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Abstract 
Background and Objectives: Cancer survivors are less likely than comparably-aged individuals 
without a cancer history to develop Alzheimer’s disease and related dementias (ADRD). We 
investigated the association between cancer history and structural magnetic resonance imaging 
(MRI) markers for ADRD risk, using linear mixed-effects models to assess differences at the 
mean values of MRI markers and quantile regression to examine whether the association varies 
across the distribution of MRI markers of brain aging. 
  
Methods: Among UK Biobank participants with ≥1 brain MRI, we considered total gray matter 
volume, total brain volume, hippocampal volume, white matter hyperintensity volume, and mean 
cortical thickness in the Alzheimer’s disease (AD) signature region. Cancer history was 
ascertained from national registry and self-report. We first specified linear mixed models with 
random intercepts to assess mean differences in MRI markers according to cancer history. Next, 
to examine whether effects of cancer history on these markers varies across the ADRD risk 
distribution, we specified quantile regression models to assess differences in quantile cut-points 
of the distribution of MRI markers according to cancer history. Models adjusted for 
demographics, APOE-ε4 status, and health behaviors. 
 
Results: The sample included 42,242 MRIs on 37,588 participants with no cancer history (mean 
age 64.1 years), and 6,073 MRIs on 5,514 participants with a cancer diagnosis prior to MRI 
(mean age 66.7 years). Cancer history was associated with smaller mean hippocampal volume 
(b=-19 mm3, 95% confidence interval [CI]=-36, -1) and lower mean cortical thickness in the AD 
signature region (b=-0.004 mm, 95% CI=-0.007, -0.000). Quantile regressions indicated cancer 
history had larger effects on high quantiles of white matter hyperintensities (10th percentile b=-49 
mm3, 95% CI=-112, 19; 90th percentile b=552 mm3, 95% CI= 250, 1002) and low quantiles of 
cortical thickness (10th percentile b=-0.006 mm, 95% CI=-0.011, -0.000; 90th percentile b=0.003 
mm3, 95% CI=-0.003, 0.007), indicating individuals most vulnerable to ADRD were more 
affected by cancer history.  
 
Discussion: We found no evidence that cancer history was associated with less ADRD-related 
neurodegeneration. To the contrary, adults with cancer history had worse MRI indicators of 
dementia risk. Adverse associations were largest in the highest-risk quantiles of neuroimaging 
markers.  
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Introduction 
 
Numerous epidemiologic studies have identified an inverse association between both prevalent 
and incident diagnosis of cancer of any type and subsequent risk of incident Alzheimer's disease 
and related dementias (ADRD).1–4 Some studies have also found that individuals with a history 
of cancer had lower neuropathologic burden of Alzheimer's disease (AD) compared to age-
matched decedents without a history of cancer.5–7 Possible explanations for the observed inverse 
association include selective survival of healthier cancer survivors who are lower risk of ADRD 
and shared biological or genetic mechanisms that elevate cancer risk but reduce ADRD risk.8–12 
The inverse association between cancer and ADRD has sparked substantial interest because 
biological explanations, if validated, could offer important insights into the underlying biology of 
ADRD. While existing research has focused on incident ADRD or cognitive function as the 
outcome of interest, there is a lack of evidence on the relationship between cancer history and 
biomarkers of ADRD risk. Understanding of this relationship could help to disentangle potential 
biases (e.g., selective survival bias, diagnostic bias) from causal mechanisms in the cancer-
ADRD relationship.8 
 
Measuring ADRD onset is difficult due to the slow etiologic development of the disease, 
phenotypic heterogeneity, and frequent missed or delayed diagnoses.13–15 Brain changes 
detectable from neuroimaging likely precede diagnosed ADRD by decades.16 Evaluating whether 
cancer history is associated with neuroimaging markers of ADRD risk avoids the potential for 
diagnostic bias of ADRD which occurs when clinicians overlook ADRD symptoms due to 
cancer diagnoses and treatments or when patients with a cancer history have more frequent 
contact with clinicians, increasing chance of ADRD diagnosis. While there is research on 
treatment-induced structural and functional brain changes among breast cancer survivors,17–19 
only two prior studies have evaluated the association between cancer diagnosis and MRI markers 
of structural brain aging; the sample sizes in both studies were too small (n=2,043 and 1,609) to 
provide precise estimates for individual cancer types.20,21  
 
In this manuscript, we used the UK Biobank neuroimaging sample to test the hypothesis that 
people with a history of cancer have brain MRI characteristics associated with lower risk of 
incident ADRD compared to otherwise similar individuals without a history of cancer. We also 
evaluated heterogeneous effect of cancer across quantiles of each MRI marker because 
individuals most vulnerable to ADRD may also be affected the most by cancer history. 
 
 
Methods 
Study population 
The UK Biobank is a prospective volunteer cohort of 502,490 adults aged 40-69 years who 
attended one of 22 assessment centers across the United Kingdom from 2006-2010. At the 
baseline visit, participants completed physical, physiological, and medical assessments. In 2014, 
the UK Biobank invited participants for brain MRIs at three clinics using identical protocols. At 
the time of writing, MRI data were available for 43,102 participants, among whom 5,514 had 
data from a repeated imaging visit.  
 
