, respectively. The predicted local-distance difference
test (pLDDT) yields a value of 77.1% for both structures, which suggests that AlphaFold2 generally
provides good backbone predictions for these two structures. (c) Forest plot of significant associations
of proteins with Alzheimer’s disease identified by MR-SPI. Point estimates and 95% confidence intervals
for the associations using the other competing MR methods are presented in different colors. Confidence
intervals are clipped to vertical axis limits. (d) Bubble plot of GO analysis results using the 7 significant
proteins detected by MR-SPI. The horizontal axis represents the z-score of the enriched GO term, and
the vertical axis represents the − log10(p-value) after Bonferroni correction. Each point represents one
enriched GO term. The blue dashed line represents the significance threshold (adjusted p-value < 0.05
after Bonferroni correction).
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Figure 5: The proposed procedure for constructing the robust confidence interval by MR-SPI that allows
for finite-sample IV selection error. When Llocally invalid IVs may be exist in finite samples, MR-SPI
might incorrectly selected invalid IVs as valid ones (marked by the red cross) in finite-sample settings,
and thus the standard CI might fail to cover the true causal effect. First, we construct an initial interval
using SNPs in and discretize it to a grid set. SecondTo deal with this issue, we repeatedly sample the
estimators of γ and Γ for M times (by default, we set M = 1,000) from the sampling distribution. When
M is sufficiently large, there exists m∗th sampling such that the re-sampled genetic associations (marked
by orange triangle) are close enough to the true values γ and Γ. In each sampling, we calculate the
ratio estimates using the re-sampled genetic associations, and then construct a pseudo CI for the causal
effect by line searching. Specifically, for any value b in the pseudo CI, more than half of the IVs selected
by MR-SPI (in this illustration, at least three IVs) should vote for b to be the true causal effect. We
then aggregate all the pseudo CIs of M samplings by taking the minimum of the lower bounds and the
maximum of the upper bounds to construct the robust CI (marked by yellow segment).
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meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk.

Nature Genetics, 51(3):404–413, 2019.

[43] Adam C Naj, Gyungah Jun, Gary W Beecham, Li-San Wang, Badri Narayan Vardarajan,

Jacqueline Buros, Paul J Gallins, Joseph D Buxbaum, Gail P Jarvik, Paul K Crane, et al.

Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-

onset Alzheimer’s disease. Nature genetics, 43(5):436–441, 2011.

[44] Nisha Rathore, Sree Ranjani Ramani, Homer Pantua, Jian Payandeh, Tushar Bhangale,

Arthur Wuster, Manav Kapoor, Yonglian Sun, Sharookh B Kapadia, Lino Gonzalez, et al.

Paired Immunoglobulin-like Type 2 Receptor Alpha G78R variant alters ligand binding and

confers protection to Alzheimer’s disease. PLoS genetics, 14(11):e1007427, 2018.

[45] Ana Griciuc, Shaun Patel, Anthony N Federico, Se Hoon Choi, Brendan J Innes, Mary K

Oram, Gea Cereghetti, Danielle McGinty, Anthony Anselmo, Ruslan I Sadreyev, et al.

TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s dis-

ease. Neuron, 103(5):820–835, 2019.

[46] Hafdis T Helgadottir, Pär Lundin, Emelie Wallén Arzt, Anna-Karin Lindström, Caroline

Graff, and Maria Eriksson. Somatic mutation that affects transcription factor binding up-

stream of CD55 in the temporal cortex of a late-onset Alzheimer disease patient. Human

Molecular Genetics, 28(16):2675–2685, 2019.

[47] Suman Rimal, Ishaq Tantray, Yu Li, Tejinder Pal Khaket, Yanping Li, Sunil Bhurtel, Wen Li,

Cici Zeng, and Bingwei Lu. Reverse electron transfer is activated during aging and contributes

to aging and age-related disease. EMBO reports, 24(4):e55548, 2023.

22

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.02.20.23286200doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286200


[48] Rebecca L Winfree, Mabel Seto, Logan Dumitrescu, Vilas Menon, Philip De Jager, Yanling

Wang, Julie Schneider, David A Bennett, Angela L Jefferson, and Timothy J Hohman. Trem2

gene expression associations with alzheimer’s disease neuropathology are region-specific: im-

plications for cortical versus subcortical microglia. Acta Neuropathologica, 145(6):733–747,

2023.

[49] Xiaoyu Yang, Jia Wen, Han Yang, Ian R Jones, Xiaodong Zhu, Weifang Liu, Bingkun

Li, Claire D Clelland, Wenjie Luo, Man Ying Wong, et al. Functional characterization of

alzheimer’s disease genetic variants in microglia. Nature Genetics, pages 1–10, 2023.

