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Abstract 
 
Chronic Obstructive Pulmonary Disease (COPD) has a simple physiological diagnostic criterion but 
a wide range of clinical characteristics. The mechanisms underlying this variability in COPD 
phenotypes are unclear. To investigate the potential contribution of genetic variants to 
phenotypic heterogeneity, we examined the association of genome-wide associated lung 
function, COPD, and asthma variants with other phenotypes using phenome-wide association 
results derived in the UK Biobank. Our clustering analysis of the variants-phenotypes association 
matrix identified three clusters of genetic variants with different effects on white blood cell 
counts, height, and body mass index (BMI). To assess the potential clinical and molecular effects 
of these groups of variants, we investigated the association between cluster-specific genetic risk 
scores and phenotypes in the COPDGene cohort. We observed differences in steroid use, BMI, 
lymphocyte counts, chronic bronchitis, and differential gene and protein expression across the 
three genetic risk scores. Our results suggest that multi-phenotype analysis of obstructive lung 
disease-related risk variants may identify genetically driven phenotypic patterns in COPD.  
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Introduction 
Chronic Obstructive Pulmonary Disease (COPD) is a phenotypically heterogeneous disease1. 

Some have hypothesized that COPD is a syndrome constituted of multiple disease subtypes 
involving different biological mechanisms2,3. Understanding the molecular basis underlying this 
heterogeneity in COPD can advance our knowledge of COPD etiology and improve patient 
treatment. However, efforts in learning specific disease mechanisms and potential COPD 
subtypes using molecular markers have been hampered by multiple issues, including variability 
in measurement across time and conditions, variability across targeted tissues, and reverse 
causation (e.g., when the trait is influenced by disease treatment). 

Germline genetic variants are present from birth and do not vary with time, disease, or 
treatment, and thus offer a relevant alternative for learning subtypes. Moreover, genome-wide 
association studies (GWAS) have now been conducted on a vast number of human traits and 
diseases, providing an increasingly precise overview of shared genetic effects across human 
phenotypes (pleiotropy). Building on these two features, several methods have been proposed 
for inferring genetically driven disease subtypes.4-7 Broadly speaking, these methods leverage the 
relationships between disease-associated variants and other phenotypes to construct clusters of 
variants based on similarity in their multitrait association pattern. The variants within each group 
can be further characterized and might ultimately be used to classify individuals. COPD is a strong 
candidate for such disease subtype inference, as we and others have demonstrated that genetic 
variants associated with COPD have substantial pleiotropic effects1,8.  

In this work, we examined genetic variants identified in GWAS of moderate-to-severe COPD; 
spirometry, as COPD is defined by decrements in lung function; and asthma, an obstructive lung 
disease with extensive clinical and physiological overlap with COPD. We applied a Bayesian 
method previously used in type 2 diabetes, another complex disease characterized by disease 
heterogeneity5, to cluster these variants based on their association with a broad range of traits 
measured in the UK Biobank, a large population cohort with hundreds of phenotypic measures 
available. We then used individual-level genetic and phenotypic data from the COPDGene9 study, 
a cross-sectional cohort of COPD cases and controls with deep pulmonary phenotyping and 
extensive clinical data, to investigate potential subtypes based on the identified clusters. 

Methods 

Selection of genetic variants associated with COPD, lung function, and asthma 

Genetic variants relevant to COPD were identified from three obstructive lung disease-related 
GWAS1,8,10: COPD itself1, spirometric lung function phenotypes8 and asthma10,11. We relied on 
published results from the largest genome-wide association studies for the first two datasets. For 
asthma, we conducted a custom meta-analysis of public GWAS asthma results from UK Biobank11 
and the GABRIEL consortium10. Our list included 164, 279, and 45 variants for COPD, lung 
function, and asthma, respectively (see Supplementary Methods), and a total of 482 variants 
after removing six duplicated variants that were identical between COPD and lung function. For 
the primary analysis of clustered variants, as the causal variants were not known, we retained 
some variants in linkage disequilibrium with the top GWAS variants. For analyses that required 
independent variants, we performed an additional LD-pruning, removing variants correlated 
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across the four subsets (e.g., variants selected in the asthma GWAS that might be correlated with 
variants selected from the COPD GWAS) using SNPclip (ldlink.nci.nih.gov/?tab=snpclip) and an r2 
threshold of 0.1 in 1000 Genomes European ancestry subjects, and resulting in 377 independent 
variants.  
 

