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Abstract 
Background: Oropharyngeal cancer (OPC) is a widespread disease, with radiotherapy being 
a core treatment modality. Manual segmentation of the primary gross tumor volume (GTVp) 
is currently employed for OPC radiotherapy planning, but is subject to significant 
interobserver variability. Deep learning (DL) approaches have shown promise in automating 
GTVp segmentation, but comparative (auto)confidence metrics of these models predictions 
has not been well-explored. Quantifying instance-specific DL model uncertainty is crucial to 
improving clinician trust and facilitating broad clinical implementation. Therefore, in this 
study, probabilistic DL models for GTVp auto-segmentation were developed using large-
scale PET/CT datasets, and various uncertainty auto-estimation methods were 
systematically investigated and benchmarked. 
 
Methods: We utilized the publicly available 2021 HECKTOR Challenge training dataset with 
224 co-registered PET/CT scans of OPC patients with corresponding GTVp segmentations 
as a development set. A separate set of 67 co-registered PET/CT scans of OPC patients 
with corresponding GTVp segmentations was used for external validation. Two approximate 
Bayesian deep learning methods, the MC Dropout Ensemble and Deep Ensemble, both with 
five submodels, were evaluated for GTVp segmentation and uncertainty performance. The 
segmentation performance was evaluated using the volumetric Dice similarity coefficient 
(DSC), mean surface distance (MSD), and Hausdorff distance at 95% (95HD). The 
uncertainty was evaluated using four measures from literature: coefficient of variation (CV), 
structure expected entropy, structure predictive entropy, and structure mutual information, 
and additionally with our novel Dice-risk measure. The utility of uncertainty information was 
evaluated with the accuracy of uncertainty-based segmentation performance prediction 
using the Accuracy vs Uncertainty (AvU) metric, and by examining the linear correlation 
between uncertainty estimates and DSC. In addition, batch-based and instance-based 
referral processes were examined, where the patients with high uncertainty were rejected 
from the set. In the batch referral process, the area under the referral curve with DSC (R-
DSC AUC) was used for evaluation, whereas in the instance referral process, the DSC at 
various uncertainty thresholds were examined.  
 
Results: Both models behaved similarly in terms of the segmentation performance and 
uncertainty estimation. Specifically, the MC Dropout Ensemble had 0.776 DSC, 1.703 mm 
MSD, and 5.385 mm 95HD. The Deep Ensemble had 0.767 DSC, 1.717 mm MSD, and 
5.477 mm 95HD. The uncertainty measure with the highest DSC correlation was structure 
predictive entropy with correlation coefficients of 0.699 and 0.692 for the MC Dropout 
Ensemble and the Deep Ensemble, respectively. The highest AvU value was 0.866 for both 
models. The best performing uncertainty measure for both models was the CV which had R-
DSC AUC of 0.783 and 0.782 for the MC Dropout Ensemble and Deep Ensemble, 
respectively. With referring patients based on uncertainty thresholds from 0.85 validation 
DSC for all uncertainty measures, on average the DSC improved from the full dataset by 
4.7% and 5.0% while referring 21.8% and 22% patients for MC Dropout Ensemble and Deep 
Ensemble, respectively. 
 
Conclusion: We found that many of the investigated methods provide overall similar but 
distinct utility in terms of predicting segmentation quality and referral performance. These 
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findings are a critical first-step towards more widespread implementation of uncertainty 
quantification in OPC GTVp segmentation.  
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Introduction  
Oropharyngeal cancer (OPC), a type of head and neck squamous cell carcinoma (HNSCC), 
is a widespread and debilitating disease 1. A core treatment modality in OPC patient care is 
radiotherapy (RT). The current standard of care for OPC RT relies on manually generated 
segmentation of the primary gross tumor volume (GTVp) by clinical experts as a target 
structure to deliver RT dose. However, the GTVp in OPC is notorious for being one of the 
most difficult structures amongst all cancer types to perform accurate segmentation for RT 
planning due to its exceptionally high interobserver variability 2–4. Subsequently, GTVp 
segmentation has been cited as the single largest factor of uncertainty in RT planning 5,6. 
Therefore, automated approaches that can reduce interobserver variability are paramount to 
improving the current OPC RT workflow. 
 
Deep learning (DL) has increasingly been used in the OPC RT space for automatically 
segmenting organs at risk 7,8 and target structures 9–12. Impressively even for GTVp 
segmentation, several DL approaches have boasted exceptionally high performance in 
terms of volumetric and surface-level agreement with the ground-truth segmentations 13. 
Importantly, the DL-based auto-segmentation has been shown to be superior to expected 
expert interobserver variability 14, thereby highlighting its potential utility as a support tool for 
accurate clinical decision making. Notably many of these advances in OPC GTVp 
segmentation have been spurred by open-source data challenges 15, namely the HEad and 
neCK TumOR (HECKTOR) PET/CT tumor segmentation challenge 14,16. However, while 
there exist a deluge of DL-based OPC auto-segmentation approaches that demonstrate 
potentially clinically acceptable performance in terms of geometric measures, the relative 
confidence (i.e., uncertainty) with which these models generate predictions remains a 
relatively unexplored domain.  
 
Quantification of the DL model uncertainty is crucial to improve the trust of clinicians’ in 
model predictions and to facilitate the clinical implementation of these technologies 17. Within 
RT, segmentation is a clear and well-discussed application space for uncertainty estimation 
18. This is particularly relevant for RT target structures (i.e., OPC GTVp) where high 
interobserver variability is expected. While the performance of OPC GTVp auto-
segmentation models is seemingly impressive, the actual clinical utility for most of these 
methods has yet to be solidified due to a lack of investigations on model uncertainty. 
Previous work in DL uncertainty estimation has been extensively investigated in segmenting 
lung-related 19–21 and brain-related 22–24 structures. While DL uncertainty estimation has been 
applied to a broad range of HNSCC-related classification tasks 25–28 and dose prediction 29, 
only a limited number of studies have investigated uncertainty estimation for 3-dimensional 
HNSCC medical image segmentation, predominantly for nasopharyngeal cancer 30 or organs 
at risk 31,32; to our knowledge only one study has attempted to investigate segmentation 
uncertainty estimation in OPC 33. Therefore, there exists a significant gap in knowledge 
about how to construct DL auto-segmentation models that lend themselves to uncertainty 
estimation and subsequently how to quantify the model uncertainty at individual patient and 
voxel-wise levels for OPC GTVp segmentation.  
 
