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Abstract (< 200 words) 

 

Spontaneous activity during the resting state, tracked by BOLD fMRI imaging, or shortly 

rsfMRI, gives rise to brain-wide dynamic patterns of inter-regional correlations, whose 

structured flexibility relates to cognitive performance. Here we analyze resting state dynamic 

Functional Connectivity (dFC) in a cohort of older adults, including amnesic Mild Cognitive 

Impairment (aMCI, N = 34) and Alzheimer’s Disease (AD, N = 13) patients, as well as 

normal control (NC, N = 16) and cognitively “super-normal” (SN, N = 10) subjects. Using 

complementary state-based and state-free approaches, we find that resting state fluctuations of 

different functional links are not independent but are constrained by high-order correlations 

between triplets or quadruplets of functionally connected regions. When contrasting patients 

with healthy subjects, we find that dFC between cingulate and other limbic regions is 

increasingly bursty and intermittent when ranking the four groups from SNC to NC, aMCI 

and AD. Furthermore, regions affected at early stages of AD pathology are less involved in 

higher-order interactions in patient than in control groups, while pairwise interactions are not 

significantly reduced. Our analyses thus suggest that the spatiotemporal complexity of dFC 

organization is precociously degraded in AD and provides a richer window into the 

underlying neurobiology than time-averaged FC connections. (199 words) 

 

 

 

Author Summary (< 125 words) 

 

Brain functions emerge from the coordinated dynamics of many brain regions. Dynamic 

Functional Connectivity (dFC) analyses are a key tool to describe such dynamic complexity 

and have been shown to be good predictors of cognitive performance. This is particularly true 

in the case of Alzheimer’s Disease (AD) in which an impoverished dFC could indicate 

compromised functional reserve due to the detrimental effects of neurodegeneration. Here we 

observe that in healthy ageing dFC is indeed spatiotemporally organized, as reflected by high-

order correlations between multiple regions. However, in people with aMCI or AD, dFC 

becomes less “entangled”, more random-like, and intermittently bursty. We speculate that this 

degraded spatiotemporal coordination may reflect dysfunctional information processing, thus 

ultimately leading to worsening of cognitive deficits. (120 words)  
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Introduction 

Alzheimer’s Disease (AD) is the most common neurodegenerative illness with an 

estimated prevalence of 10-30% in people older than 65 years (Hou et al., 2019; Masters et 

al., 2015). Yet, despite substantial research, we are far from fully understanding the 

mechanisms that link pathophysiology to cognitive impairments. Neurodegeneration in AD 

has been traditionally associated with the extracellular accumulation of insoluble amyloid-β42 

(Aβ) neuritic plaques (Glenner and Wong, 1984; Lemere et al., 1996) along with the 

intracellular accumulation of abnormally phosphorylated tau (pTau), that constitute the 

neurofibrillary tangles (Spires-Jones and Hyman, 2014). These processes yield to widespread 

neuronal death, synaptic loss, and atrophy (Bateman et al., 2012), with a progression of 

structural damages not occurring uniformly throughout the brain (Braak and Braak, 1991). 

However, the progression of neurodegenerative processes does not correlate linearly with the 

severity of cognitive impairment possibly due to a “cognitive reserve” accrued through 

education, cognitive training and a healthy lifestyle (Rentz et al., 2010; Snowdon, 2003). 

Furthermore, the severity of cognitive impairment symptoms in a patient can fluctuate 

substantially within the same day, faster than the time scales of neurodegeneration (Palop et 

al., 2006). Together, these findings suggest that AD involve alterations of neural dynamics 

and that these dynamical changes may be the mechanistic substrate leading to functional 

impairment or preservation. 

As molecular and structural changes alone do not fully account for cognitive impairment, 

alternative studies based on Functional Connectivity (FC) analyses have sought to fill the gap. 

In particular, resting state FC (Fox and Raichle, 2007) quantifies brain-wide correlations of 

BOLD signals, capturing interactions between regions. In this context it has been suggested 

that  structural alterations in AD lead to FC changes (Dennis and Thompson, 2014), and that 

the early manifestation of Aβ toxicity preceding overt atrophy can be detected using resting 

state functional Magnetic Resonance Imaging (rsfMRI) (Hedden et al., 2009; Sheline et al., 

2010a; Sheline et al., 2010b; Mormino et al., 2011). Changes in FC in AD include reduced 

connectivity within the default mode network (DMN, Greicius et al., 2004; Rombouts et al., 

2005; Wang et al., 2006, 2007; Sorg et al., 2007; Fleisher et al., 2009; Zhang et al., 2009, 

2010; Jones et al., 2011; Petrella et al., 2011), in a spatially non-uniform fashion 

(Damoiseaux et al., 2012). Besides Aβ, the deposition of pTau affects FC as well (Franzmeier 

et al., 2022). Furthermore, additional FC alterations have been reported, leading to functional 

disconnection between hemispheres (Shi et al., 2020; Wang et al., 2015) and a reduction of 
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small-world topology (Brier et al., 2014; Sanz-Arigita et al., 2010; Stam et al., 2009, 2007; 

Supekar et al., 2008).  