Brain imaging data 
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Neuroimaging variables were selected a priori based on previous studies showing their 
associations with cognitive decline or ADRD pathologies. They included total grey matter 
volume,22,23 total brain volume,24 hippocampal volume,25,26 white matter hyperintensity 
volume,27,28 and mean cortical thickness in the AD signature region, comprising six regions of 
interest: entorhinal, inferior temporal, middle temporal, inferior parietal, fusiform, and 
precuneus.29 All MRIs were carried out using similar scanners (Siemens Skyra 3T scanner with a 
standard 32-channel head coil). Full details on image acquisition, processing, and quality control 
are available from the UK Biobank Brain Imaging Documentation 
(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) and protocol publications.30 In 
brief, the T1-weighted anatomic images were acquired using three-dimensional magnetization 
prepared for rapid gradient-echo (3D MPRAGE) at a resolution of 1 × 1 × 1 mm. Volumetric 
measures were calculated with the FreeSurfer ASEG. Total white matter hyperintensity volumes 
were derived based on T1 and T2 fluid-attenuated inversion recovery (FLAIR) using the Brain 
Intensity Abnormality Classification Algorithm (BIANCA).31 Regional estimates of cortical 
thickness and surface area were processed using FreeSurfer v.5.3 based on the Desikan–Killiany 
atlas parcellation.32 Hippocampal volume was estimated by summing left and right hippocampal 
volumes. All volumetric measures were corrected for skull size using a residual method33 that 
calculated adjusted brain volumes from residuals of a linear regression between raw volumes and 
intracranial volume. The mean cortical thickness in the AD signature region was calculated by 
the surface area-weighted average of cortical thicknesses across six regions of interest.  
 
Ascertainment of cancer cases 
Cancer diagnoses were identified via linkage to hospital admission, cancer registries, and self-
reported medical conditions using International Classification of Diseases ICD-10 and ICD-9 
codes (Supplementary Table 1). We included all cancer types except non-melanoma skin cancer 
(NMSC) in our primary analysis. For all participants, an indicator for cancer diagnosis denoted at 
least one diagnosis any time prior to the first imaging visit. A time-updated indicator of cancer 
diagnosis was available for 5,514 participants who had a repeat imaging visit. In secondary 
analyses, we repeated the variable construction for breast cancer 2,34 and prostate cancer,2,35 
which are the two most common cancers in the UK Biobank and have been linked to ADRD risk 
in previous studies. In addition, evidence of gray matter volume loss and white matter 
microstructural disruption has been reported among breast cancer survivors treated with 
chemotherapy.17,18 To account for the potential impact of chemotherapy-induced brain changes, 
we also evaluated NMSC, for which chemotherapy is not a common treatment.36  
 
Ascertainment of ADRD cases 
ADRD cases were identified from linkage to hospital admission, primary care, and death records 
using a comprehensive list of ICD-10 and ICD-9 codes described elsewhere.9 In brief, we 
included AD, vascular dementia, frontotemporal dementia, Lewy body dementia, alcohol-related 
dementia, and Creutzfeldt-Jakob disease. We defined ADRD onset as the first date of ADRD 
diagnosis.  
 
Assessment of covariates 
We controlled for covariates that plausibly influence both cancer and ADRD risk. We 
conceptualized two sets of covariates based on their temporality relative to cancer diagnosis 
(Supplementary Figure 1). Our ‘base model’ included covariates that could not be affected by 
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cancer diagnosis: age (linear and quadratic terms37–39), sex (female, male), race (White, Black, 
Asian, Other), and binary APOE-ε4 carrier status. In our fully adjusted models, we additionally 
controlled for covariates that could both affect and be affected by cancer diagnosis: educational 
attainment (professional/university degree, secondary, vocational, other qualifications), 
Townsend deprivation index, body mass index (BMI), ever smoking, ever alcohol use, high 
physical activity (≥75 min/week of vigorous activity or ≥150 min/week of moderate activity40), 
and assessment center (Cheadle, Reading, Newcastle, Bristol). Most covariates were assessed at 
study enrollment from 2006-2010. Information on BMI, smoking, alcohol use, and physical 
activity was collected during the imaging visits. Townsend deprivation index is a composite 
score measuring area-level socioeconomic status based on employment, home ownership, car 
ownership, and household overcrowdedness.41  During each visit, trained staff measured height 
and weight, and BMI was derived dividing weight (kg) by the square of height (m2). Participants 
reported details on ever smoking, ever alcohol use, and physical activity via touchscreen 
questionnaires. 
 
Statistical analyses 
We summarized characteristics of the study sample stratified by cancer status. To confirm the 
relevance of the selected MRI measures for ADRD, we used Cox proportional hazards regression 
models to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for 
associations between each MRI marker and incident ADRD. For these analyses, we treated the 
imaging visit as baseline and only included participants with no ADRD diagnosis at that time. 
Participants were followed up to date of ADRD diagnosis, death, or censoring on September 30, 
2021 (the latest date of ADRD diagnosis in the imaging cohort), whichever came first. We 
adjusted for the same covariate sets as in the primary analyses. We scaled brain volume and 
cortical thickness measures by dividing them by the sample standard deviation and estimated 
separate models for each individual measure.   
 