[50] Uniprot: the universal protein knowledgebase in 2023. Nucleic Acids Research, 51(D1):D523–

D531, 2023.

[51] Ying Zhou, Yintao Zhang, Xichen Lian, Fengcheng Li, Chaoxin Wang, Feng Zhu, Yunqing

Qiu, and Yuzong Chen. Therapeutic target database update 2022: facilitating drug discovery

with enriched comparative data of targeted agents. Nucleic Acids Research, 50(D1):D1398–

D1407, 2022.

[52] David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant,

Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al. Drugbank 5.0: a major update

to the drugbank database for 2018. Nucleic acids research, 46(D1):D1074–D1082, 2018.

[53] Peter F Bross, Julie Beitz, Gang Chen, Xiao Hong Chen, Eric Duffy, Lydia Kieffer, Sandip

Roy, Rajeshwari Sridhara, Atiqur Rahman, Grant Williams, et al. Approval summary: gem-

tuzumab ozogamicin in relapsed acute myeloid leukemia. Clinical cancer research, 7(6):1490–

1496, 2001.

[54] Kelly J Norsworthy, Chia-Wen Ko, Jee Eun Lee, Jiang Liu, Christy S John, Donna Przepiorka,

Ann T Farrell, and Richard Pazdur. Fda approval summary: mylotarg for treatment of

patients with relapsed or refractory cd33-positive acute myeloid leukemia. The oncologist, 23

(9):1103–1108, 2018.

[55] Janice Kim, Diana Bradford, Erin Larkins, Lee H Pai-Scherf, Somak Chatterjee, Pallavi S

Mishra-Kalyani, Emily Wearne, Whitney S Helms, Amal Ayyoub, Youwei Bi, et al. Fda

23

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.02.20.23286200doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286200


approval summary: pralsetinib for the treatment of lung and thyroid cancers with ret gene

mutations or fusions. Clinical Cancer Research, 27(20):5452–5456, 2021.

[56] Diana Bradford, Erin Larkins, Sirisha L Mushti, Lisa Rodriguez, Amy M Skinner, Whitney S

Helms, Lauren SL Price, Jeanne Fourie Zirkelbach, Yangbing Li, Jiang Liu, et al. Fda approval

summary: selpercatinib for the treatment of lung and thyroid cancers with ret gene mutations

or fusions. Clinical Cancer Research, 27(8):2130–2135, 2021.

[57] Ana Griciuc, Alberto Serrano-Pozo, Antonio R Parrado, Andrea N Lesinski, Caroline N As-

selin, Kristina Mullin, Basavaraj Hooli, Se Hoon Choi, Bradley T Hyman, and Rudolph E

Tanzi. Alzheimer’s disease risk gene cd33 inhibits microglial uptake of amyloid beta. Neuron,

78(4):631–643, 2013.

[58] Fabiana Tortora, Antonella Rendina, Antonella Angiolillo, Alfonso Di Costanzo, Francesco

Aniello, Aldo Donizetti, Ferdinando Febbraio, and Emilia Vitale. Cd33 rs2455069 snp: cor-

relation with alzheimer’s disease and hypothesis of functional role. International Journal of

Molecular Sciences, 23(7):3629, 2022.

[59] Noel G Faux, Alan Rembach, James Wiley, Kathryn A Ellis, David Ames, Christopher J

Fowler, Ralph N Martins, Kelly K Pertile, Rebecca L Rumble, B Trounson, et al. An anemia

of Alzheimer’s disease. Molecular Psychiatry, 19(11):1227–1234, 2014.

[60] Laura M Winchester, John Powell, Simon Lovestone, and Alejo J Nevado-Holgado. Red blood

cell indices and anaemia as causative factors for cognitive function deficits and for Alzheimer’s

disease. Genome Medicine, 10(1):1–12, 2018.

[61] Uku Raudvere, Liis Kolberg, Ivan Kuzmin, Tambet Arak, Priit Adler, Hedi Peterson, and

Jaak Vilo. g: Profiler: a web server for functional enrichment analysis and conversions of gene

lists (2019 update). Nucleic Acids Research, 47(W1):W191–W198, 2019.

[62] Anne Rijpma, Marinette van der Graaf, Olga Meulenbroek, Marcel GM Olde Rikkert, and

Arend Heerschap. Altered brain high-energy phosphate metabolism in mild alzheimer’s dis-

ease: A 3-dimensional 31p mr spectroscopic imaging study. NeuroImage: Clinical, 18:254–261,

2018.

