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ABSTRACT  

Diabetic nephropathy (DN) in the context of type 2 diabetes is the leading cause of end-stage renal disease (ESRD) in the 
United States. DN is graded based on glomerular morphology and has a spatially heterogeneous presentation in kidney 
biopsies that complicates pathologists’ predictions of disease progression. Artificial intelligence and deep learning 
methods for pathology have shown promise for quantitative pathological evaluation and clinical trajectory estimation; but, 
they often fail to capture large-scale spatial anatomy and relationships found in whole slide images (WSIs). In this study, 
we present a transformer-based, multi-stage ESRD prediction framework built upon nonlinear dimensionality reduction, 
relative Euclidean pixel distance embeddings between every pair of observable glomeruli, and a corresponding spatial 
self-attention mechanism for a robust contextual representation. We developed a deep transformer network for encoding 
WSI and predicting future ESRD using a dataset of 56 kidney biopsy WSIs from DN patients at Seoul National University 
Hospital. Using a leave-one-out cross-validation scheme, our modified transformer framework outperformed RNNs, 
XGBoost, and logistic regression baseline models, and resulted in an area under the receiver operating characteristic curve 
(AUC) of 0.97 (95% CI: 0.90-1.00) for predicting two-year ESRD, compared with an AUC of 0.86 (95% CI: 0.66-0.99) 
without our relative distance embedding, and an AUC of 0.76 (95% CI: 0.59-0.92) without a denoising autoencoder 
module. While the variability and generalizability induced by smaller sample sizes are challenging, our distance-based 
embedding approach and overfitting mitigation techniques yielded results that suggest opportunities for future spatially 
aware WSI research using limited pathology datasets. 
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1. INTRODUCTION  
Diabetic nephropathy (DN) in the setting of type 2 diabetes is one of the leading drivers of chronic kidney disease (CKD) 
and end-stage renal disease (ESRD) worldwide [1]. The incidence of DN is growing due to increasing prevalence of type 
2 diabetes, where complications such as proteinuria and decline in kidney function affect more than 40% of patients [2-4]. 
Kidney biopsy is the gold standard for the diagnosis of kidney disease, and histology aids in predicting patient outcomes 
and response to therapy [5]. However, the heterogenous nature of DN, the addition of non-diabetic pathology, and the 
unclear association between kidney histology and clinical markers [6] present barriers to a comprehensive approach to 
developing personalized treatment plans based on disease trajectory and long-term outcomes [7]. While studies have 
developed ESRD prediction models of DN in type 2 diabetes in patients [3, 8-10], to our knowledge none have sufficiently 
integrated the complexities, including spatial organization at the whole slide level, of renal pathology images for patient-
level clinical prediction. 
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The spatial distribution of renal pathology can indicate multidimensional kidney function and can be useful for patient-
level prognostication and guiding therapies [11, 12], but quantifying the relative distances between compartments (which 
can appear in various stages of functional health) can be difficult or impossible for a pathologist to precisely determine in 
large whole slide images (WSI). In this work, we present an artificial intelligence (AI) approach for automatically 
generating patient-level ESRD predictions from the spatially aware morphological feature extraction of glomeruli present 
in whole slide periodic acid-Schiff (PAS) images using transformers, a recent class of deep learning (DL) model with 
increasing prevalence in natural language processing (NLP) and computer vision (CV) domains. While studies have shown 
the ability of machine learning (ML) to predict ESRD from clinical variables [13-15] and pathologist-interpreted 
quantification of histology images [16, 17] with varying accuracy,  to our knowledge we are the first to develop an AI 
approach integrating handcrafted histology image feature extraction, nonlinear dimensionality reduction, pairwise 
distance-based relative positional encoding, and deep transformer networks for whole slide contextualization for patient-
level ESRD prediction. 

Recent advancements in digital pathology have been driven by technical breakthroughs in the field of AI known as DL, 
the subfield of ML encompassing models that have proven strikingly adept at extracting and learning from complex spatial 
information contained in raw pixels. Several studies have demonstrated the ability for DL to achieve pathologist-level 
performance for many common tasks such as structural segmentation from pathology images [9, 18-21] and diagnostic 
applications [18, 22-27]. The majority of AI-enabled digital pathology applications have been developed using the 
convolutional neural network (CNN). While the CNN has dominated the computer vision landscape of the past decade 
across both medical and non-medical domains, a new DL modeling paradigm has recently emerged known generally as 
the transformer [28]. 

Transformers originated from and are most publicized in the NLP domain (e.g., BERT [29], GPT-3 [30], T5 [31]), 
including notable examples in the medical domain [32-35], and have begun to demonstrate state-of-the-art performance in 
general imaging applications [36-38] including computational pathology [39-41]. While the original transformer used an 
encoder-decoder architecture due to its primary task of machine translation [28], many modern transformers for 
classification tasks (including ours) use an encoder-only architecture. Mechanistically, transformers are predominantly 
composed of stacked self-attention layers. The concept of attention in DL consists of methods for computing an alignment 
or similarity score between two vectorized representations, typically corresponding to a discrete input element such as a 
substring token or an image patch. Because transformers encode each input element as a linear combination of all other 
inputs, they are adept at capturing context that may be important for a given application. Because of the flexible nature of 
self-attention, transformers can be designed with a variety of inputs (including multimodal implementations [42]). In this 
paper, we develop a hybrid framework that capitalizes on both the advantages of established expert-defined morphological 
features, and the data-driven contextualization of sequential transformer models. 

The past two years have seen a surge in popularity of transformer modeling for common computational pathology tasks 
such as WSI segmentation [40, 43, 44] and histology image classification [41, 45-47]. Transformers have also been used 
for pathologist-level question-answering from histological imaging [39], predicting pathologists’ visual attention [48], and 
for pathology text mining [49]. Nearly all applications of transformer-based approaches to whole slide imaging implement 
vision transformers (ViT), including recent works that combine CNNs and transformers [45]. In contrast, our multi-stage 
pipeline extracts expert-defined features from segmented structures before deriving WSI context using transformer 
encoders. 

Attention mechanisms have historically been used in a variety of temporal DL models not only for improving performance 
through a more sophisticated representation of context, but also as an explainability tool for justifying model predictions 
by guiding internal focus to the temporal elements that have greatest impact on a particular prediction task. A post-hoc 
analysis of attention scores can provide human-interpretable explanations of how a model is representing a given patient 
or application. Because transformers are uniquely composed almost entirely of attention mechanisms, the opportunity for 
enhanced transparency can lead to better pathologist and clinical understanding of AI-driven predictions and facilitate a 
higher level of practitioner trust in prognostication and patient-centered decision making. 