In this study, we developed probabilistic DL GTVp auto-segmentation models using large-
scale PET/CT datasets and systematically investigated various uncertainty estimation 
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methods for voxel-wise and patient-level uncertainty. We employed several quantitative 
evaluation methods to link uncertainty measures to known performance measures and 
qualitatively investigated uncertainty results.  

Methods 
In this section, we present the datasets we used for training and evaluation of our models, 
describe the DL models we employ, introduce the uncertainty metrics that are used to 
quantify the model uncertainty, and list all the performance evaluation metrics used for the 
experiments. 

Dataset 
For this study, we utilized two main OPC patient datasets containing PET/CT data: 1.) the 
publicly available 2021 HECKTOR Challenge training dataset 16, and 2.) an external 
validation dataset from The University of Texas MD Anderson Cancer Center (MDA). The 
HECKTOR dataset contained 224 OPC patients with co-registered PET/CT scans with 
manually generated GTVp segmentation masks from multiple clinician annotators (one 
annotator per scan). Additional details on the HECKTOR dataset can be found in the 
corresponding overview paper 16. The MDA external validation dataset contained 67 OPC 
patients with co-registered PET/CT scans with manually generated GTVp segmentation 
masks from a single clinician annotator (S.A.). Additional details on the MDA external 
validation dataset can be found in Appendix A. The MDA external validation dataset was 
retrospectively collected under a HIPAA-compliant protocol approved by the MDA 
institutional review board (RCR03-0800) which gave ethical approval for this work.  
 
For model training and evaluation all data was resampled into 1 mm isotropic pixel spacing, 
1 mm slice thickness, and cropped into 144 x 144 x 144 voxel sized volumes centered 
around the GTVp segmentation. The CT scans were windowed at [-200, 200] Hounsfield 
Units to [-1, 1] range and the PET scans were z-score normalized. The models were trained 
using a 5-fold cross-validation scheme on the HECKTOR dataset. For the performance 
evaluation of the model, the MDA external validation dataset was used. 

Probabilistic deep learning models 
Conventional DL approaches have been observed to be overconfident in the predictions they 
make, which means that the probability estimates they provide do not correspond to the 
observed likelihood of them being correct 34. The Bayesian approach has been described to 
show promise in improving uncertainty estimation and calibration of DL methods 35 We 
chose to investigate two approximations of Bayesian inference in DL, i.e. the Deep 
Ensemble and the Monte Carlo (MC) Dropout Ensemble that are two popular methods used 
in uncertainty-aware DL for medical segmentation tasks.  
 
The DL architecture used for all the models was a 3D residual U-net from the Medical Open 
Network for AI (MONAI) 36, due to its established success in OPC GTVp segmentation 
10,12,16,37. This architecture has two input channels for both modalities, i.e., the CT and PET, 
and a single output channel with the sigmoid activation function. The default MONAI 
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Residual U-net model was used with an encoder consisting of five convolution blocks with 
16, 32, 64, 128, and 256 channels, a decoder mirroring the channel count, and a feature 
concatenation from the decoder to the respective encoder block. Each block has two 
convolution layers each followed by instance normalization, dropout and parametric ReLU 
layers, and a residual connection with convolution between the block input and the last layer. 
The MC Dropout method applies the dropout stochastic regularization layer during test-time 
38, whereas the output was deterministic with the Deep Ensemble. 
 
Both the Deep Ensemble and the MC Dropout Ensemble consisted of five models that were 
each trained using 5-fold cross validation for the HECKTOR dataset. From a Bayesian point 
of view, the posterior predictive distribution of a Deep Ensemble is approximated with a 
uniform mixture of the individual networks in the ensemble, i.e., the average of the 
predictions of the individual networks is approximate Bayesian inference. With the MC 
Dropout Ensemble, the uniform mixture is over multiple networks with MC dropout, and the 
predictive distribution is approximated by the average over Monte Carlo samples from each 
of these networks 39. In practice, we used 60 MC samples from each of the five ensemble 
members for the approximation. 
 
For both the Deep Ensemble and the MC Dropout Ensemble, we searched for optimal 
hyperparameters using the HECKTOR dataset. The hyperparameters we considered were 
the loss function, specifically the choice between the Dice loss and the sum of Dice and 
Binary Cross-Entropy losses, as well as the dropout rate, searched from the range of [0.1, 
0.9]. The hyperparameter selection criterion was based on the quality of the uncertainty 
estimation with the area under the Dice similarity coefficient referral curve on the validation 
data (described more in Uncertainty measures). 
 

Uncertainty measures 
The Bayesian DL methods provide probability estimates that should better correspond to the 
observed likelihood of correct predictions they make, i.e., better calibration. To quantify the 
uncertainty of these models, a widely used measure in the literature is the information 
theoretic entropy of the predictive distribution 39–42. It measures the spread of the probability 
mass, as it attains the maximum value for a uniform distribution over the possible events and 
the minimum when the mass is concentrated on a single class 41. However, recent works in 
uncertainty-aware medical segmentation have demonstrated that other measures of 
uncertainty have high correlation with the performance of the DL model 20,43,44. 
 