To evaluate whether mean values of the neuroimaging outcomes differed by cancer status, we 
used linear mixed-effects models with individual-level random intercepts to account for repeated 
within-person MRI measures. To examine whether the effects of a prior cancer diagnosis on 
neuroimaging outcomes varied across the distribution of ADRD risk, we specified quantile 
regression models at the 10th, 25th, 50th, 75th, and 90th percentiles of each neuroimaging 
outcome. We used cluster bootstrapping to account for repeated within-person measures. 
Quantile regression allows estimation of the relationship between an exposure and an outcome 
across cut-points of the outcome distribution, such as quartiles or deciles.42 The quantile 
regression coefficients quantify how much the location each specified quantile of the 
neuroimaging outcome distribution differs between those with and without a history of cancer. If 
the coefficients are similar in each of the five quantile regression models (10th, 25th, 50th, 75th, 
and 90th percentiles), we would expect the associations of cancer history with each 
neuroimaging outcome are not differential across the entire distribution of the outcome and vice 
versa. We used the Wald test to check for heterogeneous associations of cancer with 
neuroimaging outcomes across quantiles. In secondary analyses, we analyzed the associations of 
breast cancer, prostate cancer, and NMSC with mean neuroimaging outcomes. For each 
individual cancer type, we excluded participants with any other cancer diagnosis. 
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We conducted three sensitivity analyses. First, to minimize potential short-term effects of 
chemotherapy, we excluded participants with a cancer diagnosis within 5 years before the MRI 
scan. Second, to model potential time-varying associations of cancer with neuroimaging 
outcomes, we split the exposure variable into four categories based on the time between the most 
recent cancer diagnosis and the MRI scan: 0 – 1 year, >1 – 5 years, >5 – 10 years, and >10 years. 
Third, we applied inverse probability weighting (IPW) 43 to address potential selection bias44 due 
to selection into the imaging cohort from the parent UK Biobank study. We used a logistic 
regression model to calculate the inverse probability of selection into the imaging cohort and 
then assigned stabilized weights to each participant and performed inverse probability weighted 
analyses to address informative selection. Model specifications and weights assessment are 
presented in Supplemental Data 1. 
 
All statistical analyses were performed using R version 4.0.5. 
 
 
Results 
Participant characteristics 
The analytical sample included 43,102 participants (Table 1). The mean age at the first imaging 
visit was 64.5 years (SD = 7.7 years). Before the imaging visit, 5,514 (12.8%) participants had a 
recorded cancer diagnosis. Participants with a history of cancer were older, more likely to be 
female and White, and averaged less physical activity.  
 
Associations of brain MRI variables with incident dementia  
All MRI variables were significantly associated with ADRD incidence (Table 2). In the fully 
adjusted models, each standard deviation increase in gray matter volume (SD = 31,251 mm3), 
total brain volume (SD = 47,163 mm3), hippocampal volume (SD = 678 mm3), and mean cortical 
thickness in the AD signature region (SD = 0.12 mm), was associated with 64% (HR= 0.36, 95% 
CI= 0.29-0.44), 50% (HR= 0.50, 95% CI= 0.42-0.60), 56% (HR= 0.44, 95% CI= 0.36-0.54), and 
48% (HR= 0.52, 95% CI= 0.42-0.65) decrease in the hazard of ADRD, respectively. For each 
SD increase in white matter hyperintensity volume (SD = 6,616 mm3), there was a 27% increase 
in the hazard of ADRD (HR= 1.27, 95% CI= 1.11-1.45).  
 
Associations of cancer history with neuroimaging outcomes  
Compared with participants without a history of cancer, participants with a history of cancer 
showed smaller hippocampal volume (β = -19 mm3, 95% CI = -36 to -1) and lower cortical 
thickness in the AD signature region (β = -0.004 mm, 95% CI = -0.007 to -0.000) in fully 
adjusted models (Table 3). There were no differences in gray matter volume, total brain volume, 
or white matter hyperintensity volumes between participants with and without a cancer history.  

The distributions of each neuroimaging outcome, stratified by cancer history, are shown in 
Figure 1. The quantile regression results estimating associations of cancer history with the 10th, 
25th, 50th, 75th, and 90th percentiles of each neuroimaging outcome are shown in Figure 2 and 
Supplemental Table 2. No significant differences in any quantiles of total gray matter volume 
and total brain volume were observed. The association between cancer history and hippocampal 
volume did not show clear patterns across quantiles, but cancer history was associated with a 
significantly smaller 75th percentile of the distribution of hippocampal volume (β75 = -26 mm3, 
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95% CI = -54 to -1). This point estimate was similar to the estimated association with the 10th 
percentile (β10=-22 mm3, 95% CI = -52 to 13). The magnitude of the associations between cancer 
history and white matter hyperintensity volume were largest for the higher values of white matter 
hyperintensity; for example, cancer history was associated with a 250 mm3 larger 75th percentile 
(95% CI = 71 to 446) and a 552 mm3 larger 90th percentile (95% CI = 250 to 1002). Comparing 
participants with versus without cancer history, the adjusted differences in 10th, 25th, 50th, 75th, 
and 90th percentiles of the distributions of white matter hyperintensity volumes were 
significantly different (p-value < 0.001). For cortical thickness in the AD signature region, 
associations were mainly observed in the lowest and median percentiles (β10 = -0.006 mm, 95% 
CI = -0.011 to -0.000; β50 = -0.005 mm, 95% CI = -0.009 to -0.001), and the associations across 
percentiles were significantly different (p-value = 0.003). 
 