More recently, investigations of FC in AD have been extended to encompass time-varying, 

rather than time-averaged FC. Indeed, rsfMRI networks undergo a continuous reconfiguration 

of their weighed topology, and the statistical structure of spontaneous network reconfiguration 

carries information potentially useful to discriminate cohorts (Calhoun et al., 2014; Hutchison 

et al., 2013; Preti et al., 2017). The flexibility of dynamic Functional Connectivity (dFC) has 

been shown to correlate with cognitive performance (Bassett et al., 2011; Battaglia et al., 

2020; Braun et al., 2015; Jia et al., 2014; Lombardo et al., 2020; Shine et al., 2016). In this 

view, ongoing variability of FC networks is not noise but rather, an actual resource subserving 

computation. The capacity to actively maintain a spatiotemporally organized yet variable dFC 

would confer the system resilience to cope with variable cognitive and environmental 

conditions (Lombardo et al., 2020). Hence, the preservation of a “healthy” structured dFC 

variability may provide a form of functional compensation and a likely neural substrate for 

“cognitive reserve” (cf. also other studies linking mental training with enhanced dFC 

variability, e.g. Premi et al., 2020). Conversely, dynamic FC-based metrics thus promise to 

better characterize the impact of AD pathology. 

A number of studies have quantified dFC changes in healthy aging (Battaglia et al., 2020; 

Davison et al., 2016; Hutchison and Morton, 2015; Lavanga et al., 2022; Petkoski et al., 2023; 

Qin et al., 2015; Viviano et al., 2017) and in conditions such as schizophrenia (Damaraju et 

al., 2014; Sakoğlu et al., 2010), epilepsy (Liao et al., 2014; Liu et al., 2017) and Parkinson’s 

disease (Fiorenzato et al., 2019; Kim et al., 2017). In AD, probabilities of temporal transitions 

between alternative FC states have been shown to be altered (Jones et al., 2011; Fu et al., 

2019; Gu et al., 2020; Schumacher et al., 2019). Moreover, machine learning applications 

have achieved greater accuracy in differentiating between healthy control and aMCI or AD 

subjects when trained with dFC-based rather than static FC metrics (Chen et al., 2017, 2016; 

de Vos et al., 2018; Wee et al., 2016). Although the contributions of these studies are 

promising, they are largely descriptive and do not propose an explicit theory of why dFC 

changes lead to functional consequences. Furthermore, the plethora of methods for dFC 

quantification (Hutchison et al., 2013; Preti et al., 2017) – from extracting discrete FC states 

(Allen et al., 2014; Thompson and Fransson, 2016) to continuously time-resolved approaches 

(Battaglia et al., 2020; Lindquist et al., 2014)– hinder the convergence of results.  
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Here, we start from a theoretical tenet: efficient cognition requires spatiotemporally 

organized FC variability, which is neither trivial, nor random, but complex. This assumption 

is based on empirical evidence. Fluctuations in dFC are not a mere unstructured “Drunkard’s 

walk”: More highly structured dFC trajectories are observed in individuals with higher 

performance on general cognition domains (Battaglia et al., 2020; Lavanga et al., 2022). 

Further, individual FC links do not fluctuate independently but with network reconfigurations 

governed by higher order coordination patterns, manifest by: non-trivial inter-link covariance 

patterns (Davison et al., 2015; Faskowitz et al., 2020; Petkoski et al., 2023); “back-bones” 

partially scaffolding dFC (Braun et al., 2015); and dFC flowing under the influence of 

competing “meta-hubs (Lombardo et al., 2020). Reiterating, our hypothesis suggests that 

spatiotemporal structure of dFC between order and randomness allows for rich computation to 

emerge from the systems’ collective activity (cf. Crutchfield, 2012). Correspondingly, we 

predict that individuals with higher cognitive performance should display an enhanced 

organization of dFC compared to those with impaired cognition (aMCI or AD) in which, 

conversely, a loss of dFC spatiotemporal organization should be evident.  