Furthermore, since temporality is represented in self-attention networks through the inclusion of an a priori-computed 
positional embedding rather than computationally time-consuming serial element processing, transformers are highly 
parallelizable and can be easily scaled up to distributed training environments. Our transformer framework also 
demonstrates the utility of self-attention networks in conjunction with careful selection of positional encodings to naturally 
represent variable-length sets of input elements (as opposed to a CNN or recurrent neural network [RNN], which assumes 
an implicit input ordering). In this paper, each WSI is represented by a slide-dependent number of glomeruli. 
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Our contributions can be summarized by the following: 

• We introduce a multi-stage, hybrid AI framework integrating DL-based segmentation, handcrafted 
histological feature extraction, nonlinear feature compression, self-attention instance pooling, and deep 
transformer networks for modeling variable-length sets of WSI glomeruli and generating patient-level ESRD 
predictions more accurately than RNNs, XGBoost, or logistic regression models. 

• We develop a graph-inspired formulation of relative positional encoding that integrates prior Euclidean 
distance measurements between every pair of glomeruli segmented from a WSI and show that it improves 
ESRD prediction AUC by up to 10%. 

• We implement a collection of overfitting mitigation techniques and demonstrate that advanced DL methods 
can be used with small or restricted datasets with careful application. 

• Compared with our prior work utilizing an RNN for WSI instance pooling, which fundamentally assumes an 
implicit temporal or spatial ordering, we demonstrate that self-attention networks present a more natural fit 
for contextualizing variable-length sets of renal structures present in WSIs that results in more accurate 
clinical predictions. 

• We lay the groundwork for future hybrid transformer approaches for patient-level clinical forecasting from 
WSI data representations and multimodal augmentations with laboratory results and other clinical variables. 

 

2. METHODOLOGY 
We developed a novel multi-stage feature extraction and DL classification framework for predicting the onset of ESRD 
within two years from renal biopsy WSIs. Our pipeline consists of multiple stages that address challenges of applying DL 
to relatively small sample sizes by integrating handcrafted feature extraction with supervised ML (Figure 1). The 
prediction framework was designed to integrate spatial relationships among glomeruli based on recent literature [11, 12] 
that can improve the derivation of a whole slide context for WSI prediction for each patient biopsy. 

The goal of our framework is to generate accurate patient-level ESRD predictions from instance features extracted from a 
set of visible glomeruli contained in biopsy WSIs. This type of prediction setting can be viewed as a type of multiple-
instance learning (MIL), a broad set of weakly supervised ML techniques with a long history in digital pathology for 
classifying individual or complete sets (“bags”) of image-based instances  [50-52]. Among others, one of the central tasks 
of MIL is the development of bag embeddings based on a variable number of instances contained in each bag (e.g., in our 
dataset, each WSI contains a variable number of observable glomeruli). In this study, we demonstrate the effectiveness of 
transformers and self-attention [28] for this purpose, and develop a multi-stage pipeline that includes nonlinear, 
compressed representations of handcrafted features (as opposed to learning directly from raw pixels) that can alleviate the 
challenges of working with smaller histology datasets. 

2.1 Histological Feature Extraction 

The first stage consisted of a panoptic segmentation step to isolate the glomeruli contained in each patient WSI. The second 
stage involved the extraction of (1) expert-defined color, texture, and morphological features, (2) binary indication of 
sclerosis, and (3) the two-dimensional glomerulus centroid location from each segmented glomerulus. In this study, we 
utilize an existing dataset of 56 patient biopsies that we curated in prior work [53]. A more detailed description of data 
acquisition and processing are described in Section 3. 

Following a priori data acquisition, segmentation, and handcrafted feature extraction (Section 3), each detected glomerulus 
was represented by a set of handcrafted features 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ ℝ1 × 𝑑𝑑 denoting global sclerosis, texture, color, and morphology. 
In this study, we build upon our previous feature extraction pipeline [53], which generates 𝑑𝑑 = 316 numerical features 
per glomerulus. We obtained a single WSI per patient, and since each WSI was associated with a variable number of 
observable glomeruli, each patient (i.e., each sample in our dataset) was represented by 𝑥𝑥𝑖𝑖 ∈ ℝ𝑔𝑔𝑖𝑖×𝑑𝑑  ∀ 𝑖𝑖 = 1, 2, . .𝑁𝑁, where 
𝑔𝑔𝑖𝑖  is the number of distinct glomeruli segmented from patient 𝑖𝑖’s WSI, and 𝑁𝑁 is the number of patients in our dataset. In 
this study, we extracted features for 𝑁𝑁 = 56 patients. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.20.23286044doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Shickel, et al., “Transformer Networks for Contextual Prediction of Diabetic Nephropathy Progression” 
 

4 | P a g e  
 

2.2 Denoising Autoencoders for Dimensionality Reduction 

While the feature extraction process yielded a large and comprehensive set of glomerulus attributes, we empirically 
determined that not all were helpful in predicting a patient’s two-year ESRD status when passed to downstream ML 
models. We hypothesized that, given our limited dataset size (N = 56), the inclusion of our full suite of imaging features 
was resulting in problematic overfitting to potentially irrelevant noise instead of recognizing the true signal. Our final 
prediction framework includes a dimensionality reduction step designed to reduce the overall feature space and transform 
the imaging features into a more meaningful representation. 

We developed a denoising autoencoder (DAE) [54] to derive a compressed representation of each glomerulus vector 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 
independent of the number of segmented glomeruli in each WSI. Briefly, the DAE is a nonlinear encoder-decoder DL 
model in which the encoder learns ℎ𝑖𝑖, a compressed and lower-dimensional hidden representation of an input 𝑥𝑥𝑖𝑖, and the 
decoder learns to reconstruct the input 𝑥𝑥𝑖𝑖 using the compressed transformation ℎ𝑖𝑖. The architecture bottleneck induced by 
the compression of the inner hidden layers results in a more information-dense and dimensionally reduced embedding of 
each input. A tunable proportion of masking noise (achieved here with dropout) is added to the input 𝑥𝑥𝑖𝑖, which tends to 
improve the quality of input embeddings by forcing the model to reconstruct missing inputs based on a robust latent 
representation ℎ𝑖𝑖. 