When we investigated individual common cancer types, we found no significant mean 
differences in any neuroimaging outcome between participants with a NMSC history and 
participants without any cancer history (Supplementary Table 3). Participants with a history of 
breast cancer compared to participants without a cancer history showed a significantly lower 
total brain volume (β = -3450 mm3, 95% CI = -5908 to -993), higher white matter hyperintensity 
volume (β = 512 mm3, 95% CI = 132 to 891), and lower cortical thickness in the AD signature 
region (β = -0.008 mm, 95% CI = -0.014 to -0.001). Prostate cancer was significantly associated 
with a higher total brain volume (β = 2832 mm3, 95% CI = 114 to 5551) but no other MRI 
markers. 
 
Sensitivity analyses  
After we excluded participants with a cancer history within 5 years before the MRI scan, no 
significant differences were observed across neuroimaging outcomes (Supplementary Table 4). 
We did not observe clear patterns when we split the exposure based on the time between the 
most recent cancer diagnosis and the MRI scan, though most significant differences were 
detected among participants with a cancer diagnosis within 1-5 years prior to the MRI scan 
(Supplementary Table 5: β = -1516 mm3, 95% CI = -2797 to -236 for gray matter volume; β = 
391 mm3, 95% CI = 51 to 731 for white matter hyperintensity volumes; and β = -0.012 mm, 95% 
CI = -0.018 to -0.006 for cortical thickness in the AD signature region). In addition, a cancer 
diagnosis within 5-10 years before the MRI scan was associated with a lower hippocampal 
volume (β = -35 mm3, 95% CI = -68 to -1). The inverse probability weighted analyses to 
estimate results if the neuroimaging sample had the same characteristics as the full UK Biobank 
study population did not substantially alter results (Supplementary Table 6). 
 
 
Discussion 
In a large sample of UK adults, we found no evidence to support the hypothesis that individuals 
with a history of cancer had brain MRI markers indicative of lower ADRD risk compared to 
individuals without a history of cancer. Rather, adults with a history of cancer had some brain 
MRI markers associated with higher ADRD risk. They had slightly lower average hippocampal 
volume and lower cortical thickness in the AD signature region than those without a cancer 
history, though the sensitivity analysis suggested these findings are driven by those with a cancer 
diagnosis within 5 years of the MRI. Cancer history was associated with higher variability across 
quantiles of white matter hyperintensity volume, i.e., there were larger adverse associations with 
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high quantiles of white matter hyperintensity volume and null associations with low quantiles of 
white matter hyperintensity volume. Similar patterns were seen for cortical thickness, such that 
the adverse association with cancer history was largest at low (high-risk) quantiles of cortical 
thickness. Survivors of breast cancer, an invasive cancer type, had significantly lower total brain 
volume and higher white matter hyperintensity volume compared to participants without a cancer 
history. Prostate cancer was associated with a slightly larger total brain volume. This association 
was not evident in NMSC.  
 
Our results were consistent with the two previous studies describing the link between cancers at 
any site and structural brain aging.20,21 In the Framingham Heart Study (n=2,043), Gupta et al. 
found that compared with those without a cancer history, cancer survivors did not have a 
significant difference in total cerebral brain volume, temporal brain volume, temporal horn 
volume, or white matter hyperintensity volumes.20 Nudelman et al. conducted a voxel-based 
morphometric analysis of cerebral gray matter density (GMD) in the Alzheimer’s Disease 
Neuroimaging Initiative cohort (n=1,609) and did not find any region with increased GMD 
among cancer survivors.21 Instead, they found that a cancer history was associated with lower 
GMD in the right superior frontal gyrus. Though this area has not been linked to AD 
pathogenesis or diagnosis,45 it has been associated with cancer treatments.46,47 Our results expand 
on these findings in a sample over 10 times larger than the combined previous samples, with a 
wider range of neuroimaging measures, and evaluated whether effects differed across the 
distribution of neuroimaging outcomes. Our results indicate that, if anything, cancer history is 
associated with higher risk of ADRD. The quantile regression results bolster this interpretation 
by showing differential effects across the distribution of the outcomes. Differentially harmful 
effects of cancer history at higher-risk quantiles of white matter hyperintensity volume and 
cortical thickness suggest that individuals most at-risk for dementia may also be harmed the most 
by cancer history.   
 