Here we analyze resting-state fMRI data acquired from individuals with better-than-normal 

or normal cognitive performance –“supernormal” (SNC) and “normal controls (NC)– and 

those clinically diagnosed with amnestic Mild Cognitive Impairment (aMCI) or Alzheimer’s 

Disease (AD). We first characterized dFC across groups using two complementary methods. 

First, we use a state-based dFC analysis paradigm, in which we assume the existence of a 

small set of possible discrete FC configurations and quantify dwell times in different states 

and the temporal stability of different FC network links along state switching transitions 

(Thompson and Fransson (2016)). Second, we use a state-free dFC analysis paradigm, where 

FC networks are described as continually morphing in time. Through these complementary 

but convergent approaches, as described in the following, we find that the fluctuations of 

different links show different degrees of mutual inter-dependence across the considered 

groups, shifting from a “liquid-like” dFC (flexible but constrained) for SNC and NC toward a 

“gas-like” dFC (uncorrelated and disordered) for patient groups. We also show that these 

changes in dFC coordination cannot be fully accounted by changes occurring at the level of 

ordinary pairwise FC, but stem from the weakening of genuine higher-order interactions 

observed especially for regions which are among the first to be physio-pathologically affected 

by AD.   
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Results 

FC and dFC across a spectrum of cognitive performance 

We considered an fMRI dataset including resting state sessions from subjects with varying 

degrees of cognitive skills. As our interest focusses not only on disease but also in healthy 

cognition, healthy controls were subclassified in two groups (SNC and NC) based primarily 

on composite memory Z scores to define the SNC and NC groups. That is, SNC had a higher 

performance in the composite memory scores (Z > 1.5) and at least a Z > 0.7 in all other 

cognitive domains (attention, language, visuo-spatial and executive; see Materials and 

Methods for more details). Healthy control subjects between NC and SNC or below NC were 

not considered in the study. As shown in Fig. 1A, from 73 subjects, 10 were classified as 

supernormal controls (SNC), 16 as normal controls (NC), 34 as amnesic mild cognitive 

impairment (aMCI), and 13 as Alzheimer’s disease (AD). Across the four clinical groups, 

there were no significant differences in age and sex. 

Based on rsfMRI time-series from these cohorts, we then computed (and compared across 

groups) a variety of static and dynamic Functional Connectivity (FC and dFC) metrics, 

extracted with complementary approaches, assuming or not the existence of discrete FC states 

in time (Fig. 1B). Importantly, as detailed below, we did not uniquely consider pairwise 

interactions between two brain regions at a time, but also considered more complex 

coordination patterns between larger groups of regions. Classic FC links express the existence 

of a correlation between the BOLD fluctuations of two brain regions and are represented as a 

link between two regional nodes: we refer hence to them as dimers, since they are computed 

out of two parts. In classical FC analyses, dimers are static, as their strength is averaged over 

the duration of complete resting state sessions. In dFC analyses, however dimer strengths 

fluctuate in time. We can thus also compute correlations between different dimers. Estimating 

these “correlations between correlations” requires jointly monitoring the BOLD fluctuations 

of three (Fig. 1C, top) or four (Fig. 1C, bottom) regions, hence the names of trimers and 

tetramers –collections of three or four parts, respectively– used in the following.  

We chose to focus in this study on dFC within a network of limbic brain regions of 

particular interest (Fig. 1D). The rationale was twofold: first, the regions included in the 

chosen limbic subnetwork are highly interconnected brain regions that degenerate early in the 

disease process (Arnold et al., 1991; Braak and Braak, 1991); second, previous modelling 

work confirmed their central role in shaping the evolution of FC alterations comparing 

healthy controls to aMCI or AD stages (J. Zimmermann et al., 2018).  
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Fig. 1. Overview of approaches. (A) Subjects were stratified in 4 different clinical groups: 

Supernormal controls (SNC), Normal controls (NC), amnesic MCI (aMCI) and Alzheimer’s disease 

(AD) (B) We used two dynamic functional connectivity (dFC) methods to study the spatiotemporal 

properties of resting-state fMRI signals: A state-based dFC called point-based method (PBM) and a 

state-free dFC method called meta-connectivity (MC) approach. Both approaches address the 

dynamics of pairwise links of interactions, which we call here “dimers”. (C) The study of coordinated 

fluctuations of dimers is at the core of the MC approach. Coordination can occur between dimers 

converging on a common root (“trimers”) or between non-incident dimers (“tetramers”). (D) We 

focused on a limbic subnetwork based on the AAL parcellation that was divided into two zones: a 

ventrally located “Zone I” that included the temporal pole (superior and medial), parahippocampal 

gyrus, hippocampus proper and amygdala; and a dorsally located Zone II included the anterior, medial 

and posterior cingulate cortices.  