In this study, our DAE consists of an encoder with four fully connected layers that transform the original dimensionality 
of 𝑑𝑑 = 316 to 128, 64, 32, and finally 16 latent features. Each fully connected layer is followed by rectified linear unit 
activation and a dropout layer. Our decoder is a complementary reversal of the encoder, with linear-activation-dropout 
blocks of 32, 64, 128, and 𝑑𝑑 = 316 dimensions. No activation or dropout is added to the final decoder layer, and the DAE 
is trained to minimize mean squared reconstruction error. All DAEs were trained with an Adam optimizer with learning 
rate of 0.001, L2 regularization of 0.0001, and dropout rate of 20%. 

Given our leave-one-out cross validation experimental design, we trained a separate DAE on each of the 56 unique training 
folds to prevent any potential data leakage from the test instance. After each autoencoder was trained, all 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔feature 
vectors were transformed into lower-dimensional embeddings by passing them through the DAE encoder sub-network, 
resulting in transformed glomerulus representations of 16 dimensions (instead of the original 316) and overall initial WSI 
representations given by 𝑥𝑥𝑖𝑖′ ∈ ℝ𝑔𝑔𝑖𝑖×16 ∀ 𝑖𝑖 = 1, 2, . .𝑁𝑁. While the encoded feature representations are fixed after pre-
training the DAE, our final transformer model includes an additional learnable fully connected layer to allow the model to 
further transform the latent glomeruli vectors for optimal ESRD prediction. 

2.3 Contextualizing WSIs with Sequential Transformers and Self-Attention 

Unlike many recent applications of transformers to pathology images [55], a traditional vision transformer (ViT) is not 
suitable for our framework because we employ an expert-defined feature extraction step and do not operate on raw pixel 
values. Furthermore, our model inputs are sparse (one feature vector per glomerulus), which differs from the high-
resolution ViT approaches that can be prone to overfitting with a smaller dataset. Instead, we adapt the style of transformer 
that is typically used for natural language processing (NLP) applications. Specifically, we base our model on the 
architecture of Bidirectional Encoder Representations from Transformers (BERT) [56], a model typically used for 
representing text input; instead of a sequence of word token embeddings, we use a sequence of glomerulus features. 

The basic flow of our prediction model is as follows. First, a set of all DAE-encoded glomeruli features from a patient’s 
WSI is passed into the DL model. A fully connected layer with Gaussian error unit activation and 20% dropout performs 
a further learnable transformation of each glomerulus vector into a hidden representation. The set of these instance 
representations is passed through a BERT transformer classifier, which introduces a special global classification token. 
While each glomerulus token learns to represent itself through a weighted sum of pairwise alignments with all other 
glomeruli through the self-attention process, the special classification token captures a more global context among all 
glomeruli. The global context vector is passed through a fully connected output layer to generate a probability of two-year 
ESRD. 

2.4 Graph-Inspired Pairwise Distance Embeddings 

Transformers are inherently temporally and spatially agnostic, at their core relying on simple self-attention mechanisms 
(capturing similarity or alignment) between every pair of input tokens. For applications where the order (e.g., words in 
natural language) or structure (e.g., pixels in computer vision) of inputs is important, a positional embedding is added to 
the representation of each input token before the self-attention process. Positional embeddings are typically based on 
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absolute position of a token, such as the word number in a sentence (one-dimensional) or the (x, y) coordinates of a pixel 
or patch in an image (two-dimensional). However, in our application, the order of segmented glomeruli does not contain 
any inherent or natural order. Furthermore, the absolute (x, y) position of each glomerulus carries little meaning in a WSI, 
except for their relation to other glomeruli. With enough training data, a transformer can be expected to learn spatial 
relationships from enough examples of tokens equipped with absolute coordinates; but, given our limited dataset, learning 
such interactions from scratch is likely infeasible. 

 

 
Figure 1. Distribution of pixel distances between the computed centroids of every pair of segmented glomeruli across all 56 
WSIs (left) and corresponding integer discretization identifiers (right). The calculated distance between each pair of 
glomeruli is assigned an integer bin (bin width: 4,096 pixels) that is used to index an embedding lookup table for relative 
distance-based positional encoding in the modified self-attention process (Equation 3). 

 

One significant contribution of our work is the adaptation of recent transformer literature on relative positional embeddings 
[57, 58] to spatial applications, and integration of data-driven spatial relationships with prior knowledge extracted from 
WSIs. Inspired by recent methods to induce graph structure within transformer architectures [59], we develop a pairwise 
relative positional embedding based on the Euclidean distance between every pair of glomeruli centroids (Figure 1). 
Instead of adding any independent spatial information to each token (e.g., embeddings based on raw positional 
coordinates), we inject relative distance-based embeddings during the pairwise self-attention step. 

For each set 𝐺𝐺𝑖𝑖 of observable glomeruli in patient 𝑖𝑖’s WSI (each patient’s image contains |𝐺𝐺𝑖𝑖| glomeruli), we developed a 
pairwise distance matrix 𝐷𝐷𝑖𝑖 ∈ ℝ|𝐺𝐺𝑖𝑖|×|𝐺𝐺𝑖𝑖| that computes the Euclidean distance between the centroids of every pair of 
glomeruli as measured in pixels: 

𝒅𝒅𝒊𝒊,𝒋𝒋 = � �𝒄𝒄𝒙𝒙
𝒋𝒋 − 𝒄𝒄𝒙𝒙𝒊𝒊 �

𝟐𝟐
+ �𝒄𝒄𝒚𝒚

𝒋𝒋 − 𝒄𝒄𝒚𝒚𝒊𝒊 �
𝟐𝟐
            (1) 

 

where (𝑐𝑐𝑥𝑥𝑖𝑖 , 𝑐𝑐𝑦𝑦𝑖𝑖 ) is the computed centroid of glomerulus 𝑖𝑖, and (𝑐𝑐𝑥𝑥
𝑗𝑗 , 𝑐𝑐𝑦𝑦

𝑗𝑗) is the computed centroid of glomerulus 𝑗𝑗. We 
modified the standard pairwise self-attention operation from Vaswani et al. [28] (Equation 2) 

 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝑸𝑸,𝑲𝑲,𝑽𝑽) = 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 �𝑸𝑸𝑲𝑲
𝑻𝑻

�𝒅𝒅𝒌𝒌
� 𝑽𝑽                                                            (2) 