24

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.02.20.23286200doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286200


[63] Prodromos Parasoglou, Ricardo S Osorio, Oleksandr Khegai, Zanetta Kovbasyuk, Margo

Miller, Amanda Ho, Seena Dehkharghani, Thomas Wisniewski, Antonio Convit, Lisa Mosconi,

et al. Phosphorus metabolism in the brain of cognitively normal midlife individuals at risk

for alzheimer’s disease. Neuroimage: Reports, 2(4):100121, 2022.

[64] Maciej J Lazarczyk, Julia E Kemmler, Brett A Eyford, Jennifer A Short, Merina Varghese,

Allison Sowa, Daniel R Dickstein, Frank J Yuk, Rishi Puri, Kaan E Biron, et al. Major

histocompatibility complex class i proteins are critical for maintaining neuronal structural

complexity in the aging brain. Scientific reports, 6(1):26199, 2016.

[65] Min-Seok Kim, Kwangmin Cho, Mi-Hyang Cho, Na-Young Kim, Kyunggon Kim, Dong-Hou

Kim, and Seung-Yong Yoon. Neuronal mhc-i complex is destabilized by amyloid-β and its

implications in alzheimer’s disease. Cell & Bioscience, 13(1):181, 2023.

[66] Yann Le Guen, Guo Luo, Aditya Ambati, Vincent Damotte, Iris Jansen, Eric Yu, Aude

Nicolas, Itziar de Rojas, Thiago Peixoto Leal, Akinori Miyashita, et al. Multiancestry analysis

of the hla locus in alzheimer’s and parkinson’s diseases uncovers a shared adaptive immune

response mediated by hla-drb1* 04 subtypes. Proceedings of the National Academy of Sciences,

120(36):e2302720120, 2023.

[67] Shaun Purcell, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, Manuel AR Ferreira, David

Bender, Julian Maller, Pamela Sklar, Paul IW De Bakker, Mark J Daly, et al. Plink: a tool set

for whole-genome association and population-based linkage analyses. The American Journal

of Human Genetics, 81(3):559–575, 2007.

[68] Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang, Nick

Patterson, Mark J Daly, Alkes L Price, and Benjamin M Neale. LD score regression distin-

guishes confounding from polygenicity in genome-wide association studies. Nature Genetics,

47(3):291–295, 2015.

[69] Hyunseung Kang, Anru Zhang, T Tony Cai, and Dylan S Small. Instrumental variables

estimation with some invalid instruments and its application to Mendelian randomization.

Journal of the American Statistical Association, 111(513):132–144, 2016.

25

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.02.20.23286200doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286200


[70] Stephen Burgess, Frank Dudbridge, and Simon G Thompson. Combining information on

multiple instrumental variables in mendelian randomization: comparison of allele score and

summarized data methods. Statistics in medicine, 35(11):1880–1906, 2016.

26

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.02.20.23286200doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286200


Online Methods

Two-sample GWAS summary statistics

Suppose that we obtain p independent SNPs Z = (Z1, · · · , Zp)
⊺ by using LD clumping that retains

one representative SNP per LD region67. We also assume that the SNPs are standardized68 such

that EZj = 0 and Var(Zj) = 1 for 1 ≤ j ≤ p. Let D denote the exposure and Y denote the

outcome. We assume thatD and Y follow the exposure modelD = Z⊺γ+δ and the outcome model

Y = Dβ+Z⊺π+ e, respectively, where β represents the causal effect of interest, γ = (γ1, · · · , γp)⊺

represents the IV strength, and π = (π1, · · · , πp)
⊺ encodes the violation of assumptions (A2) and

(A3)24,69. If assumptions (A2) and (A3) hold for SNP j, then πj = 0 and otherwise πj ̸= 0

(see Supplementary Section S1 for details). The error terms δ and e with respective variances σ2
δ

and σ2
e are possibly correlated due to unmeasured confounding factors. By plugging the exposure

model into the outcome model, we obtain the reduced-form outcome model Y = Z⊺(βγ + π) + ϵ,

where ϵ = βδ + e. Let Γ = (Γ1, · · · ,Γp)
⊺ denote the SNP-outcome associations, then we have

Γ = βγ + π. If γj ̸= 0, then SNP j is called a relevant IV. If both γj ̸= 0 and πj = 0, then

SNP j is called a valid IV. Let S = {j : γj ̸= 0, 1 ≤ j ≤ p} denote the set of all relevant IVs,

and V = {j : γj ̸= 0 and πj = 0, 1 ≤ j ≤ p} denote the set of all valid IVs. The majority rule

condition can be expressed as |V| > 1
2
|S|69, and the plurality rule condition can be expressed as

|V| > maxc ̸=0 |{j ∈ S : πj/γj = c}|24. If the plurality rule condition holds, then valid IVs with the

same ratio of SNP-outcome effect to SNP-exposure effect will form a plurality. Based on this key

observation, our proposed MR-SPI selects the largest group of SNPs as valid IVs with similar ratio

estimates of the causal effect using a voting procedure described in detail in the next subsection.