Selection and analysis of traits from UK Biobank 

We built an agnostic strategy to select traits from 2,409 GWAS summary statistics of 
quantitative and binary traits derived in the UK Biobank (expanding on prior work)8 to be used in 
the cluster’s inference. We applied multiple filters to remove non-informative and low-quality 
GWAS from the collection. First, we excluded traits directly related to lung function, COPD, and 
asthma (e.g., respiratory diagnosis codes and different measures of asthma). Second, we 
removed attributes with low effective sample size (Neff < 200,000) to ensure that the included 
GWASs carried a similar amount of information. Third, we removed traits that did not show any 
genome-wide significant association (P < 5x10-8) for at least one of the 482 selected variants. 
Fourth, we removed GWAS displaying high pairwise Pearson correlations of Z-scores, as 
implemented in the R package caret12 (r2 threshold = 0.8). Finally, we oriented all Z-scores to 
COPD risk-increasing alleles and divided Z-scores by the square root of the effective sample size, 
thus, converting Z-scores to standardized effect sizes. As an additional requirement for 
implementing the clustering approach (see next section), we split each row of the Z-score matrix 
into two meta-trait Z-scores, positive and negative. That resulted in doubling the number of traits 
in the downstream clustering analysis. 
 

Clustering by Nonnegative Matrix Factorization 

The clustering of variants was performed using the Nonnegative Matrix Factorization (NMF) 
method, which has shown promising results in disease subtype learning5. In brief, NMF 
decomposes the      2𝑇 × 𝑆 matrix of Z-scores, where 𝑇 denotes the number of traits, and 𝑆 the 
number of variants, into a lower-dimensional representation 𝑍 ≈ 𝑊𝐻𝑇 with weight matrices 𝑊 
and 𝐻 of sizes 2𝑇 × 𝐾 and 𝑆 × 𝐾, respectively, and where 𝐾 is a latent dimension to be learned 
from the data. More specifically, we applied a probabilistic Bayesian model of NMF13 that 
iteratively learns the weights in 𝑊 and 𝐻. The approach includes four key steps: (i) reducing a 
reconstruction error through the 𝛽-divergence function; (ii) adding a 𝐾𝜆-length vector of 
relevance weights 𝜆 as an auxiliary variable (𝐾𝜆 = 32, by default); (iii) using half-normal priors on 
weights (L2-norm regularization); and (iv) satisfying the non-negative constraints on weights (𝑊 
> 0, 𝐻 > 0). Altogether, this Bayesian implementation of NMF automatically learns the latent 
dimensionality 𝐾 and avoids ambiguity compared to other NMF algorithms13. In practice, the 
number of learned dimensions 𝐾 is obtained by taking non-zero entries in the 𝐾𝜆-length of 
relevance weights 𝜆. 
 

Building cluster-specific Genetic Risk Scores 

Weighted genetic risk scores (GRS) were derived for each of the 𝐾 clusters inferred from the 
NMF using the variants weight from the matrix 𝐻. More specifically, for a cluster 𝑖 and variants 
𝑔𝑗 with 𝑗 = 1 … 𝑆, the weighted cluster-specific GRS are calculated as 𝐺𝑅𝑆𝑖 = ∑ 𝐻𝑗𝑖𝑔𝑗𝑆 . For 
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comparison purposes, we also defined a baseline GRS defined as the unweighted sum of 
genotypes: 𝐺𝑅𝑆0 =  ∑ 𝑔𝑗𝑆 . Note that because the 𝐻𝑗=1…𝐾 does not sum to 1, the sum of the 𝐺𝑅𝑆𝑖 

is not equal to 𝐺𝑅𝑆0. 
 