 

to add to the pairwise dot product calculations a learned embedding matrix 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝 ∈ ℝ|𝐺𝐺𝑖𝑖|×|𝐺𝐺𝑖𝑖| calculations, indexed by the 
relative pairwise centroid distance between every pair of glomeruli extracted from a given WSI (Equation 3): 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝑸𝑸,𝑲𝑲,𝑽𝑽) = 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 �𝑸𝑸𝑲𝑲
𝑻𝑻

�𝒅𝒅𝒌𝒌
+  𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑(𝑫𝑫𝒊𝒊)�𝑽𝑽                                           (3) 
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Figure 2. Multi-stage whole slide images (WSIs) processing pipeline, deep learning representation, and end-stage renal 
disease prediction framework. Glomeruli are first extracted from WSIs using a pretrained panoptic segmentation network. 
Next, handcrafted expert-defined features corresponding to color, texture, morphology, sclerosis, and centroid position are 
extracted from each glomerulus. A compressed feature representation is generated by training a denoising autoencoder and 
extracting the glomerulus encoding from the innermost hidden layer. Euclidean distances between every pair of glomeruli in 
a WSI are computed, discretized, and used as indices in an embedding lookup table for integration with transformer self-
attention. The variable, slide-specific number of glomeruli feature vectors are contextualized through a deep self-attention 
transformer network, and finally aggregated into a static slide representation vector that is used to predict two-year end-
stage renal disease. 

 

By replacing the standard self-attention equation (Equation 2) with the spatially aware modification (Equation 3) and 
parameterizing with prior Euclidean distances computed during the segmentation step, the transformer prediction model 
can learn to weight every pairwise glomeruli interaction by relative spatial proximity in addition to alignment of imaging 
characteristics. In this study, we discretized continuous Euclidean distances between glomeruli centroids to consecutively 
numbered bins of width 4096 pixels based on prior ViT work with cancer histology [55]. Our discretization process allows 
integer lookup into the 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝 embedding table and provides an additional measure of regularization that is important in our 
limited data setting. Our dataset contained 19 unique bins of discretized pairwise centroid distances. 

2.5 Experiment Details 

The goal of our system was to predict presence of ESRD two years after initial biopsy, using only imaging features and 
centroid distances from each patient’s WSI. Our dataset of renal biopsies is described in detail in Section 3. In this study, 
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we compared our multi-stage transformer network (Figure 2) to several baseline approaches, including a previously 
established RNN architecture from our prior work predicting RPS classification of diabetic nephropathy [9]. We also 
experimented with XGBoost and logistic regression baseline models using a tabular dataset created by averaging all 316 
histological features. All models were evaluated based on area under the receiver operating characteristic curve (AUROC), 
area under the precision-recall curve (AUPRC), accuracy, sensitivity, and specificity. For all metrics, 95% confidence 
intervals were generated using a bootstrapping procedure with 100 iterations. 

To mitigate overfitting challenges applying DL using our relatively small sample size (N = 56) and to accurately estimate 
our framework’s generalizability, we report results using leave-one-out cross-validation. This process involves training 56 
different models from a training set of 55 WSIs and generating a prediction on the remaining one WSI. This process is 
repeated with each WSI as the test sample until a prediction is generated for all 56 patients. During each of the 56 iterations, 
we normalized features, trained a separate DAE, and trained a separate transformer prediction network using only the 55 
training samples. 

The goal of this study is to demonstrate feasibility of a distance-based self-attention process for WSI contextualization and 
histological ESRD prediction. With that in mind, we did not perform an exhaustive hyperparameter search, instead 
selecting reasonable initial values and performing small deviation experiments to measure effects of a select number of 
important parameters (see Table 1). Hyperparameters for the DAE are described in detail in Section 2.2. The transformer 
module was composed of 8 layers with 8 attention heads per layer. All hidden layers in the prediction model used 64 
hidden units with Gaussian Error Linear Unit (GELU) activations, including the feedforward component of the transformer 
encoder. 

 

 
Figure 3. Whole slide image from our dataset corresponding to a patient with diabetic nephropathy whose two-year clinical 
follow-up confirmed end-stage renal disease. Select glomeruli detected by our pre-trained panoptic segmentation algorithm 
are shown in the lower region, along with other structures not considered for this study. Estimated centroid coordinates of 
each glomerulus are used to compute pairwise Euclidean distances and derive a learned relative positional embedding that is 
integrated into the transformer’s self-attention equation. 

 

DL models were trained with an Adam optimizer [60], a default learning rate of 1e-2, weight decay of 1e-4, a batch size 
of 12 patients, 20% dropout rate, and standard binary cross-entropy loss. Because there is no logical order to the segmented 
glomeruli from our panoptic segmentation algorithm, when training the RNN baseline we shuffled the order of each WSI 
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glomeruli set and each cross-validation iteration. All DL models used 20% of the training samples as a validation set; 
training was halted if loss on the validation set did not decrease after 20 epochs. A learning rate scheduler was used, which 
automatically decreased the learning rate if the validation loss did not improve after 10 epochs. 

3. DATA 
3.1 Data Acquisition 

We utilized an existing cohort of 56 patients with type 2 diabetes characterized in greater detail in our prior work studying 
the integration of histology with urinary proteomics [53]. Study subjects were from Seoul National University Hospital. 
Human data collection followed protocols approved by the Institutional Review Board at the Seoul National University 
(SNU) College of Medicine (H-1812-159-998), Seoul, Korea. All experiments were performed according to federal 
guidelines and regulations. Patient data included demographics, medical history, kidney biopsy, and blood tests measured 
at the time of biopsy. Serum creatinine was used to determine estimated glomerular filtration rate (eGFR). Additional 
creatinine data was collected one year and two years following initial kidney biopsy, and eGFR was used to determine the 
presence of ESRD. In this work, we focus on the prediction of longer-term ESRD (measured two years after initial biopsy) 
from WSI data extracted at the time of initial biopsy. Biopsy WSIs were stained using a PAS procedure. An example 
biopsy from our dataset is shown in Figure 3.  

3.2 Data Processing 

Panoptic segmentation was performed on PAS-stained WSIs to classify pixels into 6 categories, and to resolve instances 
of the same class. These 6 categories include image background, renal interstitium, nonglobally sclerotic glomeruli, 
globally sclerotic glomeruli, renal tubules, and arteries/arterioles. Medullary regions were manually annotated and 
excluded from analysis. The panoptic network was trained on previously annotated WSIs, using our previously published, 
publicly available H-AI-L pipeline [61]. Using the WSI panoptic classifications, glomerular and tubular pixels were further 
classified into three components based on their appearance in the PAS-stained biopsies: (1) nuclear components, (2) PAS-
positive components, and (3) white space/luminal components. Nuclei were segmented using another separately trained 
panoptic classifier. The PAS+ and luminal components were then segmented using image thresholding. 