Let γ̂j and Γ̂j be the estimated marginal effects of SNP j on the exposure and the outcome, and

σ̂γj and σ̂Γj
be the corresponding estimated standard errors respectively. Let γ̂ = (γ̂1, · · · , γ̂p)⊺ and

Γ̂ = (Γ̂1, · · · , Γ̂p)
⊺ denote the vector of estimated SNP-exposure and SNP-outcome associations,

respectively. In the two-sample setting, the summary statistics {γ̂j, σ̂γj}1≤j≤p and {Γ̂j, σ̂Γj
}1≤j≤p

are calculated from two non-overlapping samples with sample sizes n1 and n2 respectively. When
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all the SNPs are independent of each other, the joint asymptotic distribution of γ̂ and Γ̂ isγ̂ − γ

Γ̂− Γ

 d→ N

0,
 1

n1
Vγ 0

0 1
n2
VΓ

 ,

where the diagonal entries of Vγ and VΓ are Vγ,jj = Var(Z2
ij)γ

2
j +

∑
l ̸=j γ

2
l + σ2

δ and VΓ,jj =

Var(Z2
ij)Γ

2
j +

∑
l ̸=j Γ

2
l + σ2

ϵ , respectively, and the off-diagonal entries of Vγ and VΓ are Vγ,j1j2 =

γj1γj2 and VΓ,j1j2 = Γj1Γj2 (j1 ̸= j2), respectively. The derivation of the limit distribution can be

found in Supplementary Section S2. Therefore, with the summary statistics of the exposure and

the outcome, we estimate the covariance matrices 1
n1
Vγ and 1

n2
VΓ as:

1

n1

V̂γ,j1j2 =

 σ̂2
γj1

if j1 = j2,

1
n1
γ̂j1 γ̂j2 if j1 ̸= j2.

and
1

n2

V̂Γ,j1j2 =

 σ̂2
Γj1

if j1 = j2,

1
n2
Γ̂j1Γ̂j2 if j1 ̸= j2.

(1)

After obtaining {γ̂, V̂γ, Γ̂, V̂Γ}, we then perform the proposed IV selection procedure as illustrated

in Figure 1 in the main text.

Selecting valid instruments by voting

The first step of MR-SPI is to select relevant SNPs with large IV strength using GWAS summary

statistics for the exposure. Specifically, we estimate the set of relevant IVs S by:

Ŝ =

{
1 ≤ j ≤ p :

|γ̂j|
σ̂γj

> Φ−1

(
1− α∗

2

)}
, (2)

where σ̂γj is the standard error of γ̂j in the summary statistics, Φ−1(·) is the quantile function of

the standard normal distribution, and α∗ is the user-specified threshold with the default value of

1×10−6. This step is equivalent to filtering the SNPs in the exposure data with p-value < α∗, and

is adopted by most of the current two-sample MR methods to select (relevant) genetic instruments

for downstream MR analysis. Note that the selected genetic instruments may not satisfy the

IV independence and exclusion restriction assumptions and thus maybe invalid. In contrast, our

proposed MR-SPI further incorporates the outcome data to automatically select a set of valid

genetic instruments from Ŝ for a specific exposure-outcome pair.

Under the plurality rule condition, valid genetic instruments with the same ratio of SNP-
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outcome effect to SNP-exposure effect (i.e., Γj/γj) will form a plurality and yield “similar” ratio

estimates of the causal effect. Based on this key observation, MR-SPI selects a plurality of relevant

IVs whose ratio estimates are “similar” to each other as valid IVs. Specifically, we propose the

following two criteria to measure the similarity between the ratio estimates of two SNPs j and k:

C1: We say the kth SNP “votes for” the jth SNP to be a valid IV if, by assuming the jth SNP

is valid, the kth SNP’s degree of violation of assumptions (A2) and (A3) is smaller than a

threshold as in equation (4);

C2: We say the ratio estimates of two SNPs j and k are “similar” if they mutually vote for each

other to be valid IVs.