Our results also indicated that cancer treatment may play a role in ADRD-related 
neurodegeneration. In the sensitivity analysis with a 5-year washout period before the MRI scan, 
all adverse associations between cancer history and neuroimaging markers were attenuated and 
close to null. The attenuated differences among people who had survived 5+ years after 
diagnosis suggests that recent cancer treatment may have driven the loss in hippocampal volume 
and thinning in cortical thickness in the AD signature region. This is also supported by the 
association between breast cancer and adverse neuroimaging outcomes due to known 
chemotherapy-induced brain changes among breast cancer patients. Although our study did not 
evaluate this directly, these associations may reflect short-term effects of chemotherapy.17,18 The 
sensitivity analysis may also suggest potential selective survival that people with a cancer history 
further in the past who survived 5+ years may potentially have healthier brains relative to the full 
population of people diagnosed with cancer. 
  
Although the inverse relationship between cancer and ADRD has been studied and reported in 
multiple epidemiological studies, 1–4,8–12 our results did not support an inverse link between 
cancer diagnosis and ADRD-related neurodegeneration, except a small positive association 
between prostate cancer and total brain volume. Potential biases in observational studies may 
have yielded previously observed associations. Most recent studies evaluating the cancer-ADRD 
link have been based on clinical diagnosis of ADRD, which may face methodological challenges, 
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including missed, delayed, or misclassified diagnoses. For example, several simulation-based 
studies have suggested the importance of accounting for competing risk of death and diagnostic 
bias.10,12 Future work should address the biological mechanisms linking underlying cancer and 
subsequent ADRD and account for various study biases.  
 
The lack of information on cancer treatment is a significant limitation of this study, especially 
given the potential effect of chemotherapy and hormone therapy on brain structures.17,18,48 We 
additionally lacked some important biomarkers, such as amyloid burden. Further, the UK 
Biobank is a highly selected volunteer sample with unusually high socioeconomic status and 
healthy individuals compared to the UK population.49 This selection process may bias observed 
associations.50 A major strength of our study is its measurement of cancer and structural MRI in 
a large cohort. The UK Biobank has a large sample size for participants with structural MRI, 
measured based on a uniformly high-quality image acquisition protocol. The availability of both 
cancer registry and self-report data on cancer history increased the validity of exposure 
measurement.  
 
Conclusion 
In this large sample, we find no evidence that cancer history is associated with lower ADRD risk 
as measured by brain MRI markers. We find instead a suggestion of adverse effects of cancer 
history on some neuroimaging markers, including harmful associations for individuals already at 
high dementia risk. Future studies should evaluate longitudinal changes in cognition and 
neuroimaging markers before and after cancer treatments.   

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.19.23286154doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.19.23286154


 

10 
 

References: 

1.  Musicco M, Adorni F, Santo SD, et al. Inverse occurrence of cancer and Alzheimer disease: 
A population-based incidence study. Neurology. Wolters Kluwer Health, Inc. on behalf of 
the American Academy of Neurology; 2013;81:322–328.  

2.  Freedman DM, Wu J, Chen H, et al. Associations between cancer and Alzheimer’s disease 
in a U.S. Medicare population. Cancer Medicine. 2016;5:2965–2976.  

3.  Zhang Q, Guo S, Zhang X, et al. Inverse relationship between cancer and Alzheimer’s 
disease: a systemic review meta-analysis. Neurol Sci. 2015;36:1987–1994.  

4.  Ma L-L, Yu J-T, Wang H-F, et al. Association between Cancer and Alzheimer’s Disease: 
Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease. IOS Press; 
2014;42:565–573.  

5.  Yarchoan M, James BD, Shah RC, et al. Association of Cancer History with Alzheimer’s 
Disease Dementia and Neuropathology. J Alzheimers Dis. 2017;56:699–706.  

6.  Karanth SD, Katsumata Y, Nelson PT, et al. Cancer diagnosis is associated with a lower 
burden of dementia and less Alzheimer’s-type neuropathology. Brain. 2022;145:2518–2527.  

7.  Lachner C, Day GS, Camsari GB, et al. Cancer and Vascular Comorbidity Effects on 
Dementia Risk and Neuropathology in the Oldest-Old. Journal of Alzheimer’s Disease. IOS 
Press; 2022;90:405–417.  

8.  Ospina-Romero M, Glymour MM, Hayes-Larson E, et al. Association Between Alzheimer 
Disease and Cancer With Evaluation of Study Biases: A Systematic Review and Meta-
analysis. JAMA Netw Open. 2020;3:e2025515.  

9.  Wang J, Buto P, Ackley SF, et al. Association between cancer and dementia risk in the UK 
Biobank: evidence of diagnostic bias. medRxiv. Cold Spring Harbor Laboratory Press; 
Epub 2022.  

10.  Hayes-Larson E, Shaw C, Ackley SF, et al. The Role of Dementia Diagnostic Delay in the 
Inverse Cancer–Dementia Association. The Journals of Gerontology: Series A. 
2022;77:1254–1260.  

11.  Willik KD van der, Schagen SB, Ikram MA. Cancer and dementia: Two sides of the same 
coin? European Journal of Clinical Investigation. 2018;48:e13019.  