COPDGene dataset 

The characteristics of various genetic risk scores were examined using individual-level data 
from the COPDGene study. The COPDGene study (NCT00608764, www.copdgene.org) recruited 
10,198 non-Hispanic white (NHW) or African-American (AA) participants, aged 45-80 years old, 
with at least 10 pack-years of smoking and no diagnosed lung disease other than COPD or 
asthma9. IRB approval was obtained at all study centers, and all study participants provided 
written informed consent. Illumina (San Diego, CA) performed genotyping on the 
HumanOmniExpress array, and imputation to HRC 1.1 was performed using the Michigan 
Imputation Server. COPDGene subjects were extensively phenotyped, with data collected using 
questionnaires, spirometry, and inspiratory and expiratory CT scans at baseline. Subjects were 
invited to participate in follow-up visits, including spirometry and CT scans, and a subset had cell 
counts and biomarkers14. In this study, we considered a total of 240 traits (Supplementary Table 
S2). All traits were tested for association with the cluster-specific GRS described in the previous 
section. All models were adjusted for relevant covariates such as age, sex, pack-years of smoking 
and smoking status, scanner and center as appropriate.  
 

Statistical tests and models fit in COPDGene 

We fit linear and logistic regression models for 240 quantitative and binary traits respectively 
modeling the effect of the four genetic risk scores (𝐺𝑅𝑆0…3) using individual-level genetic and 
phenotypic data from the COPDGene cohort. We first estimated the marginal effect of each 𝐺𝑅𝑆𝑖 
using a standard univariate model: 𝑓(𝑌)~𝐺𝑅𝑆𝑖 + 𝑐𝑜𝑣, where 𝑐𝑜𝑣 represents trait specific 
covariates. We then assessed the impact of decomposing 𝐺𝑅𝑆0 into the 𝐺𝑅𝑆1…3 using two 
approaches. First, we compared the above marginal model against a conditional model including 
𝐺𝑅𝑆0: 𝑌~𝐺𝑅𝑆0 + 𝐺𝑅𝑆𝑖 + 𝑐𝑜𝑣 using a likelihood ratio test (LRT). Second, we assessed the overall 
contribution of all three 𝐺𝑅𝑆1…3 by comparing the marginal model for 𝐺𝑅𝑆0 against a joint model, 
including all three cluster-specific 𝐺𝑅𝑆𝑖 : 𝑌~𝑐𝑜𝑣 + 𝐺𝑅𝑆0 + ∑ 𝐺𝑅𝑆𝑖𝑖=1…3 , again using a LRT. This 
test of heterogeneity, referred to further as Phet, quantifies the improvement in model fitting 
when decomposing 𝐺𝑅𝑆0 into 𝐾 𝐺𝑅𝑆𝑖. To examine the relative contribution of the 𝐺𝑅𝑆1…3 to 
heterogeneity, we also extracted effect estimate from this joint model. For individual GRS 
significance derived from the marginal, conditional, and joint model, we use the stringent 
Bonferroni correction threshold of 7 × 10-5, accounting for 723 tests conducted for each model. 
For Phet, we applied a Benjamini and Hochberg15 correction and reported results with False 
Discovery Rate (FDR) <0.1. Note that both Bonferroni and FDR correction can be conservative as 
they do not account for the correlation between the traits tested.  
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Association of GRS with gene expression, protein biomarkers, and clinical outcomes in 
COPDGene 

We tested whether cluster-specific GRSs were associated with changes in gene expression 
using RNA-sequencing from peripheral blood taken at the 5-year follow-up visit in COPDGene. 
We used limma/voom16, and adjusted all analyses for age, sex, smoking status, ancestry principal 
components, and batch. We performed a similar analysis with SomaScan plasma proteomics 
data, adjusting for age, sex, smoking status, and ancestry principal components. Besides 
investigating associations of the GRSs with phenotypes and omics data in COPDGene, we also 
sought to determine whether the cluster-specific GRS could identify individuals with higher or 
lower risk of lung-related phenotypes. We used the top and bottom decile of subjects based on 
high scores on 𝐺𝑅𝑆1, and low scores on 𝐺𝑅𝑆2and 𝐺𝑅𝑆3, and first examined the association of 
eosinophils and steroid use, adjusting for age, sex, ancestry-based principal components, and 
GOLD stage. Finally, we investigated heterogeneity in medication use conditional on the same 
percentile of 𝐺𝑅𝑆𝑠, using information on COPD exacerbations and medication treatments 
available in COPDGene (see Supplemental Table 7). 