The ratio estimate of the jth SNP is defined as β̂[j] = Γ̂j/γ̂j. By assuming the jth SNP is valid,

the plug-in estimate of the kth SNP’s degree of violation of (A2) and (A3) can be obtained by

π̂
[j]
k = Γ̂k − β̂[j]γ̂k = (β̂[k] − β̂[j])γ̂k, (3)

as we have Γk = βγk + πk for the true causal effect β, and Γ̂k = β̂[k]γ̂k for the ratio estimate

β̂[k] of the kth SNP. From equation (3), π̂
[j]
k has two noteworthy implications. First, π̂

[j]
k measures

the difference between the ratio estimates of SNPs j and k (multiplied by the kth SNP-exposure

effect estimate γ̂k), and a small π̂
[j]
k implies that the difference scaled by γ̂k is small. Second, π̂

[j]
k

represents the kth IV’s degree of violation of assumptions (A2) and (A3) by regarding the jth

SNP’s ratio estimate β̂[j] as the true causal effect, thus a small π̂
[j]
k implies a strong evidence that

the kth IV supports the jth IV to be valid. Therefore, we say the kth IV votes for the jth IV to

be valid if:
|π̂[j]

k |
ŜE(π̂

[j]
k )
≤
√

logmin(n1, n2), (4)

where ŜE(π̂
[j]
k ) is the standard error of π̂

[j]
k , which is given by:

ŜE(π̂
[j]
k ) =

√√√√ 1

n2

(
V̂Γ,kk +

(
γ̂k
γ̂j

)2

V̂Γ,jj − 2
γ̂k
γ̂j

V̂Γ,jk

)
+

1

n1

(β̂[j])2

(
V̂γ,kk +

(
γ̂k
γ̂j

)2

V̂γ,jj − 2
γ̂k
γ̂j

V̂γ,jk

)
,

(5)

and the term
√

logmin(n1, n2) in equation (4) ensures that the violation of (A2) and (A3) can be

correctly detected with probability one as the sample sizes go to infinity, as shown in Supplementary
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Section S3.

For each relevant IV in Ŝ, we collect all relevant IVs’ votes on whether it is a valid IV according

to equation (4). Then we construct a voting matrix Π̂ ∈ R|Ŝ|×|Ŝ| to summarize the voting results

and evaluate the similarity of two SNPs’ ratio estimates according to criterion C2. Specifically,

we define the (k, j) entry of Π̂ as:

Π̂k,j = I

(
max

{
|π̂[j]

k |
ŜE(π̂

[j]
k )

,
|π̂[k]

j |
ŜE(π̂

[k]
j )

}
≤
√

logmin(n1, n2)

)
, (6)

where I(·) is the indicator function such that I(A) = 1 if event A happens and I(A) = 0 otherwise.

From equation (6), we can see that the voting matrix Π̂ is symmetric, and the entries of Π̂ are

binary: Π̂k,j = 1 represents SNPs j and k vote for each other to be a valid IV, i.e., the ratio

estimates of these two SNPs are close to each other; Π̂k,j = 0 represents that they do not. For

example, in Figure 1, Π̂1,2 = 1 since the ratio estimates of SNPs 1 and 2 are similar, while Π̂1,4 = 0

because the ratio estimates of SNPs 1 and 4 differ substantially, as SNPs 1 and 4 mutually “vote

against” each other to be valid according to equation (4).

After constructing the voting matrix Π̂, we select the valid IVs by applying majority/plurality

voting or finding the maximum clique of the voting matrix34. Let VMk =
∑

j∈Ŝ Π̂k,j be the total

number of SNPs whose ratio estimates are similar to SNP k. For example, VM1 = 3 in Figure

1, since three SNPs (including SNP 1 itself) yield similar ratio estimates to SNP 1 according to

criterion C2. A large VMk implies a strong evidence that SNP k is a valid IV, since we assume

that valid IVs form a plurality of the relevant IVs. Let V̂M =
{
k ∈ Ŝ : VMk > |Ŝ|/2

}
denote the

set of IVs with majority voting, and V̂P =
{
k ∈ Ŝ : VMk = maxl∈Ŝ VMl

}
denote the set of IVs

with plurality voting, then the union V̂ = V̂M ∪ V̂P can be a robust estimate of V in practice.