12.  Hayes-Larson E, Ackley SF, Zimmerman SC, et al. The competing risk of death and 
selective survival cannot fully explain the inverse cancer-dementia association. Alzheimer’s 
& Dementia. 2020;16:1696–1703.  

13.  Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a 
biological definition of Alzheimer’s disease. Alzheimer’s & Dementia. 2018;14:535–562.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.19.23286154doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.19.23286154


 

11 
 

14.  Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer’s disease: Definition, 
natural history, and diagnostic criteria. Alzheimer’s & Dementia. 2016;12:292–323.  

15.  Reitz C, Mayeux R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and 
biomarkers. Biochemical Pharmacology. 2014;88:640–651.  

16.  Jack CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in 
Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet 
Neurology. Elsevier; 2013;12:207–216.  

17.  Chen BT, Jin T, Patel SK, et al. Gray matter density reduction associated with adjuvant 
chemotherapy in older women with breast cancer. Breast Cancer Res Treat. 2018;172:363–
370.  

18.  Feng Y, Zhang XD, Zheng G, Zhang LJ. Chemotherapy-induced brain changes in breast 
cancer survivors: evaluation with multimodality magnetic resonance imaging. Brain 
Imaging Behav. 2019;13:1799–1814.  

19.  McDonald BC, Van Dyk K, Deardorff RL, et al. Multimodal MRI examination of structural 
and functional brain changes in older women with breast cancer in the first year of 
antiestrogen hormonal therapy. Breast Cancer Res Treat. 2022;194:113–126.  

20.  Gupta A, Preis SR, Beiser AS, et al. Relationship of Cancer to Brain Aging Markers of 
Alzheimer’s Disease: The Framingham Heart Study. Advances in Geriatric Medicine and 
Research [online serial]. Advances in Geriatric Medicine and Research; 2019;1. Accessed 
at: https://agmr.hapres.com/htmls/AGMR_1045_Detail.html. Accessed October 28, 2022. 

21.  Nudelman KNH, Risacher SL, West JD, et al. Association of cancer history with 
Alzheimer’s disease onset and structural brain changes. Frontiers in Physiology [online 
serial]. 2014;5. Accessed at: https://www.frontiersin.org/articles/10.3389/fphys.2014.00423. 
Accessed October 28, 2022. 

22.  Royle NA, Booth T, Valdés Hernández MC, et al. Estimated maximal and current brain 
volume predict cognitive ability in old age. Neurobiology of Aging. 2013;34:2726–2733.  

23.  Chang Y-T, Huang C-W, Chang Y-H, et al. Amyloid Burden in the Hippocampus and 
Default Mode Network. Medicine (Baltimore). 2015;94:e763.  

24.  Sluimer JD, van der Flier WM, Karas GB, et al. Whole-Brain Atrophy Rate and Cognitive 
Decline: Longitudinal MR Study of Memory Clinic Patients. Radiology. Radiological 
Society of North America; 2008;248:590–598.  

25.  Aschenbrenner AJ, Gordon BA, Benzinger TLS, Morris JC, Hassenstab JJ. Influence of tau 
PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology. 
2018;91:e859–e866.  

26.  Jack CR, Petersen RC, Xu YC, et al. Prediction of AD with MRI-Based Hippocampal 
Volume in Mild Cognitive Impairment. Neurology. 1999;52:1397–1403.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.19.23286154doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.19.23286154


 

12 
 

27.  d’Arbeloff T, Elliott ML, Knodt AR, et al. White matter hyperintensities are common in 
midlife and already associated with cognitive decline. Brain Communications. 
2019;1:fcz041.  

28.  Carmichael O, Schwarz C, Drucker D, et al. Longitudinal Changes in White Matter Disease 
and Cognition in the First Year of the Alzheimer Disease Neuroimaging Initiative. Archives 
of Neurology. 2010;67:1370–1378.  

29.  Schwarz CG, Gunter JL, Wiste HJ, et al. A large-scale comparison of cortical thickness and 
volume methods for measuring Alzheimer’s disease severity. NeuroImage: Clinical. 
2016;11:802–812.  

30.  Alfaro-Almagro F, Jenkinson M, Bangerter NK, et al. Image processing and Quality 
Control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage. 
2018;166:400–424.  

31.  Griffanti L, Zamboni G, Khan A, et al. BIANCA (Brain Intensity AbNormality 
Classification Algorithm): A new tool for automated segmentation of white matter 
hyperintensities. NeuroImage. 2016;141:191–205.  

32.  Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the 
human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 
2006;31:968–980.  

33.  Voevodskaya O, Simmons A, Nordenskjöld R, et al. The effects of intracranial volume 
adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s 
disease. Frontiers in Aging Neuroscience [online serial]. 2014;6. Accessed at: 
https://www.frontiersin.org/article/10.3389/fnagi.2014.00264. Accessed February 21, 2022. 

34.  Ording AG, Horváth-Puhó E, Veres K, et al. Cancer and risk of Alzheimer’s disease: Small 
association in a nationwide cohort study. Alzheimer’s & Dementia. 2020;16:953–964.  