Results 

Overview of the multi-trait genetic approach 

To address our objective of identifying potentially distinct COPD subtypes, we implemented a 
three-step workflow. First, we identified a list of 482 genetic variants associated at genome-wide 
significance level with COPD, lung function (FEV1 and FEV1/FVC), or asthma (Table S1). For each 
of these variants, we assembled and harmonized a matrix of association Z-scores for a broad 
range of traits derived from the UK Biobank. Second, we derived a lower-dimensional matrix 
representation using the non-negative matrix factorization (NMF) algorithm, followed by an ad 
hoc thresholding of the variants assignment weights, resulting in the stratification of variants into 
non-overlapping clusters potentially representing different genetic pathways of lung function. 
Third, we built a genetic risk score (GRS) for each of the inferred clusters, and investigated the 
link between these GRSs and COPD-related phenotypes using individual-level data from 
COPDGene participants (Figure 1). 

 

Variant characteristics and cluster inference 

We first cross-examined the COPD genetic association with association at the three other 
phenotypes (COPD, asthma, FEV1 and FEV1/FVC), using a subset of 377 independent variants out 
of the 482. A total of 52%, 80%, and 61% variants genome-wide significant with asthma, FEV1, 
and FEV1/FVC, respectively, were nominally significant (P < 0.05) in the COPD GWAS. All of those 
nominally significant variants were also directionally consistent. Quantitatively, Z-scores for 
COPD were significantly correlated with asthma (𝜌 = 0.44, P = 3.1 x 10-10), FEV1 (𝜌 = -0.81, P=1.4 
x 10-90), and FEV1/FVC (𝜌 = -0.88, P=2.5 x 10-123) (Fig. S1). Interestingly, asthma and COPD display 
a mixture of two distributions, suggesting the presence of two genetic mechanisms with a 
different contribution to the two outcomes (Fig. S1a). We then extracted the association 
between the larger set of 482 variants and traits measured in the UK Biobank cohort. We filtered 
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and harmonized a total of 2,409 UK Biobank phenotypes, selecting outcomes displaying evidence 
of association with variants, removing phenotypes with low sample sizes, and removing 
redundancy due to high phenotypic correlation (see Methods). After this processing, the Z-score 
matrix included 44 phenotypes with association Z-score for all 482 variants. No clear pattern 
emerged from a visual inspection of this matrix when using a standard hierarchical clustering 
algorithm (Fig. S2). 

However, the application of the NMF algorithm to this matrix identified three clusters with 
associated weight matrices 𝑊 and 𝐻, reflecting the contribution of traits and genetic variants, 
respectively. To characterize cluster compositions in trait dimension, we operated on normalized 
trait weights (unit sum of cluster weights in columns of 𝑊) and identified the top normalized trait 
weights for each cluster (Fig. 2). We oriented all weights such that positive and negative weights 
of normalized traits reflect increasing and decreasing risk of COPD, respectively. Cluster 1 
displayed high positive weights for wheeze, eosinophil percentage, and neutrophil counts. 
Cluster 2 had negative weights for traits linked to body composition and obesity (hip 
circumference, body fat, and BMI). Cluster 3 displayed positive weights for height, grip strength, 
and birth weight, and negative weights for blood cell counts. 

To characterize cluster compositions by variants, we derived variant weights (unit sum of 
variant weights in rows of H) and assigned variants with weights >50% to the corresponding 
cluster. Approximately 78% of all variants match that criterion, with 156, 148, and 78 variants 
selected for clusters 1, 2, and 3, respectively. The assignment of variants across clusters is 
illustrated in the alluvial plot in Figure S3. We compared the origin of these variants –i.e. whether 
they were selected from COPD, lung function or asthma GWAS– against the expected from a 
random assignment (out of the 482 variants, 34%, 57%, and 10% were selected from the COPD, 
lung function, and asthma GWAS, respectively). Cluster 1 variants display a small enrichment for 
asthma variants and a reduced representation of lung function variants (33%, 51%, and 16% 
variants from the COPD, lung function, and asthma sets, respectively). The overrepresentation of 
asthma variants in this cluster is consistent with the composition of traits (Figure 2), where 
wheeze and eosinophil percentage have the largest weights. Conversely, in cluster 2, lung 
function variants were slightly overrepresented and asthma variants underrepresented (34%, 
64%, and 2% variants from the COPD, lung function and asthma sets, respectively). Cluster 3 did 
not display specific enrichment (35% 59%, and 8% variants from the COPD, lung function and 
asthma sets, respectively). 