 

State-based dFC: two zones and four dFC states 

In order to assess FC changes along time, we started with a state-based dFC approach, 

called the point-based method (PBM) and first introduced by Thompson and Fransson (2016). 

In this framework, different instantaneous images of brain-wide BOLD activation are first 
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clustered via an unsupervised procedure into K states, and state-specific FC matrices FC(λ) are 

constructed by evaluating BOLD correlations limited to timeframes assigned to a given state 

cluster (λ = 1…K, see Materials and Methods for details). Fig. 2A show the weighed 

adjacency matrices FC(λ) (obtained as centroids of their respective cluster) for each of four 

different states of dFC, called S-graphlets by Thompson and Fransson (2016). An alternative 

graph representation of these templates is shown in Fig. S1A. The optimal number of K = 4 

was determined based on a statistical elbow criterion (Fig. S1B) and confirmed post-hoc by 

the consistency of our results. 

Based on these four dFC states, we obtained the spatial profile of neural activation across 

regions (Fig. 2A). The spatial organization of the observed neural activation profiles naturally 

suggests, in this study, to group the regions in two subsets, characterized by having an activity 

level transiently higher or lower than their average level. We defined “zone I” as the subset of 

ventral limbic regions including amygdala, temporal pole (superior and medial), 

hippocampus, and parahippocampal gyrus. “Zone II”, included the cingulate gyrus (anterior, 

medial, and posterior). In states 1 and 2, zone II (dorsal regions) and zone I (ventral regions) 

were respectively active above average level (high activation states). In contrast, in states 3 

and 4, zone II and zone I regions were respectively active below average levels (low 

activation states).  

Furthermore, these four states were noted based on the topology of their FC(λ) networks 

and the level of internal synchronization within zone I. Quantitatively, connection weights 

between regions within zone I tended to be stronger for states 2 and 4 than for states 1 and 3 

(average within zone I FC weights = 0.23 ± 0.16 for states 1 and 3 vs = 0.29 ± 0.18 for states 

2 and 4). Hence, states 2 and 4 displayed higher internal synchrony, in contrast to states 1 and 

3. Then we computed local and global efficiency metrics (Achard and Bullmore, 2007; Latora 

and Marchiori, 2001) for the four FC(λ) networks. Global efficiency quantifies how well 

communication pathways can be established between any two nodes in a weighed network. 

Local efficiency quantifies the robustness of communication and the possibility to find 

alternative routes if local connectivity is disrupted. We found that the high sync states 2 and 4 

have a lower global efficiency (Fig. 2B; Mann-Whitney U test, p < 0.001) but a greater local 

efficiency (Fig. 2B, Mann-Whitney U test, p ~ 0.023), reflecting a denser within-zone but a 

weakened between-zone connectivity (average between zone I and zone II FC weights = 

0.026 ± 0.069 for states 1 and 3 vs = -0.013 ± 0.071 for states 2 and 4). 
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Thus, in short, the overall four states that we find are obtained as combinations of two 

qualitatively different network topologies an two possible levels of activation, so that each 

topology can exist in a low and high activity versions. 

 

 

Fig. 2. State-based dynamic Functional Connectivity (dFC) analyses: four dFC states. (A) BOLD 

time-series of all subjects were concatenated temporally and then z-scored and clustered based on 

BOLD activation to extract four states. The associated FC-state matrices (FC(λ), λ = 1…4) were 

constructed by evaluation BOLD fluctuation correlations limited to time-points within a given state 

(cf. also Fig. S1A). The centroids of activation of four states (middle) distinguished two subsets of 

regions (Zone I and Zone II) where their activity was transiently higher or lower than average. States 1 

and 2 (or 3 and 4) showed above (or below) average level activation for zones II and I, respectively, 

therefore were labelled as high (or low) activation states. We referred to states 2 and 4 as high 

synchronization states because the FC connection weights within zone I tended to be stronger than 

states 1 and 3 (low synchronization; average within zone I FC weights = 0.23 ± 0.16 for states 1 and 3 

vs = 0.29 ± 0.18 for states 2 and 4). (B) Global and Local efficiency as measure of robustness in the 

communication pathways can be established between regions and was applied on the FC-states. States 

1 and 3 with low synchronization showed higher global and lower local efficiency compared to high 

synchronization states 2 and 4. (C) States with low synchronization showed decrease in mean dwell-

time across clinical groups (~3.6 TR = 7.4 s, for SNC; ~2.8 TR = 5.7 s, for AD), where the decrease of 

state 1 was significant (blue; p-value ~ 0.032; Mann-Whitney U test). States 2 and 4 showed a slight 

increase from the control groups to the patient groups. A decrease in average dwell-time of states with 
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relatively higher global efficiency indicates that they are less stable. (D) Analogously, the relative 

fraction of time spent in states with low synchronization was decreased in aMCI and AD compared to 

NC. Note the increase from SNC to AD groups for states with high synchronization.  