Following the segmentation step, we extracted 316 digital image feature types (e.g., sclerosis, color, texture, morphology, 
containment, and inter/intrastructural distances) for each segmented glomerulus as detailed in prior work [53].  All features 
were independently standardized using z-normalization (using only values from the training set of each cross-validation 
iteration) to yield a per-feature distribution with a mean of zero and standard deviation of one. 

Each patient in the dataset was associated with a single WSI. Each WSI contained a variable number of segmented 
glomeruli (mean: 16.6, 25th percentile: 11.5, 50th: 15, 75th: 21.3, minimum: 2, maximum: 45). 

 

4. RESULTS 
We obtained a two-year ESRD probability for each of our 56 patients following a leave-one-out cross-validation procedure 
described in Section 2.5. Optimal classification thresholds were obtained from the Youden index [62]. Full classification 
results for each model variation are shown in Table 1. For brevity, we only list hyperparameter changes for the transformer 
and RNN that deviated from our baseline setting. Our baseline setting was 0.5 dropout, 0.0001 L2 weight regularization, 
and a learning rate of 0.01. 

Our transformer network with no regularization, DAE-encoded features, and spatial pairwise distance embedding was the 
most accurate ESRD prediction model, achieving an AUROC of 0.97 (95% CI: 0.90-1.00), AUPRC of 0.85 (95% CI: 
0.60-1.00), accuracy of 0.96 (95% CI:0.90-1.00), sensitivity of 1.00 (95% CI: 1.00-1.00), and a specificity of 0.95 (95% 
CI: 0.87-1.00). 

In contrast, a similar transformer model without spatial awareness (i.e., no distance-based positional embedding) 
performed acceptably but measurably worse across most metrics, achieving an AUROC of 0.86 (95% CI: 0.66-0.99), 
AUPRC of 0.85 (0.66-0.97), accuracy of 0.88 (0.81-0.96), sensitivity of 0.88 (0.63-1.00), and a specificity of 0.88 (0.80-
1.00). The transformer that did not use DAE for data compression and dimensionality reduction performed poorly, 
achieving an AUROC of 0.76 (95% CI:0.59-0.92), AUPRC of 0.49 (95% CI:0.29-0.74), accuracy of 0.84 (0.73-0l.91), 
sensitivity of 0.81 (0.66-1.00), and specificity of 0.85 (95% CI: 0.68-0.94). 
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Given its speed and simplicity, and coarse feature aggregation, the XGBoost baseline classifier performed reasonably well, 
yielding an AUROC of 0.81 (95% CI: 0.68-0.93), AUPRC of 0.65 (0.40-0.92), accuracy of 0.80 (95% CI:0.59-0.95), 
sensitivity of 0.62 (95% CI: 0.46-1.00), and specificity of 0.88 (0.47-1.00). Logistic regression performed poorly and was 
not able to learn from the extracted features. DAE encodings did not improve baseline performance and are withheld from 
Table 1 for succinctness. 

 

Table 1. Two-year end-stage renal disease prediction results using leave-one-out cross-validation. Model hyperparameters 
that deviate from baseline setting (D = 0.5, L2 = 1e-4, LR = 1e-2) are shown in parentheses. D: dropout, L2: L2 
regularization, LR: learning rate, DAE: denoising autoencoder, RNN: recurrent neural network, Logistic: logistic regression, 
AUROC: area under the receiver operating characteristic curve, AUPRC: area under the precision-recall curve. 

Model Spatial 
Map 

Feature 
Reduction 

AUROC 
(95% CI) 

AUPRC 
(95% CI) 

Accuracy 
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Transformer 
(L2 = 0) Distance DAE 0.97 (0.90-1.00) 0.85 (0.60-1.00) 0.96 (0.90-1.00) 1.00 (1.00-1.00) 0.95 (0.87-1.00) 

Transformer 
(D = 0.8) Distance DAE 0.97 (0.90-1.00) 0.80 (0.52-1.00) 0.95 (0.89-1.00) 1.00 (0.94-1.00) 0.93 (0.86-1.00) 

Transformer 
(D = 0) Distance DAE 0.95 (0.89-1.00) 0.77 (0.55-1.00) 0.96 (0.91-1.00) 1.00 (1.00-1.00) 0.95 (0.88-1.00) 

Transformer Distance DAE 0.95 (0.90-0.99) 0.85 (0.66-0.99) 0.91 (0.87-0.98) 1.00 (0.90-1.00) 0.88 (0.80-0.99) 
Transformer 
(L2 = 1e-2) Distance DAE 0.91 (0.81-0.98) 0.74 (0.51-0.96) 0.91 (0.84-0.98) 0.81 (0.70-1.00) 0.95 (0.84-1.00) 

Transformer 
(L2 = 1e-6) Distance DAE 0.90 (0.77-0.99) 0.85 (0.63-0.98) 0.93 (0.81-0.98) 0.81 (0.71-1.00) 0.97 (0.77-1.00) 

Transformer None DAE 0.86 (0.66-0.99) 0.85 (0.66-0.97) 0.88 (0.81-0.96) 0.88 (0.63-1.00) 0.88 (0.80-1.00) 
Transformer 

(D = 0.2) Distance DAE 0.83 (0.67-0.98) 0.70 (0.49-0.95) 0.93 (0.88-0.98) 0.88 (0.70-1.00) 0.95 (0.88-1.00) 

XGBoost None None 0.81 (0.68-0.93) 0.65 (0.40-0.92) 0.80 (0.59-0.95) 0.62 (0.46-1.00) 0.88 (0.47-1.00) 
XGBoost Coordinates None 0.78 (0.64-0.89) 0.61 (0.35-0.82) 0.77 (0.57-0.89) 0.69 (0.44-1.00) 0.80 (0.37-0.97) 

Transformer Distance None 0.76 (0.59-0.92) 0.49 (0.29-0.74) 0.84 (0.73-0.91) 0.81 (0.66-1.00) 0.85 (0.68-0.94) 
RNN Coordinates None 0.70 (0.56-0.83) 0.39 (0.23-0.65) 0.73 (0.58-0.83) 0.69 (0.57-1.00) 0.75 (0.40-0.88) 