 

Clinical features of inferred clusters of variants in COPDGene 

To determine whether the inferred clusters of variants were related to COPD phenotypes, we 
constructed three cluster-specific weighted genetic risk scores (𝐺𝑅𝑆1, 𝐺𝑅𝑆2 and 𝐺𝑅𝑆3), and an 
unweighted genetic risk score (𝐺𝑅𝑆0) including all 482 variants, that we applied to individual-
level genotypes from COPDGene (Methods, Fig. 1). We first tested the marginal association 
between each of the four GRSs (𝐺𝑅𝑆0, 𝐺𝑅𝑆1, 𝐺𝑅𝑆2 and 𝐺𝑅𝑆3) and 240 features and outcomes 
measured in COPDGene (Table S2). As expected, 𝐺𝑅𝑆0, which include all variants, displayed the 
strongest (by Z-score) association with most phenotypes and was close to the best association 
from 𝐺𝑅𝑆1..3 (Fig. S4, Table S3), with the exception of height peak expiratory flow (PEF), and 
steroid treatment. Figure 3 presents the effect estimates and standard errors of all four GRS for 
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selected outcomes representing different phenotypic groups (lung function, anthropometric 
measurements, imaging, etc). Focusing on nominally significant signals, 𝐺𝑅𝑆1 was associated with 
the highest eosinophils, highest self-reported steroid treatment, and the lowest six-minute walk 
distance. Cluster 2 was associated with the lowest FEV1/FVC ratio and highest emphysema 
fraction. Cluster 3 was associated with higher height and FEV1/FVC, and the largest risk of 
coronary disease. 

For each trait, we then performed a test of heterogeneity comparing a joint model including 
all four 𝐺𝑅𝑆0…3 against a baseline model including only 𝐺𝑅𝑆0. Overall, 47 traits out of 240 showed 
a significant effect of including cluster-specific 𝐺𝑅𝑆1, 𝐺𝑅𝑆2 and 𝐺𝑅𝑆3 in addition to 𝐺𝑅𝑆0 (column 
Phet, Table S3). Figure 4 presents the relative contribution of the three GRSs of this conditional 
model for these 47 traits. 𝐺𝑅𝑆1 and 𝐺𝑅𝑆2 were significant for most phenotypes, suggesting a 
complementary contribution. We also found many of the same trait associations as in the UK 
Biobank. 𝐺𝑅𝑆1 showed enrichment for significant association with blood cell counts and 
inflammatory biomarkers, including C-Reactive Protein and Selectin, and hepatocyte growth 
factor (HGF / c-MET), previously implicated in COPD pathogenesis. 𝐺𝑅𝑆2 showed association with 
obesity and related traits including BMI, insulin, coronary-artery disease, and sleep apnea. Finally, 
𝐺𝑅𝑆3 showed association with height, most clinical lung function measurements, and COPD-
related phenotypes including CC16, a biomarker with previous associations with COPD. 
Altogether these results offer an indirect validation of the trait weights learned in the UK Biobank 
dataset (Figure 2) and suggest that the derived partitioned GRS can partly capture heterogeneity 
of clinical features related to COPD. 

 

Functional enrichment and GRS-stratified participants characteristics 

We first conducted in silico functional enrichment analysis for variants within each cluster 
using FUMA17 and a limited set of annotations (Table S4 and Supplementary Methods). Cluster 
1 showed a significant enrichment for immunity and inflammation pathways that was consistent 
across multiple input databases, and in agreement with all previous results. Cluster 2 harbored 
significant enrichment for a single annotation related to endocytosis. Cluster 3 showed 
enrichment for a broad range of pathways covering many biological components and cellular 
processes. 

We then tested the association of the GRSs with peripheral blood RNA-Sequencing and 
SomaScan proteomics data using individual-level data from COPDGene. Data were available on 
2,666 subjects for gene expression, and 3,687 subjects (4,979 protein levels) for SomaScan 
proteomics18. At an FDR of 0.1, we found 1, 2, and 18 differentially expressed protein-coding for 
𝐺𝑅𝑆1, 𝐺𝑅𝑆2, and 𝐺𝑅𝑆3, and a total of 7 differentially expressed proteins. Top results are shown 
in Supplemental Tables S5-S6. 𝐺𝑅𝑆1 was associated with ANKRD35. GRS2 with NISCH and ILF3; 
while the top results for 𝐺𝑅𝑆2 in protein were not significant, results included IL-17 RC and SDF1 
(stromal derived factor-1). 𝐺𝑅𝑆3 was associated with multiple genes in the MHC region on 
chromosome 6 including ZFP57, BTN3A2, HLA-A, H4C13, HLA-DQB1, and HLA-DQB2 as well 
BT3A3, MICA, MICB, and C4B. Protein results also included FTMT, a mitochondrial ferroxidase 
enzyme, and RGAP1 (encoded by RACGAP1), neither in the MHC region.  