35.  Sun M, Wang Y, Sundquist J, Sundquist K, Ji J. The Association Between Cancer and 
Dementia: A National Cohort Study in Sweden. Front Oncol [online serial]. Frontiers; 
2020;10. Accessed at: https://www.frontiersin.org/articles/10.3389/fonc.2020.00073/full. 
Accessed May 27, 2021. 

36.  Fahradyan A, Howell AC, Wolfswinkel EM, Tsuha M, Sheth P, Wong AK. Updates on the 
Management of Non-Melanoma Skin Cancer (NMSC). Healthcare (Basel). 2017;5:E82.  

37.  DeCarli C, Massaro J, Harvey D, et al. Measures of brain morphology and infarction in the 
framingham heart study: establishing what is normal. Neurobiology of Aging. 
2005;26:491–510.  

38.  Driscoll I, Davatzikos C, An Y, et al. Longitudinal pattern of regional brain volume change 
differentiates normal aging from MCI. Neurology. 2009;72:1906–1913.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.19.23286154doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.19.23286154


 

13 
 

39.  Thambisetty M, Wan J, Carass A, An Y, Prince JL, Resnick SM. Longitudinal changes in 
cortical thickness associated with normal aging. NeuroImage. 2010;52:1215–1223.  

40.  Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and Setting National Goals for 
Cardiovascular Health Promotion and Disease Reduction. Circulation. American Heart 
Association; 2010;121:586–613.  

41.  Townsend P, Phillimore P, Beattie A. Health and deprivation: inequality and the North. 
Routledge; 1988.  

42.  Beyerlein A. Quantile Regression—Opportunities and Challenges From a User’s 
Perspective. American Journal of Epidemiology. 2014;180:330–331.  

43.  Hernán MA, Hernández-Díaz S, Robins JM. A Structural Approach to Selection Bias. 
Epidemiology. Lippincott Williams & Wilkins; 2004;15:615–625.  

44.  Bradley V, Nichols TE. Addressing selection bias in the UK Biobank neurological imaging 
cohort [online]. medRxiv; 2022. p. 2022.01.13.22269266. Accessed at: 
https://www.medrxiv.org/content/10.1101/2022.01.13.22269266v2. Accessed April 12, 
2022. 

45.  Busatto GF, Diniz BS, Zanetti MV. Voxel-based morphometry in Alzheimer’s disease. 
Expert Review of Neurotherapeutics. Taylor & Francis; 2008;8:1691–1702.  

46.  Correa DD, Root JC, Kryza-Lacombe M, et al. Brain structure and function in patients with 
ovarian cancer treated with first-line chemotherapy: a pilot study. Brain Imaging and 
Behavior. 2017;11:1652–1663.  

47.  McDonald BC, Conroy SK, Ahles TA, West JD, Saykin AJ. Gray matter reduction 
associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast 
Cancer Res Treat. 2010;123:819–828.  

48.  Kantarci K, Tosakulwong N, Lesnick TG, et al. Effects of hormone therapy on brain 
structure: A randomized controlled trial. Neurology. Wolters Kluwer Health, Inc. on behalf 
of the American Academy of Neurology; 2016;87:887–896.  

49.  Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of Sociodemographic and Health-
Related Characteristics of UK Biobank Participants With Those of the General Population. 
American Journal of Epidemiology. 2017;186:1026–1034.  

50.  Batty GD, Gale CR, Kivimäki M, Deary IJ, Bell S. Comparison of risk factor associations 
in UK Biobank against representative, general population based studies with conventional 
response rates: prospective cohort study and individual participant meta-analysis. BMJ. 
British Medical Journal Publishing Group; 2020;368:m131.  

 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.19.23286154doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.19.23286154


 

14 
 

Figure 1. The distributions of each neuroimaging outcome, stratified by cancer history. 
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Figure 2. Covariate-adjusted differences in the 10th, 25th, 50th, 75th, and 90th percentiles of the 
distributions of each neuroimaging outcome, comparing participants with versus without cancer 
history in quantile regression models. 
 
 
 

 
Note: Demographics-adjusted base model was adjusted for age, sex, race, and APOE-ε4 carrier status.  
Fully adjusted model was further adjusted for education and Townsend deprivation index, BMI, ever 
smoking, ever using alcohol, physical activity, and assessment center.   
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Table 1. Demographic, clinical, and imaging characteristics of participants in the analytical sample 
at the first imaging visit, stratified by cancer history.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Values are mean (SD), count (%), or median (interquartile). 
Abbreviations: BMI, body mass index; SD, standard deviation; GM, gray matter; TBV, total brain volume; HV, 
hippocampal volume; WMH, white matter hyperintensity; AD, Alzheimer’s disease; CTAD, cortical thickness in the 
AD signature region. 
a Percentages may not sum to 100 because of rounding. 
b Index quintiles, combining social class, employment, car availability, and housing.  