Transformer 
(L2 = 1e-4) Distance DAE 0.65 (0.50-0.78) 0.38 (0.16-0.66) 0.50 (0.41-0.77) 1.00 (0.42-1.00) 0.30 (0.20-0.88) 

RNN None DAE 0.63 (0.52-0.76) 0.32 (0.22-0.49) 0.62 (0.52-0.75) 0.94 (0.81-1.00) 0.50 (0.33-0.68) 
RNN Coordinates DAE 0.63 (0.50-0.79) 0.32 (0.19-0.49) 0.62 (0.47-0.76) 0.94 (0.81-1.00) 0.50 (0.32-0.68) 
RNN None None 0.61 (0.44-0.81) 0.38 (0.22-0.58) 0.77 (0.62-0.88) 0.44 (0.28-0.82) 0.90 (0.59-0.97) 

Transformer 
(LR = 1e-3) Distance DAE 0.57 (0.39-0.73) 0.38 (0.21-0.61) 0.55 (0.45-0.84) 0.75 (0.18-0.97) 0.47 (0.28-1.00) 

Logistic Coordinates None 0.54 (0.36-0.71) 0.30 (0.17-0.54) 0.50 (0.31-0.77) 0.81 (0.18-1.00) 0.38 (0.06-0.96) 
Logistic None None 0.52 (0.36-0.66) 0.29 (0.15-0.49) 0.46 (0.28-0.77) 0.81 (0.20-1.00) 0.33 (0.08-0.95) 

 

5. CONCLUSIONS 
This initial work demonstrates the feasibility of a novel multi-stage pipeline and risk estimation framework for predicting 
ESRD two years before official diagnosis in patients with diabetic nephropathy in the setting of type 2 diabetes. Our 
approach, limited to glomeruli information available in whole slide histology images, was able to predict two-year ESRD 
with high accuracy, suggesting the likelihood of important contextual information contained in spatial histological 
interactions. 

Our overall framework integrates convolutional neural networks (panoptic glomeruli segmentation), expert defined 
knowledge (sclerosis, color, texture, and morphological histology features), nonlinear transformation and dimensionality 
reduction (DAE), and transformer-based self-attention networks with a novel implementation of a pairwise distance 
embedding based on Euclidean distance between glomeruli centroids. Our framework was able to aggregate a variable-
length set of extracted glomeruli features into a fixed-dimensional WSI context that could be used to accurately predict 
two-year ESRD.  

The classification results in Table 1 demonstrate the power of our spatial embedding mechanism for deriving a salient 
WSI context in pooling the individual glomerulus instance representations for each patient (an AUROC of 0.97 with spatial 
distance information; AUROC of 0.86 without). Additionally, our results suggest that handcrafted image features should 
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be paired with a dimensionality reduction approach such as an autoencoder (AUROC of 0.97 with DAE; AUROC of 0.76 
without). While the wide confidence intervals exemplify the unavoidable variability and challenges of applying DL to a 
small dataset, our approach presents several intentional decisions (handcrafted features, dimensionality reduction, leave-
one-out cross-validation, experiments with regularization and dropout) that demonstrate it is not a futile endeavor. 

This preliminary work holds value as a component of a clinical decision support system for diabetic nephropathy patients 
with type 2 diabetes. A digital tool that can accurately predict two-year ESRD can better inform pathologists and caregivers 
about potential risk and, with adequate validation and explainability, can influence therapies and lead to personalized 
treatment strategies in anticipation of suspected future ESRD. Additionally, pathology is a heterogenous field in which 
different pathologists may disagree in their interpretation or estimation. An AI tool can be used to provide quantitative 
assessment to digital pathology images that can offer supporting evidence or insights to complement existing pathology 
and clinical workflows. 

This study is limited to data from a single institution. While classification metrics are high, they may be in part due to high 
variability and artifacts of working with a very small dataset (n=56); as such, we do not attempt to claim wider 
generalizability of our results, but present and justify our work as a pilot study for future investigation and highlight the 
relative differences between models’ design choices (e.g., spatial awareness, feature compression). 

In future work, we will investigate additional graph-inspired methods of structural histology representation, explore spatial 
adaptations of vision transformers with raw gigapixel images, integrate multimodal data sources like patient demographics 
and electronic health record (EHR) data, and visualize self-attention weights to better understand spatial glomeruli 
connections and relative contributions for patient-level prediction from WSIs. 

 

References 
 

[1] D. N. Koye, D. J. Magliano, R. G. Nelson et al., “The Global Epidemiology of Diabetes and Kidney Disease,” 
Adv Chronic Kidney Dis, 25(2), 121-132 (2018). 

[2] S. M. Doshi, and A. N. Friedman, “Diagnosis and Management of Type 2 Diabetic Kidney Disease,” Clin J Am 
Soc Nephrol, 12(8), 1366-1373 (2017). 

[3] A. I. Adler, R. J. Stevens, S. E. Manley et al., “Development and progression of nephropathy in type 2 diabetes: 
the United Kingdom Prospective Diabetes Study (UKPDS 64),” Kidney Int, 63(1), 225-32 (2003). 

[4] M. Fiorentino, D. Bolignano, V. Tesar et al., “Renal biopsy in patients with diabetes: a pooled meta-analysis of 
48 studies,” Nephrol Dial Transplant, 32(1), 97-110 (2017). 

[5] R. L. Luciano, and G. W. Moeckel, “Update on the Native Kidney Biopsy: Core Curriculum 2019,” Am J Kidney 
Dis, 73(3), 404-415 (2019). 

[6] J. A. Ostergaard, and M. E. Cooper, “The Discordance Between the Renal Histopathology and Clinical 
Presentation of Diabetic Nephropathy Calls for Novel Approaches for the Prediction and Monitoring of Kidney 
Failure in Diabetes,” Kidney Int Rep, 6(9), 2258-2260 (2021). 

[7] G. Jiang, A. O. Y. Luk, C. H. T. Tam et al., “Progression of diabetic kidney disease and trajectory of kidney 
function decline in Chinese patients with Type 2 diabetes,” Kidney Int, 95(1), 178-187 (2019). 

[8] S. Jiang, J. Fang, T. Yu et al., “Novel model predicts diabetic nephropathy in type 2 diabetes,” American journal 
of nephrology, 51(2), 130-138 (2020). 