Let 𝑥 denote the input scans of the patient and 𝑦 the target GTVp volume. In the binary 
segmentation task, the Deep Ensemble and the MC Dropout Ensemble produce samples of 
the predictive distribution; 𝑝(")(𝑦$,&,' = 1|𝑥), where 𝑚 is the index of the sample and 𝑖, 𝑗, 𝑘 
denote voxel coordinates. In the case of MC Dropout, Roy et al. 43 and Hoebel et al. 20, 
proposed three so-called structure-wise uncertainty measures; the coefficient of variation 
(CV), the mean pairwise Dice, and the structure expected entropy. We consider the 
segmentation of GTVp, i.e., a single structure, and thus the structure-wise uncertainty is only 
computed for the positive class. The CV is defined as: 

𝑈() =
*
+
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where 𝜇 and 𝜎 are computed as follows: 
𝑁,
(") =	∑$,&,' 1,(")(-$,&,'./|1)23.5 , 

𝜇 = /
6
∑6"./ 𝑁,

("), 

𝜎 = 4/
6
∑6"./ (𝑁,

(") 	− 	𝜇)². 

The CV thus measures the variation of the volume of a segmentation observed in the 
samples.  
 
The structure expected entropy, using the definition in Hoebel et al., is as follows: 

𝑈7 =
/
8(
∑7	∈	; 𝐻<(𝑦7)	, 

𝑝$,&,' =
1
𝑀
9
6

"./

𝑝(")(𝑦$,&,' = 1|𝑥)	, 

𝑁, = 9
$,&,'

1,$,&,'23.5	, 

𝑆	 = 	 {(𝑖, 𝑗, 𝑘)	|	𝑝$,&,' 	≥ 	0.5}	, 
where 𝐻< is the so-called expected entropy: 

𝐻<(𝑦$,&,') = −
1
𝑀
9
6

"./

𝑝$,&,'
(") 𝑙𝑜𝑔 (𝑝$,&,'

(")) 	+ (1 − 𝑝$,&,'
(")) 𝑙𝑜𝑔 (1 − 𝑝$,&,'

("))	. 

Thus the structure expected entropy measures the average of the expected entropy over the 
voxels that were considered as positive based on the average of the Monte Carlo samples. 
In Mukhoti and Gal 45, two other entropy-based uncertainty measures were used. Namely, 
predictive entropy and mutual information. As the expected entropy is a part of the mutual 
information, we also experimented by utilizing the predictive entropy: 
 

𝐻,(𝑦$,&,') 	= 	−𝑝$,&,' 𝑙𝑜𝑔 (𝑝$,&,') 	−	(1 − 𝑝$,&,') 𝑙𝑜𝑔 (1 − 𝑝$,&,')	, 
 

and the mutual information: 
𝐻6=(𝑦$,&,') 	= 	𝐻,(𝑦$,&,') 	−	𝐻<(𝑦$,&,')	, 

 
when calculating the structure entropy, denoted as 𝑈, and 𝑈6=. These three types of 
entropy-based uncertainty measures have been described to account for the total 
uncertainty in the case of predictive entropy, the aleatoric uncertainty in the case of the 
expected entropy, and the epistemic uncertainty in the case of mutual information 46. 
 
The mean pairwise Dice used in Roy et al. and Hoebel et al. is computed as the average 
Dice coefficient of all the pairs constructed from the samples. In order to compute the 
measure, we need 𝑀(𝑀 − 1)/2 comparisons, which is 44850 comparisons for the MC 
Dropout Ensemble; we deemed the measure prohibitive to compute in practice. Inspired by 
the fusion of the Dice coefficient and the uncertainty estimation, we developed a novel 
uncertainty measure that we call Dice-risk, which is based on the expected conditional risk 
introduced in a recent work 47. In this work, the authors noted that the entropy-based 
uncertainty measures can be interpreted as computing the average negative log-likelihood 
provided that the target is distributed as the network predictive distribution describes. They 
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showed that by replacing the negative log-likelihood with some other loss function, novel 
uncertainty measures could be derived. We utilized the Dice-loss, defined as 1 − 𝐷𝑆𝐶, as the 
loss function. 
 
The Dice-risk uncertainty measure is defined as follows: 

𝑈>? 	= 	9
@∈𝒞

(1 − 𝐷𝑆𝐶(𝑝(𝑦	|	𝑥), 𝑐))	𝑝(𝑦 = 𝑐	|	𝑥)	, 

where 𝒞 is the set of all possible segmentations. Since the expectation cannot be computed 
in practice, we utilize a stochastic estimate of the Dice-risk, by computing the expectation 
with Monte Carlo approximation: 

𝑈>? ≈ 1 −
1
𝑁
9
8

$./

𝐷𝑆𝐶(𝑝(𝑦	|	𝑥), 𝑐$ 	),			𝑐$ ∼ 𝑝(𝑦	|	𝑥). 

It is thus estimated in a “doubly stochastic” manner, since 𝑝(𝑦	|	𝑥) is also estimated with 
Monte Carlo approximation. 
  

Performance evaluation 
We evaluated the segmentation performance with the Dice similarity coefficient (DSC), mean 
surface distance (MSD), and mean Hausdorff distance at 95% (95HD), specifically, the 
median value of these metrics. These metrics were selected because of their ubiquity in 
literature and ability to capture both volumetric overlap and boundary distances 48,49. For the 
5-fold cross validation results, we report the mean and standard error of the mean (SEM) of 
the metrics computed on each fold, whereas for the holdout set we report the point 
estimates. The model output was resampled into original resolution with nearest-neighbor 
sampling and evaluated against original resolution segmentations. The performance of MSD 
and 95HD was evaluated in millimeters. When comparing the segmentation model metrics, 
we implemented Wilcoxon signed rank tests with p-values less than or equal to 0.05 
considered as significant. Statistical comparisons were performed using the statannotations 
(0.4.4) Python package1. 
 