 

Stability of globally efficient dFC states decreases along the clinical spectrum 

We quantified the stability of dFC both by the longer or shorter duration of transient 

epochs within a given state (average dwell time, Fig. 2C) and by the overall time fraction 

spent within a state (average state census, Fig. 2D). As shown in Fig. 2C, group differences 

were identified in the mean dwell-time of low sync states, with longer dwell-time for the two 

control groups (~3.6 TR = 7.4 s, for SNC at one extreme) and shorter for the MCI and AD 

groups (~2.8 TR = 5.7 s, for AD at the other extreme). However, the mean dwell-time of high 

sync states were not different. 

 Analogously, Fig. 2D shows that the relative fraction of time spent in low sync states 

decreased in aMCI and AD compared to healthy controls (ranging from 62% for AD to 72% 

for SNC). 

In summary, low-sync and globally efficient dFC states were less frequent and more 

transient in aMCI and AD, suggesting a reduction of their overall stability.  

 

Inter-zone dFC dimers are more intermittent in patient than in control groups 

The next step, also following Thompson and Fransson (2016), was to map a state-based 

dFC temporal network to each subject’s resting-state acquisition. To do so, we constructed a 

sequence of network time-frames FC(t) set to be equal to the FC(λ) graph specific for the state 

λ visited at time t (Fig. 3A; see Materials and Methods for details). Thompson and Fransson 

(2016) called such a temporal network a T-graphlet. 

In this approach, each link can assume up to four possible strength values, corresponding to 

its strengths in the FC(λ) associated to each of the four states. Hence, any variability of dFC 

dimers reflects exclusively state-switching dynamics. Figure 3B shows the time-course for a 

representative fluctuating dFC dimer. The temporal organization of link fluctuations (periodic 

or bursty) can be highlighted by a binarization procedure, where a link is set to 1 if its 

instantaneous strength is above the threshold θ, or to 0 otherwise (see Materials and 

Methods). The result of this procedure is shown in Fig. 3C, for a few representative links and 
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a specific choice of threshold. A link whose strength remains steadily above (below) threshold 

will result as constantly –or tonically– “active” (“inactive”). In contrast, a link whose 

fluctuating strength crosses the threshold through the different dFC-state frames will undergo 

several activation and inactivation events at specific threshold crossing times. Yet, there can 

be various types of intermittency, with different temporal statistical properties. The durations 

of different link activation and inactivation epochs could all be roughly similar, resulting in a 

more periodic type of intermittency (blue color link activation rasters in Fig. 3C). 

Alternatively, they could be more variable, stochastically alternating between shorter and 

longer activation epochs (red color rasters in Fig. 3C). The degree of temporal regularity in 

link activation and deactivation dynamics can be evaluated, link-by-link, by the quantification 

of a burstiness coefficient (β). We also define the mean duration of a link’s transient 

activation events as mean activation (μ) and the total fraction of time in which a link is active 

relative to imaging session duration, total active time fraction (τ). The burstiness coefficient is 

bounded in the range -1 ≤ β ≤ 1, with: β < 0, corresponding to near-tonic or periodic link 

activation dynamics; β = 0, corresponding to Poisson (random-like) link activation dynamics; 

and β > 0, corresponding to time-clustered (bursty) events of link activation. Mean activation 

times μ are bounded to the length of time-series. Total active time fraction is also bounded, 

0 ≤ τ ≤ 1.   

 

In this approach, three numbers β (burstiness coefficient), μ (mean activation) and τ (total 

active fraction) fully characterize the binarized dynamics of a link (for a given choice of the 

strength threshold θ). These metrics were evaluated for the two categories of dFC dimers: 

intra-zone (between two regions within either zone I or II) and inter-zone (between one region 

in zone I and one region in zone II). Our results show that these two categories have distinct 

distributions of β, μ and τ, first exemplified in NC subjects (Fig. 3D). Whereas Inter-zone 

dFC dimers are closer to a Poisson-like intermittency (β = -0.229 ± 0.020, median ± m.a.d), 

intra-zone dimers, present a tonic activation time-course (β = -0.890 ± 0.027, median ± 

m.a.d). In addition, inter-zone dimers are also less active (τ = 0.312 ± 0.099 for inter-zone vs. 