[9] B. Ginley, B. Lutnick, K. Y. Jen et al., “Computational Segmentation and Classification of Diabetic 
Glomerulosclerosis,” J Am Soc Nephrol, 30(10), 1953-1967 (2019). 

[10] F. He, X. Xia, X. Wu et al., “Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 
diabetes and renal disease: a meta-analysis,” Diabetologia, 56, 457-466 (2013). 

[11] A. F. Rendeiro, H. Ravichandran, Y. Bram et al., “The spatial landscape of lung pathology during COVID-19 
progression,” Nature, 593(7860), 564-569 (2021). 

[12] A. Heindl, S. Nawaz, and Y. Yuan, “Mapping spatial heterogeneity in the tumor microenvironment: a new era 
for digital pathology,” Laboratory investigation, 95(4), 377-384 (2015). 

[13] Z. Segal, D. Kalifa, K. Radinsky et al., “Machine learning algorithm for early detection of end-stage renal 
disease,” BMC nephrology, 21, 1-10 (2020). 

[14] Y. Zou, L. Zhao, J. Zhang et al., “Development and internal validation of machine learning algorithms for end-
stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease,” 
Renal failure, 44(1), 562-570 (2022). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.20.23286044doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Shickel, et al., “Transformer Networks for Contextual Prediction of Diabetic Nephropathy Progression” 
 

11 | P a g e  
 

[15] X. Han, X. Zheng, Y. Wang et al., “Random forest can accurately predict the development of end-stage renal 
disease in immunoglobulin a nephropathy patients,” Annals of Translational Medicine, 7(11), (2019). 

[16] P. S. Misra, S. G. Szeto, A. Krizova et al., “Renal histology in diabetic nephropathy predicts progression to end-
stage kidney disease but not the rate of renal function decline,” BMC Nephrol, 21(1), 285 (2020). 

[17] M. T. Eadon, T. H. Schwantes-An, C. L. Phillips et al., “Kidney Histopathology and Prediction of Kidney Failure: 
A Retrospective Cohort Study,” Am J Kidney Dis, 76(3), 350-360 (2020). 

[18] S. Wang, D. M. Yang, R. Rong et al., “Pathology image analysis using segmentation deep learning algorithms,” 
The American journal of pathology, 189(9), 1686-1698 (2019). 

[19] S. Kannan, L. A. Morgan, B. Liang et al., “Segmentation of glomeruli within trichrome images using deep 
learning,” Kidney international reports, 4(7), 955-962 (2019). 

[20] G. Jiménez, and D. Racoceanu, “Deep learning for semantic segmentation vs. classification in computational 
pathology: application to mitosis analysis in breast cancer grading,” Frontiers in bioengineering and 
biotechnology, 7, 145 (2019). 

[21] B. Lutnick, D. Manthey, J. U. Becker et al., “A user-friendly tool for cloud-based whole slide image segmentation 
with examples from renal histopathology,” Commun Med (Lond), 2, 105 (2022). 

[22] S. Border, B. Ginley, J. Tomaszewski et al., [HistoLens: a generalizable tool for increasing accessibility and 
interpretability of quantitative analyses in digital pathology] SPIE, MI (2022). 

[23] Y. Fu, A. W. Jung, R. V. Torne et al., “Pan-cancer computational histopathology reveals mutations, tumor 
composition and prognosis,” Nat Cancer, 1(8), 800-810 (2020). 

[24] T. W. Tervaert, A. L. Mooyaart, K. Amann et al., “Pathologic classification of diabetic nephropathy,” J Am Soc 
Nephrol, 21(4), 556-63 (2010). 

[25] A. Serag, A. Ion-Margineanu, H. Qureshi et al., “Translational AI and deep learning in diagnostic pathology,” 
Frontiers in medicine, 6, 185 (2019). 

[26] A. Echle, N. T. Rindtorff, T. J. Brinker et al., “Deep learning in cancer pathology: a new generation of clinical 
biomarkers,” British journal of cancer, 124(4), 686-696 (2021). 

[27] A. Janowczyk, and A. Madabhushi, “Deep learning for digital pathology image analysis: A comprehensive 
tutorial with selected use cases,” Journal of pathology informatics, 7(1), 29 (2016). 

[28] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,” In Advances in neural information 
processing systems, 5998-6008 (2017). 

[29] J. Devlin, M. Chang, K. Lee et al., [BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding], (2018). 

[30] T. Brown, B. Mann, N. Ryder et al., “Language models are few-shot learners,” Advances in neural information 
processing systems, 33, 1877-1901 (2020). 

[31] C. Raffel, N. Shazeer, A. Roberts et al., “Exploring the limits of transfer learning with a unified text-to-text 
transformer,” J. Mach. Learn. Res., 21(140), 1-67 (2020). 

[32] Y. Li, S. Rao, J. R. A. Solares et al., “BEHRT: Transformer for Electronic Health Records,” Sci Rep, 10(1), 1-
12 (2020). 

[33] L. Rasmy, Y. Xiang, Z. Xie et al., “Med-BERT: pretrained contextualized embeddings on large-scale structured 
electronic health records for disease prediction,” NPJ Digit Med, 4(1), 86 (2021). 

[34] Y. Meng, W. F. Speier, M. K. Ong et al., “Bidirectional Representation Learning from Transformers using 
Multimodal Electronic Health Record Data to Predict Depression,” IEEE Journal of Biomedical and Health 
Informatics, (2021). 

[35] B. Shickel, B. Silva, T. Ozrazgat-Baslanti et al., “Multi-dimensional patient acuity estimation with longitudinal 
EHR tokenization and flexible transformer networks,” Frontiers in Digital Health, 4, (2022). 

[36] A. Dosovitskiy, L. Beyer, A. Kolesnikov et al., [An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale], (2020). 

[37] Z. Liu, Y. Lin, Y. Cao et al., "Swin transformer: Hierarchical vision transformer using shifted windows." 10012-
10022. 

[38] S. Khan, M. Naseer, M. Hayat et al., “Transformers in vision: A survey,” ACM computing surveys (CSUR), 
54(10s), 1-41 (2022). 

[39] U. Naseem, M. Khushi, and J. Kim, “Vision-Language Transformer for Interpretable Pathology Visual Question 
Answering,” IEEE Journal of Biomedical and Health Informatics, (2022). 