To evaluate the utility of the patient-level uncertainty, we performed multiple experiments 
described in the literature. First, similar to Hoebel et al. 20, we examined the linear 
relationship between the DSC performance and uncertainty estimates by quantifying the 
Pearson correlation coefficient between the certainty defined as negative uncertainty and 
DSC values. We developed a linear regression model with the HECKTOR DSC values as 
the independent variables and uncertainty values as the dependent variables. We then 
defined a threshold between uncertain and certain segmentations as the uncertainty value 
that the linear model predicted for 0.61 DSC. The threshold value was selected at 0.61 DSC 
since it represents the average interobserver variability for GTVp segmentation on PET/CT 
data as per previous literature 14. The patient-level uncertainty estimates were then 
compared to the DSC values computed on the holdout dataset, by quantifying the following 
possible combinations; the model is uncertain and the segmentation is inaccurate (𝑛$,B), the 
model is uncertain and the segmentation is accurate (𝑛C,B), the model is certain and the 

 
1 https://github.com/trevismd/statannotations 
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segmentation is accurate (𝑛C,@), and the model is certain and the segmentation is inaccurate 
(𝑛$,@). We then computed the following measures proposed in Mukhoti and Gal 45;  
conditional probability that the segmentation is accurate given that the model is certain 
𝑝(𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒	|	𝑐𝑒𝑟𝑡𝑎𝑖𝑛) and Accuracy versus Uncertainty (AvU), which are defined as:  

𝑝(𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒	|	𝑐𝑒𝑟𝑡𝑎𝑖𝑛) 	= 	 D),*
	D),*	E	D$,*

 , 

𝐴𝑣𝑈	 = 	 D),*	E	D$,+
D),*	E	D),+	E	D$,*	E	D$,+

 . 

Additionally, we also report the probability that the segmentation is inaccurate given that the 
model is uncertain: 

𝑝(𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒	|	𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛) 	= 	 D$,+
	D$,+	E	D),+

 . 

 
We also examined uncertainty-based referral simulation that is common in uncertainty-aware 
classification tasks 39,46,47. In the batch referral process, each patient is assigned an 
uncertainty score using one of the uncertainty measures and the patients are sorted based 
on the score. Then, the patients are removed from the set, one at a time, beginning from the 
highest uncertainty score, and after each removal, i.e., simulated referral, the performance 
measures are computed on the remaining set of patients. This process simulates a scenario 
where the patients for which the model has high uncertainty are referred for an expert for 
manual verification and/or correction, while expecting higher performance for the remaining 
patients. This process is repeated until 10% of the patients were remaining, as we observed 
that the performance measure estimates increase in stochasticity with fewer patients. As a 
summary score, we evaluate the area under the referral curve with Dice similarity coefficient 
(R-DSC AUC), in a similar manner as performed by Band et al. 46 with accuracy. 
 
In addition, we evaluate the uncertainty-based referral with an instance-based process, 
where scans are rejected according to a predetermined uncertainty-threshold calculated 
from validation data. This analysis is more oriented for practice, as the cases are flagged for 
high uncertainty with a predetermined threshold value, instead of a value corresponding to a 
certain percentile computed on a batch of data, i.e., the holdout test set. We examine this 
process with three thresholds; uncertainty at 0.80 validation DSC, uncertainty at 0.85 
validation DSC, and uncertainty at 0.90 validation DSC. As the instance referral process 
does not control the number of patients, but we would like for the model to confidently and 
accurately segment as many patients as possible, we also report the number of patients 
considered as certain in the instance referral process analysis.  

Results 

Segmentation performance 
As for the overall segmentation performance, the MC Dropout Ensemble had a DSC value of 
0.822 (SEM: 0.012) on the validation data and 0.776 on the holdout data. The Deep 
Ensemble DSC was found to be 0.818 (SEM: 0.014) on the validation data and 0.767 on the 
holdout data. As for the MSD metric, the MC Dropout Ensemble had 1.267 mm (SEM: 0.108) 
on the validation data and 1.703 mm on the holdout data, whereas the Deep Ensemble had 
1.271 mm (SEM: 0.110) on the validation data and 1.717 mm on the holdout data. For the 
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MC Dropout Ensemble and the Deep Ensemble, the 95HD metric was 3.658 mm (SEM: 
0.423) and 3.640 mm (SEM: 0.433) on the validation data, and 5.385 mm and 5.477 mm on 
the holdout data, respectively. There was a statistically significant difference between the 
Deep Ensemble and the MC Dropout Ensemble for all the metrics on the holdout set. Overall 
segmentation performance for the holdout data is illustrated in Figure 1. 
 

 
Figure 1: Boxplot of Dice Coefficient Score (DSC), mean surface distance (MSD), and 
Hausdorff distance at 95% (95HD) performance !"#$%&#&'$&(")*#+)$),&$#-./0123#4$)$5,$56)*#