τ = 0.855 ± 0.027 for intra-zone dimers) and activate for shorter transient times 

(μ = 34.926 ± 4.439 for inter-zone vs. μ = 178.995 ± 7.378 for intra-zone dimers). These 

results suggest a smaller average strength of inter-zone time-averaged FC than for intra-zone 

FC. Using NC subjects as reference group, we measure indeed an average FC(t) 

strength = 0.083 ± 0.135 for inter-zone and of 0.564 ± 0.155 for intra-zone dimers (average ± 

s.d.). Similar differences were found for all groups (Table S1). The relative differences in β, μ 
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and τ between intra- and inter-zone dimers are maintained over the entire range of possible 

thresholds θ (Fig. S1C for bustiness coefficient). Inter-zone dimers also displayed more 

burstiness, were more transient and less active than intra-zone dimers in all groups.  

 

 

 

Fig. 3. State-based dFC analyses: increase of intermittency in inter-zone links. (A) To construct 

the state-based dFC temporal network, a specific FC(λ) graph was assigned to each BOLD signal 

intensity time-point (we show here 416 time-points = 20 minutes of rsfMRI acquisition, for two 

concatenated subjects). Consequently, there is a time-course for every FC links where they can assume 

up to four possible different strength values (link dynamics due to state switching). (B) The temporal 

organization of link fluctuations can be assessed by determining intervals of link activation and 

inactivation (via a thresholding of dynamic strengths with a global threshold θ on all the links). The 

threshold θ ranges from 1 to 10 % of the maximum strength over the dataset. The figure shows 

binarization for a representative dFC dimer. (C) The degree of temporal regularity in link 

activation/deactivation was assessed by quantifying the burstiness coefficient β, the mean activation 

time μ and the total activation time τ for every link and subject. The burstiness coefficient is bounded 

in the range -1 ≤ β ≤ 1 where it approaches to -1 if the link is tonic/periodic (blue lines), or it can 

approach to 0 if it has Poissonian (random-like) patterns of activation (red lines); β = +1 corresponds 
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to links with bursty-like events of activation. (D) Distributions of β, μ and τ for the NC group, later 

used as reference. Upper and lower rows represent distributions over, respectively, intra zone and inter 

zone links (for an intermediate threshold, 0.0087 < θ < 0.0870). Left: Distribution of burstiness 

coefficients across different thresholds averaged over two subsets of intra- and inter-zone links. The β 

of intra-zone dimers approach to -1 and have more tonic/periodic patterns of activation (β = -

0.890 ± 0.027, median ± m.a.d), while the β inter-zone are closer to 0 and show more Poisson-like 

intermittency (β = -0.229 ± 0.020, median ± m.a.d). Middle: The mean duration μ which is bounded to 

the length of time-series for one subject (208 time-points), for the intra-zone links was longer than 

inter-zone links. Right: Analogously, the normalized total activation time (τ) of intra-zone links were 

longer than inter-zone links. (E) Mean values for the NC group were used as reference and percent 

relative variations were computed for the other SNC, aMCI and AD groups, combining relative values 

for different thresholds (see Materials and Methods). Upper and lower rows refer to intra- and inter-

zone links. Left: Notice the large burstiness increase across groups for the inter-zone links (~1.8% for 

aMCI and ~9% for AD; green stars, p-value < 0.001; Mann-Whitney U-test) compared to a slight 

increase in the burstiness values of intra-zone links (~0.5%). In contrast, SNCs showed a significant 

decrease of ~ -6.5% relative to NC group in the inter-zone links. Comparisons between SNC, aMCI 

and AD for both intra- and inter-zone links were all significant (black stars). Middle: The mean 

activation durations of inter-zone links showed a relative negative decrease of roughly -1% for aMCI 

and AD subjects. Right: Total activation time τ was reduced to roughly -2% in aMCI and AD 

compared to NCs. Thus, temporal dynamics of dFC dimers are more tonic/periodic in SNCs than NCs 

and more intermittent in aMCI and AD subjects, particularly for inter-zone dimers. 

 

To achieve a robust and more precise comparison of β, μ and τ distributions between the 

cohorts (Fig. 3E), we computed percent changes of the three indicators in SNC, aMCI and AD 

groups relatively to normal controls. The advantage of relative comparisons is that they can 

be collated for different threshold values θ, resulting in a threshold-independent analysis. We 

found that, moving from NC to aMCI and AD subjects, many dFC dimer links tended to have 

larger burstiness values. In contrast, moving from NC to SNC subjects, dFC dimers tended to 

be more tonic. These trends of β were smaller yet significant for intra-zone FC dimers (Fig. 