Alternatively, we can also find the maximum clique in the voting matrix as an estimate of V . A

clique in the voting matrix is a group of IVs who mutually vote for each other to be valid, and the

maximum clique is the clique with the largest possible number of IVs34.
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Estimation and inference of the causal effect

After selecting the set of valid genetic instruments V̂ , the causal effect β is estimated by

β̂SPI =
Γ̂⊺

V̂
γ̂V̂

γ̂⊺

V̂
γ̂V̂

, (7)

where γ̂V̂ and Γ̂V̂ are the estimates of SNP-exposure associations and SNP-outcome associations

of the selected valid IVs in V̂ , respectively. The MR-SPI estimator in equation (7) is the regression

coefficient obtained by fitting a zero-intercept ordinary least squares regression of Γ̂V̂ on γ̂V̂ . Since

the SNPs are standardized, the genetic associations γ̂j and Γ̂j are scaled by
√

2fj(1− fj) (compared

to the genetic associations calculated using the unstandardized SNPs, denoted by γ̌j and Γ̌j), where

fj is the minor allele frequency of SNP j. As fj(1−fj) is approximately proportional to the inverse

variance of Γ̌j when each SNP IV explains only a small proportion of variance in the outcome70, the

MR-SPI estimator of the causal effect in equation (7) is approximately equal to the inverse-variance

weighted estimator19 calculated with {γ̌j, Γ̌j}j∈V̂ .

Let α ∈ (0, 1) be the significance level and z1−α/2 be the (1 − α/2)-quantile of the standard

normal distribution, then the (1− α) confidence interval for β is given by:

CI =

(
β̂SPI − z1−α

2

√
V̂ar(β̂SPI), β̂SPI + z1−α

2

√
V̂ar(β̂SPI)

)
, (8)

where V̂ar(β̂SPI) is the estimated variance of β̂SPI, which can be found in Supplementary Section S4.

As min{n1, n2} → ∞, we have P
{
β ∈

(
β̂SPI − z1−α

2

√
V̂ar(β̂SPI), β̂SPI + z1−α

2

√
V̂ar(β̂SPI)

)}
→

1− α under the plurality rule condition, as shown in Supplementary Section S5. Hence, MR-SPI

provides a theoretical guarantee for the asymptotic coverage probability of the confidence interval

under the plurality rule condition.

We summarize the proposed procedure of selecting valid IVs and constructing the corresponding

confidence interval by MR-SPI in Algorithm 1.
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Algorithm 1: Selecting Valid Instruments and Performing Inference of the Causal Effect

by MR-SPI

input : GWAS summary statistics of independent SNPs {γ̂j , σ̂γj , Γ̂j , σ̂Γj}1≤j≤p; Sample sizes n1

for the exposure and n2 for the outcome; Threshold α∗ for selecting relevant IVs;

Significance level α ∈ (0, 1).

output: An estimate of the set of valid IVs V̂, the causal effect estimate β̂SPI and the

corresponding confidence interval CI.

1 Estimate the variance-covariance matrices V̂γ and V̂Γ as in equation (1);

2 Select the set of relevant IVs Ŝ as in equation (2);

3 for j ∈ Ŝ do

4 Calculate β̂[j] = Γ̂j/γ̂j and π̂
[j]
k = Γ̂k − β̂[j]γ̂k for k ∈ Ŝ;

5 Each relevant IV k ∈ Ŝ votes for the jth IV to be valid if |π̂[j]
k |/ŜE(π̂

[j]
k ) ≤

√
logmin(n1, n2);

6 end

7 Construct the symmetric voting matrix Π̂ ∈ R|Ŝ|×|Ŝ| as in equation (6);

8 Select the set of valid IVs V̂ by majority voting, plurality voting or finding the maximum clique

in the voting matrix;

9 Estimate the causal effect as in equation (7), and construct the corresponding confidence interval

as in equation (8) using the selected valid IVs in V̂.

A robust confidence interval via searching and sampling

In finite-sample settings, the selected set of relevant IVs Ŝ might include some invalid IVs whose

degrees of violation of (A2) and (A3) are small but nonzero, and we refer to them as “locally invalid

IVs”36. When locally invalid IVs exist and are incorrectly selected into V̂ , the confidence interval in

equation (8) becomes unreliable, since its validity (i.e., the coverage probability attains the nominal

level) requires that the invalid IVs are correctly filtered out. In practice, we can multiply the

threshold
√

logmin(n1, n2) in the right-hand side of equation (4) by a scaling factor η to examine

whether the confidence interval calculated by equation (8) is sensitive to the choice of the threshold.