,57"5856)"6&#5,#9&),:(&+#:,5"7#$%&#;5*6!'!"#,57"&+<()"=#$&,$3#>!9?)(5,!"#,@9A!*,B#",#-?#C#

D3DE2F#G#-?#H#D3DE2F#GG#-?#H#D3DI2F#GGG#-?#H#I&<J2F#GGGG#-?#H#I&<E23 
 

Uncertainty estimation 
The categorized uncertain/certain cases were compared to the ground truth DSC values 
using the holdout set. The MC Dropout Ensemble had the highest p(uncertain | inaccurate) 
with 𝑈F, p(accurate | certain) with 𝑈(), and AvU with 𝑈(), with the values of 0.921, 0.800, 
and 0.866, respectively.  The Deep Ensemble had highest p(inaccurate | uncertain), 
p(accurate|certain), and AvU values of 0.909, 0.750, and 0.866 with 𝑈F, 𝑈6= and 𝑈(), 
respectively. 𝑈F had the worst AvU values of 0.582 and 0.657 for MC Dropout Ensemble and 
Deep Ensemble, respectively, while 𝑈6= and 𝑈>? had comparable AvU of 0.851 for both 
models. Full results are shown in Figure 2 and Table 1. From the linear correlation analysis 
between DSC and certainty, −𝑈() had a correlation of ρ = 0.718 (p = 7.89e-12) and ρ = 
0.720 (p = 6.64e-12) for MC Dropout Ensemble and Deep Ensemble, respectively. −𝑈F had 
a correlation value to the DSC with ρ = -0.043 (p = 7.32e-01) and ρ = 0.465 (p = 7.24e-05), 
for MC Dropout Ensemble and Deep Ensemble, respectively. −𝑈G had a correlation value to 
the DSC with ρ = 0.704 (p = 2.99e-11) and ρ = 0.676 (p = 3.47e-10), for MC Dropout 
Ensemble and Deep Ensemble, respectively. −𝑈6= had a correlation value to the DSC with ρ 
= 0.676 (p = 3.36e-11) and ρ = 0.623 (p = 1.84e-08), for MC Dropout Ensemble and Deep 
Ensemble, respectively.  −𝑈>? had a correlation value of ρ = 0.698 (p = 5.41e-11) and ρ = 
0.704 (p = 3.13e-11) for MC Dropout Ensemble and Deep Ensemble, respectively.  
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Figure 2: Scatterplot and linear fit of the test set Dice similarity coefficient (DSC) and model 
certainty based from coefficient of variation (𝑈()), expected entropy (𝑈F), structure predictive 
entropy (𝑈G), mutual information (𝑈6=) and Dice-risk (𝑈>?). The segmentation and 
uncertainty thresholds are drawn at the interobserver variability value of 0.61 DSC and at the 
predicted certainty value of 0.61 validation DSC, respectively. 
 
 

Model MC Dropout Ensemble Deep Ensemble 

Uncertainty 
measure  

p(accurate| 
certain) 

p(inaccurate
|uncertain) 

AvU p(accurate| 
certain) 

p(inaccurate| 
uncertain) 

AvU 

𝑈() 0.871 0.800 0.866 0.871 0.800 0.866 

𝑈F 0.909 0.265 0.582 0.921 0.310 0.657 

𝑈G 0.855 0.600 0.836 0.852 0.500 0.821 

𝑈6= 0.857 0.750 0.851 0.869 0.667 0.851 

𝑈>? 0.869 0.667 0.851 0.869 0.667 0.851 

Table 1: Conditional probabilities for accurate and certain cases, inaccurate and uncertain, 
and accuracy vs uncertainty (AvU). Accurate/inaccurate is determined by the 0.61 DSC 
threshold and certain/uncertain is determined by the predicted confidence threshold from 
0.61 validation DSC. Best results are bolded. 
 
When simulating the batch referral process on the holdout set, by rejecting the most 
uncertain scans up to 90% of the total number of scans, it turned out that the coefficient of 
variation had the highest R-DSC AUC and structure expected entropy had the lowest R-DSC 
AUC for both of the models. During the referral process, all the uncertainty measures 
generally increased the performance, except for the structure expected entropy with MC 
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Dropout Ensemble, as the DSC decreased under the initial, i.e., full holdout set, performance 
around 35% and past 85% referred cases. The R-DSC AUC values for the different 
uncertainty measures and models are presented in Table 2 and referral curves are shown in 
Figure 3, which also illustrates the effect of batch referral on MSD and 95HD.  
 
 

Model 𝑈() 𝑈F 𝑈G 𝑈6= 𝑈>? 

Deep Ensemble 0.782 0.752 0.771 0.772 0.769 

MC Dropout Ensemble 0.783 0.734 0.774 0.778 0.775 

Table 2: The area under the referral curve with Dice similarity coefficient of the models and 
uncertainty measures. The values are computed in the batch-based referral process and 
interpreted as higher is better. Best results are bolded. 
 
For the instance-based referral process measured with a validation DSC uncertainty 
threshold of 0.80 all of the uncertainty measures kept all patients and full dataset 
performance for the Deep Ensemble while for MC Dropout Ensemble the 𝑈G and 𝑈6= 
removed a single patient and improved DSC to 0.728. For the 0.85 validation DSC threshold, 
the MC Dropout Ensemble had the highest DSC value of 0.769 with the 𝑈() and 47 patients 
retained and for the Deep Ensemble the 𝑈>? had the highest DSC value of 0.753 with 52 
patients retained. For the 0.9 validation DSC threshold, the MC Dropout Ensemble had the 
highest DSC value of 0.876 with the 𝑈() and 2 patients retained and for the Deep Ensemble 
the 𝑈>? had the highest DSC value of 0.808 with 11 patients retained. For both of the 
models and with the 0.85 and 0.90 expected DSC uncertainty thresholds, 𝑈G retained the 
most patients with 55, and 12 for the MC Dropout Ensemble, and with 56, and 13 for the 
Deep Ensemble. Full results for all uncertainty measures for both models and all thresholds 
are shown in Table 3. 
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Figure 3: Model performance measured with Dice similarity coefficient (DSC), mean surface 
distance (MSD), and Hausdorff distance at 95% (95HD), on various referral levels in the 
batch referral process, when referring the most uncertain scans, based on coefficient of 
variation, structure expected entropy, structure predictive entropy, structure mutual 
information, and Dice-risk, up to 90% of the total scans. 
 
 

 Model MC Dropout Ensemble Deep Ensemble 

Validation 
DSC 

Uncertainty 
measure 

DSC Number of 
patients retained 

DSC Number of 
patients retained 

0.80 𝑈() 0.720 67 0.716 67 

𝑈F 0.720 67 0.716 67 

𝑈G 0.728 66 0.716 67 

𝑈6= 0.728 66 0.716 67 

𝑈>? 0.720 67 0.716 67 

0.85 𝑈() 0.769 47 0.752 53 

𝑈F - 0 - 0 

𝑈G 0.754 55 0.751 56 
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𝑈6= 0.755 51 0.750 48 

𝑈>? 0.755 55 0.753 52 

0.90 𝑈() 0.876 2 - 0 

𝑈F - 0 - 0 

𝑈G 0.807 12 0.805 13 

𝑈6= 0.835 9 - 0 

𝑈>? 0.807 11 0.808 11 

Table 3: DSC performance and number of patients retained after referring to uncertain 
cases based on validation DSC. Best results for each threshold and model are bolded. 
 