3E), compared to inter-zone dimers, reaching +1.869 ± 1.663 % for aMCI patients, +9.071 ± 

3.001 % for AD patients and -6.404 ± 1.938 % for SNC subjects (Fig. 3E) that had larger 

values. 

These results reinforce the notion of a significant reduction of inter-zone time-averaged FC 

along the clinical spectrum (cf. Table. S1). More importantly and beyond this reduction of 

average strength, our results point to a degradation of the temporal regularity of FC 
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fluctuations. While the total active time fraction τ of inter-zone dFC dimers decreased by less 

than -2% from NC subjects to aMCI and AD patients (Fig. 3E; and even increased for intra-

zone dimers), the burstiness of inter-zone links increased over 10%, showing a real alteration 

in the temporal statistics of link activation, well beyond the trivial decrease necessarily 

induced by the observed reduction of average strength. 

We also observed a significant decrease of the mean activation time μ (Fig. 3E), for both 

intra-zone and inter-zone dFC dimers (-1.275 ± 0.227 % for aMCI and AD subjects compared 

to NCs). For SNC relative to NC, however inter-zone link burstiness decreased and their 

activation time increased (+0.613 ± 0.161 % for SNCs). 

Goh and Barabasi (2008) also defined another metric related to burstiness, the memory 

coefficient. This coefficient λ (see Methods for exact definition) becomes significantly 

positive when autocorrelation exists in the duration of consecutive link activation events, i.e. 

when long- (short-) lasting activation events tend to be followed by activation events which 

also are long (short). Computing λ, we found a weak median autocorrelation in all four 

groups, for both intra- and inter-zone links. Values (see Supplementary Table S2) were small 

but still significant given the large number of activation events. Furthermore, memory was 

decreasing across the four groups from SNC to AD, providing yet another indication of 

increased disorder. 

In summary, the temporal dynamics of dFC dimers between regions in different zones is 

altered along the SNC-AD spectrum from tonic and periodic in SNC to more intermittent in 

aMCI and AD subjects. Together with the finding of altered dwell times and transition 

dynamics between dFC states (Figs. 2C, D), our state-based dFC analyses based on the PBM 

approach suggest that changes towards AD involve a degradation of global integration and an 

increased disorderliness of dynamic functional interactions between zones. 

 

State-free dFC: entangled dFC flows in continuous time  

The PBM approach to dFC analyses reduces the description of FC network reconfiguration 

to the tracking of discrete state switching events. Alternatively, sliding-window approaches 

evaluate the evolution of FC links as a continuous reconfiguration along time. As shown in 

Fig. 4A, all dFC dimers FC(t1) can be evaluated in a time-resolved manner restricting their 

estimation to BOLD signal time-series within a window centered at time t1. The window is 

then shifted at a slightly increased time t1 + δt, providing an updated set of values FC(t1 + δt). 
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The result is a collection of smoothly varying continuous time-series FC(t) for each possible 

dFC dimer (Allen et al., 2014; Battaglia et al., 2020).  

As in the case of node activity time-series, it is possible to study covariance between the 

temporal evolutions of different dimers. The case in which their fluctuations are not 

independent –or, in other words, that the dimers are “entangled”– will be signaled by 

significantly positive or negative correlations between dimers. These correlations can be 

represented graphically by trimer and tetramer diagrams in which the two entangled dimers 

are linked by a spring (Fig. 4A, top left; we will omit in the following to draw this spring, for 

the sake of a clearer visualization). The stronger the correlation between the fluctuations of 

different dFC dimers in a trimer or tetramer, the stronger will be their “entanglement” (i.e., 

metaphorically, the stiffness of the spring).  

 

 

Fig. 4. State-free dFC: Meta-Connectivity. (A) We slid a window of length  = 5 TRs (10 s) with 

no overlap on the BOLD signals from the n considered regions. We then computed n x n FC matrices 
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for each window using Pearson’s correlation between pair of regions. In this way each of the l possible 

pairwise links of FC becomes associated to a continuous time-series of varying FC strength. 

Correlations between these link time-series can be compiled in a l x l Meta-Connectivity (MC) matrix. 