Characteristic No cancer diagnosis 
(n = 37,588) 

Cancer diagnosis 
(n = 5,514) 

Age (year), median 
(interquartile) 

64.5 (58.1-70.1) 67.7 (61.4-72.4) 

Sex   

    Female 19,337 (51.4) 3,371 (61.1) 

    Male 18,251 (48.6) 2,143 (38.9) 

Race   

    White 36,302 (96.6) 5,397 (97.9) 

    Black 321 (0.9) 30 (0.5) 

    Asian 602 (1.6) 44 (0.8) 

    Other 353 (0.9) 43 (0.8) 

APOE-ε4 carrier   

    Yes 10,187 (72.2) 1,462 (72.8) 

    No 26,416 (27.8) 3,905 (27.2) 

Education   

    Higher 19,496 (51.9) 2,769 (50.2) 

    Secondary 13,622 (36.2) 2,029 (36.8) 

    Vocational 2,035 (5.6) 285 (5.2) 

    Other 2,435 (6.5) 431 (7.8) 

Townsend deprivation indexb   

    1 (least deprived) 8,959 (23.9) 1,330 (24.2) 

    2-4 23,390 (62.3) 3,414 (62.0) 

    5 (most deprived) 5,205 (13.9) 762 (13.8) 

BMI (kg/m2), mean (SD) 26.5 (4.4) 26.4 (4.4) 

Ever smoked   

    Yes 13,697 (36.8) 2,232 (41.0) 

    No 23,549 (63.2) 3,207 (59.0) 

Ever used alcohol   

    Yes 36,123 (96.8) 5,292 (96.8) 

    No 1,213 (3.2) 173 (3.2) 

High physical activity   

    Yes 31,743 (85.4) 4,570 (84.2) 

    No 5,406 (14.6) 857 (15.8) 

GM (mm3), mean (SD) 615,546 (56,068) 605,119 (53,262) 

TBV (mm3), mean (SD) 1,161,750 (111,880) 1,143,852 (106,584) 

HV (mm3), mean (SD) 8,079 (808) 7,919 (783) 

WMH (mm3), mean (SD) 4,968 (6,498) 6,033 (7,761) 

CTAD (mm), mean (SD) 2.82 (0.12) 2.81 (0.12) 
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Table 2. Association of neuroimaging outcomes with incident ADRD diagnosis: HRs from Cox 
proportional hazards regression models 

 
 
 
 
 
 
 
 
 
 
 
 

Abbreviations: ADRD, Alzheimer’s disease and related dementias; HR, hazard ratio; CI, confidence interval; GM, 
gray matter; TBV, total brain volume; HV, hippocampal volume; WMH, white matter hyperintensity; CTAD, 
cortical thickness in the AD signature region.  
a Each exposure was scaled by dividing values by the sample standard deviation. All volumetric measures are in 
mm3 and cortical thickness is in mm. 
b Number of participants included in the analyses per outcome. 
c Adjusted for age, sex, race, and APOE-ε4 carrier status.  
d Further adjusted for education and Townsend deprivation index, BMI, ever smoking, ever using alcohol, physical 
activity, and assessment center. 
  

  Demographics-
Adjusted Base 
Modelc 

  Fully Adjusted 
Modeld 

 

Exposurea Nb HR (95% CI) p-value  HR (95% CI) p-value 

GM 41,178 0.34 (0.28-0.41) <0.001  0.36 (0.29-0.44) <0.001 

TBV 41,178 0.49 (0.41-0.58) <0.001  0.50 (0.42-0.60) <0.001 

HV 41,939 0.41 (0.35-0.49) <0.001  0.44 (0.36-0.54) <0.001 

WMH 39,870 1.26 (1.11-1.42) <0.001  1.27 (1.11-1.45) <0.001 

CTAD 41,939 0.51 (0.42-0.63) <0.001  0.52 (0.42-0.65) <0.001 
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Table 3. Covariate-adjusted differences in mean values of neuroimaging outcomes comparing 
participants with versus without cancer history from linear mixed effects regression models. 

 
Abbreviations: CI, confidence interval; GM, gray matter; TBV, total brain volume; HV, hippocampal volume; 
WMH, white matter hyperintensity; AD, Alzheimer’s disease; CTAD, cortical thickness in the AD signature region. 
a All volumetric measures are in mm3 and cortical thickness is in mm. 
b Number of participants included in each analysis. Mixed effects models with random intercepts for individuals 
were used to account for a small number of repeated MRIs.  
c Adjusted for age, sex, race, and APOE-ε4 carrier status.  
d Further adjusted for education and Townsend deprivation index, BMI, ever smoking, ever using alcohol, physical 
activity, and assessment center.  
 
 
 

   Demographics-
Adjusted Base 
Modelc 

   Fully Adjusted 
Modeld 

 

Outcomea Nb Estimate 95% CI p-value  Estimate 95% CI p-value 
GM 41,378 -452 -1146 to 241 0.201  -350 -1056 to 355 0.330 

TBV 41,378 -293 -1401 to 815 0.604  -376 -1510 to 758 0.515 

HV 42,036 -23 -40 to -6 0.008  -19 -36 to -1 0.037 

WMH 40,119 216 39 to 392 0.017  178 -1 to 357 0.051 

CTAD 42,036 -0.004 -0.007 to -0.001 0.007  -0.004 -0.007 to -0.000 0.026 
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