When visually examining the predictive entropy, mutual information, and expected entropy 
for both MC Dropout Ensemble and Deep Ensemble models, the uncertainty is highest 
around the edges of the predicted segmentation mask for all the measures. Mutual 
information is mainly focused on the edges with the inner volume having high confidence, 
while expected entropy demonstrates moderate uncertainty near the inner volume. Full 
visual comparison of axial slices is shown in Figure 4. Additional in-depth qualitative 
analysis of uncertainty maps for select cases are shown in Appendix B.  
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Figure 4: Visualization of model segmentation and uncertainty maps for two patients. The 
columns illustrate in order: computed tomography (CT), positron emission tomography 
(PET), expected entropy, predictive entropy and mutual information. The model and expert 
segmentations are superimposed in red and green, respectively. Rows one and three 
contain the results for MC Dropout Ensemble while rows two and four contain the results for 
the Deep Ensemble. Blue, gray, and yellow colors in uncertainty maps correspond to low, 
medium, and high model uncertainty, respectively. 
 

Discussion 
In this study, we have systematically investigated two established variations of Bayesian 
inference in DL for OPC GTVp segmentation, namely the MC Dropout Ensemble and the 
Deep Ensemble. Through experimentation with a multitude of uncertainty quantification 
measures (coefficient of variation, structure expected entropy, structure predictive entropy, 
structure mutual information, and Dice-risk) we compare and contrast differences between 
these approaches. Given the relative sparsity of existing literature for uncertainty estimation 
in OPC-related segmentation, our results act as an essential first benchmarking step 
towards a deeper understanding and further implementation of these techniques for clinically 
applicable radiotherapy segmentation workflows.  
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Both of the evaluated probabilistic DL methods had similar segmentation performance with 
larger DSC scores compared to expected average expert interobserver variation. While 
statistical testing did demonstrate some differences between the methods, it should be noted 
that these minor differences are likely not clinically meaningful. Generally speaking, the 
state-of-the-art performance for the DL-based PET/CT OPC GTVp segmentation has 
remained mostly stagnant over the past few years, with external validation results being 
within a similar range as ours 16,37. This is likely secondary to the already established large 
interobserver variability in OPC tumor-related segmentation. This further emphasizes the 
need for methods to provide clinicians with uncertainty estimates that could be used to 
further guide their clinical decision making.  
 
In terms of the utility of uncertainty for estimating the patient-level performance, both models 
had the highest Accuracy versus Uncertainty metric, i.e., the proportion of correctly identified 
high and low DSC cases, with the coefficient of variation uncertainty measure. Moreover, the 
AvU value was the same with the models when using coefficient of variation, structural 
mutual information, and Dice-risk, which suggests that the Deep Ensemble can be 
considered to be as accurate in the uncertainty estimation as the MC Dropout Ensemble, 
while requiring less computational resources. Indeed, our results are well aligned with a 
recent large scale study of Bayesian DL, which showed that the Deep Ensemble is a 
competitive approximation for Bayesian inference 35. As our uncertainty quantification 
methods require no modifications to the training of these models, and as the Deep Ensemble 
has been a popular approach for PET/CT OPC tumor segmentation (17 out of the 22 teams 
participating in the 2021 HECKTOR segmentation challenge utilized model ensembling 16), it 
is straightforward to apply our uncertainty quantification approaches for existing models to 
enable the model confidence to be used in practice.   
 
Among all the uncertainty measures investigated, the coefficient of variation had generally 
favorable performance in terms of the accuracy of uncertainty-based segmentation 
performance prediction and both referral processes. Interestingly, the structure expected 
entropy, used in several previous works, turned out to be the worst uncertainty measure in 
all the experiments. This finding suggests that most of the uncertainty in this task is related 
to the model uncertainty, as the expected entropy has been described to capture the 
aleatoric component of uncertainty 46. In the instance referral process, designed to simulate 
the real use-case conditions, the Deep Ensemble benefited most from the use of our Dice-
risk uncertainty measure, whereas the MC Dropout Ensemble benefited mostly from the 
coefficient of variation. However, the coefficient of variation seems to produce conservative 
estimates as it also referred more patients when compared to the other uncertainty 
measures. Finally, it is worth noting our DSC-based Dice-risk uncertainty measure had 
comparable performance to these measures, but was outperformed by the coefficient of 
variation in many experiments. The expected conditional risk used to develop the measure 
could be extended to reflect clinical preference or risk-averseness, such as the shape, size, 
and location of the model output segmentation, to fine-tune the uncertainty estimation for the 
specific OPC tumor segmentation task. 
 
From our qualitative analysis, both of the methods produced uncertain voxels mainly on the 
edges of the predicted segmentation mask for the expected entropy, predictive entropy, and 
mutual information including both the aleatoric and epistemic components of the uncertainty. 
This is likely reinforced by the selection of Dice loss for the objective. When comparing the 
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models, the MC Dropout Ensemble method provided a smoother uncertainty gradient and 
more variation in the uncertainty, likely due to providing 300 samples per voxel compared to 
the five samples of Deep Ensemble. Moreover, a key takeaway from additional qualitative 
analysis includes a general overemphasis of PET signal by the models that could lead to 
erroneous predictions and uncertainty quantification. This however, is not necessarily 
unexpected, since studies of PET/CT auto-segmentation have demonstrated that models 
generally utilize PET signal to a higher degree in model predictions compared to CT signal 
50,51.  
 