Finally, we explored whether cluster-specific GRS could identify individuals with higher or 
lower risk of specific clinical outcomes. Based on the results of heterogeneity testing, we 
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examined high scores on 𝐺𝑅𝑆1, and low scores on 𝐺𝑅𝑆2 and 𝐺𝑅𝑆3, and tested the association 
with eosinophils. The top decile had a significantly higher level of eosinophils, after adjusting for 
age, sex, ancestry-based principal components, and GOLD stage (P = 0.007), and a 1.66 (95% CI, 
1.10-2.52) fold increased odds of reporting requiring steroid treatment. We also investigated 
potential heterogeneity in treatment among COPDGene participants harboring extreme values 
of the genetic risk scores (Figure S5). When comparing the characteristics of the top and bottom 
5th percentiles of the three GRSs, we observed strong heterogeneity in corticosteroid, steroid, 
and theophylline treatments when stratifying participants by 𝐺𝑅𝑆1. Groups defined by 𝐺𝑅𝑆2 
were marked by differences in long-acting beta-antagonist and ipratropium treatments. 

Discussion 
COPD is characterized by a simple and effective diagnostic criterion based on spirometry. This 

diagnosis has arguably led to greater recognition of the disease, effective bronchodilator therapy, 
and improved outcomes. However, patients with COPD demonstrate substantial clinical 
heterogeneity. Identifying the molecular basis for this heterogeneity has proven challenging. One 
major challenge to explaining COPD heterogeneity is the long course of the disease. Most 
phenotypic characteristics, such as exacerbations, blood cell counts, and degree of emphysema, 
are affected not only by severity but also by disease course and effects of treatment. Assessing 
COPD heterogeneity using genetic variants offers an opportunity to assess clinical heterogeneity 
without these confounders.  

In this work, we explored a multi-trait genetic approach based on a set of genetic variants 
associated with COPD, lung function, and asthma. We identified three different groups of genetic 
variants. Although these variants were taken from three sources (COPD, lung function, and 
asthma), variants did not simply segregate by their source. This finding is particularly notable for 
asthma, for which genetic risk appears to be enriched for immune cells and overlap with 
autoimmune disease, in contrast to COPD and lung function loci, for which genetic signals are 
enriched in regulatory regions from lung tissue1,8. 

These results were further supported by the analysis in COPDGene. COPDGene data was not 
used for the phenotypic association for clustering, and thus the consistent associations of height, 
body mass index, and cell counts confirm these association results. These three groups of genetic 
variants included one related to eosinophils and inflammatory biomarkers, a second related to 
lower body mass and greater emphysema; and a third with higher height, the strongest 
associations with lung function, and an association with coronary disease. The individual GRSs 
demonstrated associations with gene expression and protein biomarkers. While aside from the 
association of GRS3 with the HLA region (likely driven by genetic variants in this region), most of 
these associations were relatively weak, they do support the hypothesis that these GRSs reflect 
differing biology.  Variants comprising 𝐺𝑅𝑆1 appear to affect ANKRD35, a paralog of ZDHHC13 
that may be associated with granulocyte count19. For 𝐺𝑅𝑆2, Nisch modified mice exhibit an 
emphysema-like phenotype20 and ILF3 is reduced in BAL from COPD patients compared with 
never smoking controls21. For 𝐺𝑅𝑆3, in addition to multiple HLA associations, FTMT is involved in 
ferroptosis, known to be an important pathway in COPD22, and RGAP1 (in addition to MICB) was 
recently in a Mendelian Randomization analysis of proteomics with lung function23. 
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Our results also suggest that GRSs may be able to identify patients that may benefit from more 
specific treatments. Using a combination of GRSs consistent with higher eosinophil burden based 
on UK Biobank phenotypes, we identified subsets of COPDGene participants with different 
eosinophil counts and history of steroid use. Our method avoids some of the confounding present 
in phenotypic and/or other molecular data. Genetic variants are stable biomarkers and can be 
used for prediction prior to the development of disease or during disease treatment. Our ability 
to identify clusters and associations was based on the largest genetic association studies available 
to date across multiple phenotypes in the UK Biobank. However, even with 482 variants to predict 
relevant subtypes or disease axes2, power is likely still limited24. Several of these signals likely 
represent the same causal signal, and many associated phenotypes in the UK Biobank were highly 
correlated, reducing the number of analyzed traits, and the UK Biobank lacks many of the 
respiratory phenotypes that may be useful for COPD phenotypes (such as imaging). Nevertheless, 
our analysis based on GWAS summary statistics is versatile and can be replicated in new coming 
datasets of larger sample sizes and new phenotypes, including imaging and molecular endotypes, 
particularly if relevant to respiratory traits. Future work in genetic subtyping could also allow for 
the inclusion of additional sub-genome-wide significant variants (as done in current polygenic 
risk scores) and functional genetics, including cell types and mechanisms, all of which should 
further improve our ability to identify heterogeneity from genetic profiles. 