[40] C. Nguyen, Z. Asad, R. Deng et al., "Evaluating transformer-based semantic segmentation networks for 
pathological image segmentation." 12032, 942-947. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.20.23286044doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Shickel, et al., “Transformer Networks for Contextual Prediction of Diabetic Nephropathy Progression” 
 

12 | P a g e  
 

[41] M. Ding, A. Qu, H. Zhong et al., "A Transformer-based Network for Pathology Image Classification." 2028-
2034. 

[42] A. Radford, J. W. Kim, C. Hallacy et al., "Learning transferable visual models from natural language 
supervision." 8748-8763. 

[43] B. Yun, Y. Wang, J. Chen et al., “Spectr: Spectral transformer for hyperspectral pathology image segmentation,” 
arXiv preprint arXiv:2103.03604, (2021). 

[44] S. Huang, J. Li, Y. Xiao et al., “RTNet: relation transformer network for diabetic retinopathy multi-lesion 
segmentation,” IEEE Transactions on Medical Imaging, 41(6), 1596-1607 (2022). 

[45] B. Fu, M. Zhang, J. He et al., “StoHisNet: A hybrid multi-classification model with CNN and Transformer for 
gastric pathology images,” Computer Methods and Programs in Biomedicine, 221, 106924 (2022). 

[46] X. Wang, S. Yang, J. Zhang et al., "Transpath: Transformer-based self-supervised learning for histopathological 
image classification." 186-195. 

[47] Y. Zheng, R. H. Gindra, E. J. Green et al., “A graph-transformer for whole slide image classification,” IEEE 
transactions on medical imaging, 41(11), 3003-3015 (2022). 

[48] S. Chakraborty, R. Gupta, K. Ma et al., "Predicting the Visual Attention of Pathologists Evaluating Whole Slide 
Images of Cancer." 11-21. 

[49] T. Santos, A. Tariq, S. Das et al., “PathologyBERT--Pre-trained Vs. A New Transformer Language Model for 
Pathology Domain,” arXiv preprint arXiv:2205.06885, (2022). 

[50] M. M. Dundar, S. Badve, V. C. Raykar et al., "A multiple instance learning approach toward optimal classification 
of pathology slides." 2732-2735. 

[51] G. Quellec, G. Cazuguel, B. Cochener et al., “Multiple-instance learning for medical image and video analysis,” 
IEEE reviews in biomedical engineering, 10, 213-234 (2017). 

[52] P. Sudharshan, C. Petitjean, F. Spanhol et al., “Multiple instance learning for histopathological breast cancer 
image classification,” Expert Systems with Applications, 117, 103-111 (2019). 

[53] N. Lucarelli, D. Yun, D. Han et al., "Computational integration of renal histology and urinary proteomics using 
neural networks." 12039, 120390U. 

[54] P. Vincent, H. Larochelle, I. Lajoie et al., “Stacked denoising autoencoders: Learning useful representations in a 
deep network with a local denoising criterion,” Journal of machine learning research, 11(12), (2010). 

[55] R. J. Chen, C. Chen, Y. Li et al., "Scaling vision transformers to gigapixel images via hierarchical self-supervised 
learning." 16144-16155. 

[56] J. Devlin, M.-W. Chang, K. Lee et al., “Bert: Pre-training of deep bidirectional transformers for language 
understanding,” arXiv preprint arXiv:1810.04805, (2018). 

[57] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative position representations,” arXiv preprint 
arXiv:1803.02155, (2018). 

[58] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit et al., “Music transformer,” arXiv preprint arXiv:1809.04281, (2018). 
[59] C. Ying, T. Cai, S. Luo et al., “Do transformers really perform badly for graph representation?,” Advances in 

Neural Information Processing Systems, 34, 28877-28888 (2021). 
[60] D. P. Kingma, and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, (2014). 
[61] B. Lutnick, B. Ginley, D. Govind et al., “An integrated iterative annotation technique for easing neural network 

training in medical image analysis,” Nat Mach Intell, 1(2), 112-119 (2019). 
[62] R. Fluss, D. Faraggi, and B. Reiser, “Estimation of the Youden Index and its associated cutoff point,” Biometrical 

Journal: Journal of Mathematical Methods in Biosciences, 47(4), 458-472 (2005). 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.20.23286044doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Shickel, et al., “Transformer Networks for Contextual Prediction of Diabetic Nephropathy Progression” 
 

13 | P a g e  
 

Acknowledgments: 
The project was supported by NIDDK grant R01 DK114485 (PS), a glue grant (PS) from the NIDDK Kidney Precision 
Medicine Project, a multi-disciplinary small team grant RSG201047.2 (PS) from the State University of New York, a pilot 
grant (PS) from the University of Buffalo’s Clinical and Translational Science Institute (CTSI) grant 3UL1TR00141206 
S1, a DiaComp Pilot & Feasibility Project 21AU4180 (PS) with support from NIDDK Diabetic Complications Consortium 
grants U24 DK076169 and U24 DK115255, NIH-OD grant U54 HL145608 (PS), and NIDDK grant R01 DK131189 (PS). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.20.23286044doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.20.23286044
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Spatially Aware Transformer Networks for Contextual Prediction of Diabetic Nephropathy Progression from Whole Slide Images
	Benjamin Shickelae, Nicholas Lucarellib, Adish S. Raoc, Donghwan Yund, Kyung Chul Moond,
	Seung Seok Hand, Pinaki Sarder*abe
	aDept. of Medicine—Quantitative Health, Univ. of Florida, Gainesville, FL, USA; bDept. of Biomedical Engineering, Univ. of Florida, Gainesville, FL, USA; cDept. of Computer and Information Science and Engineering, Univ. of Florida, Gainesville, FL; dD...
	Abstract
	Diabetic nephropathy (DN) in the context of type 2 diabetes is the leading cause of end-stage renal disease (ESRD) in the United States. DN is graded based on glomerular morphology and has a spatially heterogeneous presentation in kidney biopsies that...
	Keywords: diabetic nephropathy, transformer, self-attention, end-stage renal disease, digital pathology, segmentation, glomeruli
	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Histological Feature Extraction
	2.2 Denoising Autoencoders for Dimensionality Reduction
	2.3 Contextualizing WSIs with Sequential Transformers and Self-Attention
	2.4 Graph-Inspired Pairwise Distance Embeddings
	2.5 Experiment Details

	3. DATA
	3.1 Data Acquisition
	3.2 Data Processing

	4. RESULTS
	5. CONCLUSIONS