Lei et al. 31, Tang et al. 30, and van Rooij et al. 32 are among the few studies that have 
investigated segmentation related uncertainties in HNSCC. Similar to our work, these 
studies utilized ensembling (Lei et al.) and MC Dropout (Tang et al., van Rooij et al.) to 
segment nasopharyngeal cancer tumors and organs at risk on CT images, respectively. 
Moreover, in the only currently published study on the topic of uncertainty estimation in OPC 
GTVp segmentation, De Biase et al. 33 proposed a novel DL-based method using PET/CT 
images that generated probability maps for capturing the model uncertainty. The sequences 
of three consecutive 2-dimensional slices and the corresponding tumor segmentations were 
used as inputs to a model that leveraged inter/intra-slice context using attention mechanisms 
and recurrent neural network architectures. In their study, ensembling was used to derive 
probability maps rather than uncertainty maps, whereupon the authors experimented with 
different probability thresholds corresponding to areas of higher or lower agreement among 
the trained models. Our study acts as an important adjunct to De Bias et al., as the various 
methodologies investigated herein could be coupled with their proposed clinical solution. 
 
There are some limitations in our study. Firstly, we examined only two commonly used 
probabilistic DL models and focused on five uncertainty measures. These methods and four 
of the uncertainty measures were selected due to their relative prevalence in existing 
literature and were thus deemed as an important starting point for exploring uncertainty 
estimation in OPC tumor-related segmentation. Secondly, we have utilized a relatively 
limited sample size for model training and evaluation. However, this study contains a robust 
training set from multiple institutions as supplied by the de-facto standard data science 
competition for OPC segmentation (i.e., HECKTOR) with external validation through our own 
institutional holdout dataset. Moreover, we have chosen to utilize bounding boxes around the 
GTVp, as was performed for 2021 HECKTOR Challenge, in order to simplify the 
segmentation problem and focus on the exploration of uncertainty estimation; future studies 
should attempt the integration of uncertainty estimation into fully developed OPC 
segmentation workflows that can be applied to "as encountered” PET/CT images. Thirdly, 
we have limited our investigation to the primary tumor, and not investigated nodal metastasis 
in this study, but as the newer editions of the HECKTOR Challenge includes these regions of 
interest, the incorporation of nodal metastasis should be the focus of future studies. Fourthly, 
we have only investigated segmentations generated by a single observer for each scan, but 
the influence of multi-observer segmentations on uncertainty estimates is a future research 
direction. Finally, we have chosen to squarely focus on PET/CT as an imaging modality due 
to its ubiquity in OPC GTVp segmentation workflows. However, it is known that different 
imaging modalities (e.g., magnetic resonance imaging, contrast enhanced CT) can provide 
complementary information for OPC tumor segmentation 52, and the combination of multiple 
image inputs may affect auto-segmentation model outputs 10,50,53. Therefore, future research 
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should investigate how results differ for models using alternative imaging modalities and the 
impacts of individual channel inputs on the uncertainty estimation. 
 

Conclusion 
We applied probabilistic DL models for OPC GTVp segmentation using multimodal large-
scale datasets in order to evaluate the utility of uncertainty estimation through a variety of 
uncertainty measures. We found that regardless of the uncertainty measure applied both of 
the probabilistic DL methods (Deep Ensemble and MC Dropout Ensemble) provided similar 
utility in terms of predicting segmentation quality and referral performance; due to its slightly 
lower computational cost and greater ubiquity, Deep Ensemble may be preferable to MC 
Dropout Ensemble. Notably, coefficient of variation had overall favorable performance for 
both models so may be ideal as an uncertainty measure. While research in uncertainty 
estimation for OPC GTVp auto-segmentation is in its nascent stage, we anticipate that 
uncertainty estimation will become increasingly important as these AI-based technologies 
begin to enter clinical workflows. Therefore our benchmarking study is a crucial first-step 
towards a wider adoption and exploration of these techniques. Future studies should 
investigate further uncertainty quantification methodology, larger sample sizes, additional 
relevant segmentation targets (i.e., metastatic lymph nodes), and incorporation of additional 
imaging modalities.  
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Appendix A: Supplementary Methods 
 
Additional details on the MDA external validation dataset are provided here. For the 67 
patients included, FDG-PET/CT scans were acquired from various GE Medical Systems 
scanners. Specifically, Discovery RX (n=27), Discovery STE (n=26), Discovery ST (n=12) 
and Discovery HR (n=2) models were used. Image acquisition parameters are shown in 
Table A1. A 90-minute uptake period of rest was used for all patients. Attenuation corrected 
images were reconstructed using an ordered subset expectation maximization (OSEM) 
iterative algorithm (2 iterations, 18-24 subsets, 5mm Gaussian filter).  
 
 

Acquisition Parameter CT PET 

In-plane resolution (mm) 0.98 5.47 

Slice thickness (mm) 3.75 3.27 

Exposure time (ms)* 566 (500-676) NA 

X-ray tube current (mA)* 200 (100-296) NA 

KVP (kV)* 100 (100-120) NA 

Dose (Mbq)** NA 375 (281-729) 
 
Table A1: PET/CT image acquisition parameters. All values were the same across all 
patients unless a parenthesis is shown, where the median and range are displayed. * only 
apply to CT data; ** only apply to PET data.  
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Appendix B: Additional Qualitative Analysis  
In this section, we present qualitative results for select cases in the MDA holdout dataset. 
Specifically, we describe our interpretations of model predictions and uncertainty maps 
relative to ground truth across multiple axial image slices, similar to how a case would be 
reviewed in the clinic. For simplicity, we only describe results of the MD Dropout Ensemble 
model. “High” and “low” values are relative to median values described in the main text (e.g., 
high DSC is greater than 0.61).  
 
Case 1: Low performance, high certainty.  
 