In summary, we clustered genetic variants associated with obstructive lung disease using a 
diverse set of phenotypes, identifying three multi-trait/multi-variant disease scores. These scores 
demonstrate different associations with biologic and clinical phenotypes, which promise to 
improve as GWAS and other omics studies expand. 

Web resources 

https://pheweb.org/UKB-SAIGE/pheno/495: UK Biobank GWAS results for asthma11 (meta-analyzed with 
asthma GWAS results from the GABRIEL consortium10) 
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Figures  
 

Figure 1. Analysis pipeline for COPD subtypes inference using multi-trait genetic approach. 

At step 1, the multitrait Z-score matrix derived from UK Biobank data is thinned to a smaller set 
of traits driven by pre-selected variants. Each selected trait is further split into two meta-traits 
with either positive or negative Z-scores. At step 2, the matrix of processed Z-scores is 
decomposed into products of two weight matrices W and H, with the number of columns K being 
equal to the number of clusters. Finally at step 3, the weight matrix for variants, H, is used to 
build K weighted GRSs at the individual level data from validation cohort (COPDGene).  
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Figure 2. Distribution of trait weights across the three inferred clusters. 

We selected the top 15 traits with the largest contribution to the cluster inference. The 
Nonnegative Matrix Factorization (NMF) clustering constructs two matrices W and H out of the 
Z-score association matrix, so that Z ≈ WHT, where H is a matrix of traits weight with number of 
columns equals to the number of clusters. The top traits corresponded to those harboring 
normalized weights (unit sum of column elements) larger than 3% for at least one cluster. The 
figure represents the weights for each trait and each of the three inferred clusters. Red bars 
correspond to the contribution of positive Z-scores submatrix, and blue bars to negative Z-scores 
submatrix.  
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Figure 3. Marginal effects of GRSs on selected traits in the validation COPDGene dataset.  

Point estimates and 95% confidence intervals obtained from marginal models are displayed for 
cluster-specific GRSs (𝑮𝑹𝑺𝟏…𝟑; from dark blue to pink) and unweighted GRS (𝑮𝑹𝑺𝟎; black). For 
comparison purposes, all GRS were re-scaled to a unit variance. We selected traits representing 
different COPD phenotypic groups: height, weight, forced expiratory flow at 25–75% of force vital 
capacity (FEF25-75), visual emphysema score (Emphysema), eosinophils count (Eosinophils), 
steroids treatment (Steroids), upper third/lower third emphysema ratio (Emphysema ratio), 
diffusing capacity for carbon monoxide (DLCO), coronary artery disease (CAD). 
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Figure 4. Contribution of cluster-specific GRSs  

Out of 240 COPDgene phenotypes tested for association with genetic risk scores, a total of 47 
phenotypes showed a statistically significant (Phet) improvement of model fit at an FDR of 0.1 
when comparing the marginal GRS0 model against a full model including GRS0 and all GRS1-3. The 
barplots represent the relative contribution of GRS1, GRS2, and GRS3, measured as Zscore derived 
from the full model, for these 47 phenotypes, highlighting which of the three GRS convey the 
improved fit. Phenotypes are order by Phet. Red dash lines indicate the stringent Bonferoni 
significance threshold accounting for a total of 723 tests. 
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