If the confidence interval varies substantially to the choice of the scaling factor η, then there might

exist finite-sample IV selection error especially with locally invalid IVs. We demonstrate this

issue with two numerical examples presented in Supplementary Figure S13. Supplementary Figure

S13(a) shows an example in which MR-SPI provides robust inference across different values of the

scaling factor, while Supplementary Figure S13(b) shows an example that MR-SPI might suffer

from finite-sample IV selection error, as the causal effect estimate and the corresponding confidence

interval are sensitive to the choice of the scaling factor η. This issue motivates us to develop a
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more robust confidence interval.

To construct a confidence interval that is robust to finite-sample IV selection error, we borrow

the idea of searching and sampling36, with main steps described in Figure 5. The key idea is to

sample the estimators of γ and Γ repeatedly from the following distribution:γ̂(m)

Γ̂(m)

 ∼ N

γ̂

Γ̂

 ,

 1
n1
V̂γ 0

0 1
n2
V̂Γ

 , m = 1, · · · ,M, (9)

where M is the number of sampling times (by default, we set M = 1, 000). Since γ̂ and Γ̂ follow

distributions centered at γ and Γ, there exists m∗ such that γ̂(m∗) and Γ̂(m∗) are close enough

to the true values γ and Γ when the number of sampling times M is sufficiently large, and thus

the confidence interval obtained by using γ̂(m∗) and Γ̂(m∗) instead of γ̂ and Γ̂ might have a larger

probability of covering β.

For each sampling, we construct the confidence interval by searching over a grid of β values

such that more than half of the selected IVs in V̂ are detected as valid. As for the choice of grid,

we start with the smallest interval [L,U ] that contains all the following intervals:

(
β̂[j] −

√
logmin(n1, n2)V̂ar(β̂[j]), β̂[j] +

√
logmin(n1, n2)V̂ar(β̂[j])

)
for j ∈ V̂ , (10)

where β̂[j] is the ratio estimate of the jth SNP, V̂ar(β̂[j]) =
(
V̂Γ,jj/n2 + (β̂[j])2V̂γ,jj/n1

)
/γ̂2

j is

the variance of β̂[j], and
√

logmin(n1, n2) serves the same purpose as in equation (4). Then

we discretize [L,U ] into B = {b1, b2, · · · , bK} as the grid set such that b1 = L, bK = U and

|bk+1− bk| = n−0.6
min for 1 ≤ k ≤ K − 2, where nmin = min(n1, n2). We set the grid size n−0.6

min so that

the error caused by discretization is smaller than the parametric rate n
−1/2
min .

For each grid value b ∈ B and sampling index 1 ≤ m ≤ M , we propose an estimate of

πj by π̂
(m)
j (b) =

(
Γ̂
(m)
j − bγ̂

(m)
j

)
· 1
(
|Γ̂(m)

j − bγ̂
(m)
j | ≥ λρ̂j(b, α)

)
for j ∈ V̂ , where ρ̂j(b, α) =

Φ−1
(
1− α

2|V̂|

)√(
V̂Γ,jj/n2 + b2V̂γ,jj/n1

)
is a data-dependent threshold, Φ−1(·) is the inverse of

the cumulative distribution function of the standard normal distribution, α ∈ (0, 1) is the sig-

nificance level, and λ = (logmin(n1, n2)/M)
1

2|V̂| (λ < 1 when M is sufficiently large) is a scaling

factor to make the thresholding more stringent so that the confidence interval in each sampling

is shorter, as we will show shortly. Here, π̂
(m)
j (b) = 0 indicates that the jth SNP is detected as
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a valid IV in the mth sampling if we take {γ̂(m), Γ̂(m)} as the estimates of genetic associations

and b as the true causal effect. Let π̂
(m)

V̂
(b) = (π̂

(m)
j (b))j∈V̂ , then we construct the mth sampling’s

pseudo confidence interval pCI(m) by searching for the smallest and largest b ∈ B such that more

than half of SNPs in V̂ are detected to be valid. Define β
(m)
min = min{b ∈ B : ∥π̂(m)

V̂
(b)∥0 < |V̂|/2}

and β
(m)
max = max{b ∈ B : ∥π̂(m)

V̂
(b)∥0 < |V̂|/2}, then the mth sampling’s pseudo confidence interval

is constructed as pCI(m) =
(
β
(m)
min , β

(m)
max

)
.

From the definitions of π̂
(m)
j (b) and pCI(m), we can see that, when λ is smaller, there will be

fewer SNPs in V̂ being detected as valid for a given b ∈ B, which leads to fewer b ∈ B satisfying

∥π̂(m)

V̂
(b)∥0 < |V̂|/2, thus the pseudo confidence interval in each sampling will be shorter. If there

does not exist b ∈ B such that the majority of IVs in V̂ are detected as valid, we set pCI(m) = ∅.