Here we describe a case with low DSC (0.43) but high certainty (−𝑈G = −0.43). Axial slice 
representations from superior to inferior slices for this case are shown in Figure B1. As can 
be seen in the inferior slices (slice 54), there is initially a relatively large degree of 
uncertainty about the beginning of the prediction. Subsequently (slice 66), the model 
correctly predicts the tumor at the left base of tongue, with a simultaneous region of 
uncertainty appearing at the right base of tongue, likely secondary to the high PET signal 
causing a potential area of false positivity. This false positive PET signal is not ultimately 
included in the predicted segmentation mask, which in this case is seen as a desired 
outcome. More superiorly (slice 79), in terms of uncertainty and the resultant prediction, the 
model seems to have erroneously localized to the hyper-metabolic core of the primary 
tumor. Finally, at the most superior slices (slice 90), it is noted that there was metal streak 
artifact induced by dental hardware, which may have interfered with model inference and 
subsequent uncertainty quantification, as no prediction was generated. Main takeaways from 
this case include the model overemphasizing PET signal (which has been previously noted 
in PET/CT auto-segmentation models) which is also reflected in the resultant uncertainty 
measures. Moreover, the image artifact may also impact performance and uncertainty 
estimation.  
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Figure B1: Additional qualitative investigation of a case with low performance and high 
certainty. Number in top left corner = slice number; green dotted outline = ground-truth 
segmentation, red dotted outline = predicted segmentation. Blue, gray, and yellow colors in 
uncertainty maps correspond to low, medium, and high model uncertainty, respectively. 
 
Case 2: High performance, low certainty.  
 
Here we describe a case with high DSC (0.64) but low certainty (−𝑈G = −0.5). Axial slice 
representations from superior to inferior slices for this case are shown in Figure B2. In the 
inferior-most slices (slices 18-27), uncertainty is noted near the larynx, likely a byproduct of 
high PET signal. As before, this false positive PET signal is not ultimately included in the 
predicted segmentation mask, which in this case is seen as a desired outcome. More 
superiorly (slice 61), the model begins to predict a segmentation on only the right side of the 
base of tongue, when in reality the ground-truth is a bilateral segmentation. Importantly, the 
model starts to note uncertainty on the contralateral part of the image, which is a desired 
outcome. As we move further superiorly towards the tonsils (slice 70) the tumor begins to 
exhibit an uncommon presentation (discontinuous fragment, bilateral in both tonsils), but the 
prediction better starts to approximate the ground-truth; the uncertainty previously 
demonstrated at the contralateral side (left) is still present but has now started to become 
included in the predicted segmentation. Continuing superiorly (slice 78), there is still high 
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uncertainty in the discontinuous fragment but the model is able to generate a reasonable 
prediction, however the model eventually starts to generate an implausible prediction in an 
air space (slice 85) as the prediction begins to generate a bilateral segmentation 
erroneously. As with the previous case, towards the superior-most part of the image (slices 
90-94), metal streak artifact induced by dental hardware may alter the predictions and 
uncertainty estimation; notably, the prediction ignores the false positive PET signal. Main 
takeaways from this case include uncommon tumor presentations (e.g., fragmentation of 
tumor from one continuous piece to two pieces) may present issues in generating prediction 
and uncertainty. Moreover, as before, image artifacts may impact predictions and uncertainty 
estimation.  
 
 
 

 
Figure B2: Additional qualitative investigation of a case with high performance and low 
certainty. Number in top left corner = slice number; green dotted outline = ground-truth 
segmentation, red dotted outline = predicted segmentation. Blue, gray, and yellow colors in 
uncertainty maps correspond to low, medium, and high model uncertainty, respectively. 
 
Case 3: Contralateral uncertainty. 
 
Here we describe an interesting case with high DSC (0.64) and high certainty (−𝑈G =
−0.41). Axial slice representations from superior to inferior slices for this case are shown in 
Figure B3. At the inferior slice (slice 60), the model generates the prediction correctly at the 
left tonsil but starts to note uncertainty at the contralateral tonsil. Subsequently, at the more 
superior slice (slice 70) the contralateral portion is revealed as part of the ground truth 
segmentation. The model is still uncertain about the area and ultimately does not include it 
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as part of the prediction. In other words, the contralateral uncertainty indicates a false 
negative area that the model is uncertain about. In a clinical workflow this would correspond 
to an area the clinician could choose to further investigate.  
 

 
Figure B3: Additional qualitative investigation of a case with contralateral uncertainty. 
Number in top left corner = slice number; green dotted outline = ground-truth segmentation, 
red dotted outline = predicted segmentation. Blue, gray, and yellow colors in uncertainty 
maps correspond to low, medium, and high model uncertainty, respectively. 
 
Case 4: Nodal uncertainty.  
 
Here we describe an interesting case with high DSC (0.71) and high certainty (−𝑈G =
−0.44). Axial slice representations from superior to inferior slices for this case are shown in 
Figure B4. In the inferior-most slice (slice 22) there is noted uncertainty in the area of high 
PET signal (likely spurious signal), which is not included in the prediction, which in this case 
is seen as a desired outcome. More superiorly (slices 61-70) a metastatic lymph node is 
present on the right side of the image; there is corresponding noted uncertainty about this 
area and it is ultimately not included in the prediction. The model is able to generate a 
prediction for the right base of tongue tumor without issues. Notably, as observed through 
the majority of other cases, metastatic lymph nodes are normally not considered by the 
model at all, likely due to the often large geometric distances between the nodal metastases 
and the primary tumors. In this case the node exhibits features (i.e. high PET signal) in close 
proximity to the primary tumor, which could have led to the model uncertainty about this 
prediction.  
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Figure B4: Additional qualitative investigation of a case with nodal uncertainty. Number in 
top left corner = slice number; green dotted outline = ground-truth segmentation, red dotted 
outline = predicted segmentation. Blue, gray, and yellow colors in uncertainty maps 
correspond to low, medium, and high model uncertainty, respectively. 
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