Let M = {1 ≤ m ≤ M : pCI(m) ̸= ∅} denote the set of all sampling indexes corresponding to

non-empty searching confidence intervals, then the proposed robust confidence interval is given by:

CIrobust =

(
min
m∈M

β
(m)
min ,max

m∈M
β(m)
max

)
. (11)

We summarize the procedure of constructing the proposed robust confidence interval in Algo-

rithm 2.

Algorithm 2: Constructing A Robust Confidence Interval via Searching and Sampling

input : GWAS summary statistics of independent SNPs {γ̂j , σ̂γj , Γ̂j , σ̂Γj}1≤j≤p; Sample sizes n1

for the exposure and n2 for the outcome; Threshold α∗ for selecting relevant IVs;

Significance level α ∈ (0, 1); Sampling number M .

output: The robust confidence interval CIrobust.

1 Estimate the set of valid IVs V̂ as in Algorithm 1;

2 Construct the initial interval [L,U ] as in equation (10) and obtain the corresponding grid set B;
3 for m← 1 to M do

4 Sample γ̂(m) and Γ̂(m) from the distribution in equation (9);

5 Calculate {π̂(m)

V̂
(b)}b∈B by π̂

(m)
j (b) =

(
Γ̂
(m)
j − bγ̂

(m)
j

)
· 1
(
|Γ̂(m)

j − bγ̂
(m)
j | ≥ λρ̂j(b, α)

)
, j ∈ V̂;

6 Construct pCI(m) by grid search over B;
7 end

8 Construct the robust confidence interval CIrobust as in equation (11);
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Simulation settings

We set the number of candidate IVs p = 10, as the average number of candidate SNP IVs for

the plasma proteins in the UK Biobank proteomics data is around 7.4. We set the sample sizes

n1 = n2 ∈ {5,000, 10,000, 20,000, 40,000, 80,000}. We generate the jth genetic instruments Zj and

Xj independently from a binomial distribution Bin(2, fj), where fj ∼ U(0.05, 0.50) is the minor

allele frequency of SNP j. Then we generate the exposure D = (D1, · · · , Dn1)
⊺ and the outcome

Y = (Y1, · · · , Yn2)
⊺ according to the exposure model and the outcome model, respectively. Finally,

we calculate the genetic associations and their corresponding standard errors for the exposure and

the outcome, respectively. As for the parameters, we fix the causal effect β = 1, and we consider

4 settings for γ ∈ Rp and π ∈ Rp:

(S1): set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (06,14)

⊺.

(S2): set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (04,13,−13)

⊺.

(S3): set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (06,12, 0.25, 0.25)

⊺.

(S4): set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (04,12, 0.25,12,−0.25)⊺.

Settings (S1) and (S3) satisfy the majority rule condition, while (S2) and (S4) only satisfy the

plurality rule condition. In addition, (S3) and (S4) simulate the cases where locally invalid IVs

exist, as we shrink some of the SNPs’ violation degrees of assumptions (A2) and (A3) down to

0.25 times in these two settings. In total, we run 1,000 replications in each setting.

Implementation of existing MR methods

We compare the performance of MR-SPI with eight other MR methods in simulation studies and

real data analyses. These methods are implemented as follows:

• Random-effects IVW, MR-Egger, the weighted median method, the mode-based estimation

and the contamination mixture method are implemented in the R package “MendelianRan-

domization” (https://github.com/cran/MendelianRandomization). The mode-based es-

timation is run with “iteration=1000”. All other methods are run with the default parame-

ters.

• MR-PRESSO is implemented in the R package “MR-PRESSO” (https://github.com/

rondolab/MR-PRESSO) with outlier test and distortion test.
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• MR-RAPS is performed using the R package “mr.raps” (https://github.com/qingyuanzhao/

mr.raps) with the default options.

• MRMix is run with the R package “MRMix” (https://github.com/gqi/MRMix) using the

default options.

36

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.02.20.23286200doi: medRxiv preprint 

https://github.com/qingyuanzhao/mr.raps
https://github.com/qingyuanzhao/mr.raps
https://github.com/gqi/MRMix
https://doi.org/10.1101/2023.02.20.23286200

	Introduction
	Results
	MR-SPI selects valid genetic instruments by a voting procedure
	Comparing MR-SPI to other competing MR methods in simulation studies
	Learning causal relationships of 146 exposure-outcome pairs
	Identifying plasma proteins associated with the risk of Alzheimer's disease

	Discussion