We represent here trimer and tetramers with a spring between the involved dimers, as, in presence of 

meta-connectivity, pairwise links are not free to fluctuate independently. (B) Group average MC 

matrices for the four clinical groups. Louvain algorithm was applied on the MC matrices resulting in 

five modules. (C) A graph representation of the MC for the NC group, together with a chord-diagram 

of FC for the same group. Each node in the MC graph corresponds to a link in the FC graph. The 

different MC graph modules correspond thus to different types of links: MC modules #1, #2 and #3 

include inter-zone links incident, respectively, to medial, anterior and posterior cingulate cortices 

(edges within these modules are thus inter-zone trimers rooted in Zone II); MC module #4 and #5 

include links, respectively, within zones II and I. (D) Modules are also connected between them. The 

relative amount of inter-module meta-links is captured by the global participation coefficient 

(averaged over the five modules) which showed a significant decrease across the clinical groups 

(Mann-Whitney U-test, p < 0.001). 

These strengths of entanglement between FC dimers can be compiled into a meta-

connectivity matrix (MC; Fig. 4A). The notion of MC (Lombardo et al., 2020) is strongly 

related to the edge-centric FC discussed by Faskowitz et al. (2020). The key difference is that 

MC is obtained by using a short smoothing window in the estimation of the stream of FC(t) 

matrices, while edge-centric connectivity captures coincidences between instantaneous 

fluctuations. The denoising brought by the smoothing window allows an easier extraction of 

the modular structure of MC, with respect to edge-centric FC (cf. Lombardo et al., 2020), but 

the two concepts are otherwise equivalent. The choice of window size (here 5 TRs, Materials 

and Methods) was motivated by the fact that the state-based PBM method suggested that 

~90% of epochs within a coherent state lasted less than 5 TRs (Fig. S2A), indicating a fast 

intrinsic timescale of link fluctuation. Furthermore, we can observe post-hoc that the use of 

larger (or smaller) windows would not improve the capability to separate our groups based on 

MC values (Fig. S2B). 

Group-averaged MC matrices are shown in Fig. 4B for the four groups. Their modular 

structure is evident at simple visual inspection. A module in the MC matrix –also called dFC 

module or meta-module (Lombardo et al. (2020))– corresponds to a set of co-fluctuating 

dynamic FC links, i.e. to FC subnetworks whose overall strength waxes and wanes transiently 

along the resting state in an internally synchronous manner. The existence of non-uniform 

MC matrices indicates that the flow of dFC reconfiguration is not mere noise but rather, it is 

organized by specific arrangements of “springs between the links”. In other words, 
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fluctuations of FC dimers are entangled in complex patterns reflecting higher-order 

correlations (non- vanishing trimers and tetramers) between the coordinated activation of 

multiple regions. 

 

dFC flow in patients is less globally entangled 

MC matrices can also be represented as graphs, in which MC-nodes correspond to 

different FC-links and MC-links appear due to the entanglement between the FC-links. An 

example graph embedding is shown in Fig. 4C for the MC matrix of the NC group. Graph 

vertices are color-coded depending on the type of associated FC link (i.e. start and end zones 

of the links, cf. FC diagram with matching colors at the top right of Fig. 4C). Notably, the 

different dFC modules, visible as blocks in the MC matrices of Fig. 4B and as uniform-color 

node communities in the graph of Fig. 4C, are composed of FC dimers with internally 

homogeneous start and ending zones. 

A standard graph-theoretical notion useful when commenting about dimer arrangements 

into trimers and tetramers is the one of incidence: a link is incident to a node (or a node 

incident to a link), if the link is attached to the node (the notion of incidence complements the 

more familiar one of adjacency, where two nodes are said to be adjacent if connected by a 

link). Equipped with this terminology, we call root the common region incident to both the 

dimers within a trimer, while the other two regions form the leaves of the trimer. We can then 

describe the first three dFC modules (#1, #2 and #3) of the MC matrix as including mutually 

entangled FC dimers originating in either one of the Zone II cingulate regions and terminating 

in Zone I. The entanglement of  FC dimers gives thus rise to strong inter-zone trimers with 

“roots” in Zone II and “leaves” reaching out to Zone I regions. The two other dFC modules #4 

and #5 include dimers within Zone I and Zone II, respectively, forming strong within-zone 

trimers or tetramers. Entanglement is thus particularly strong between dimers within a same 

zone and between inter-zone dimers incident on a common root region (in Zone II). 

 Although the MC graph is highly modular, it is not split into disconnected components 

and some entanglement exists also between dimers located in different dFC modules. Inter-

module connections in the MC graph can arise e.g. due to the existence of trimers with a root 

in zone I (entangling dimers across dFC modules #1, #2 and #3) or inter-zone tetramers 

(entangling dimers across dFC modules #4 and #5). In other words, MC reveals some degree 

of global, widespread entanglement between FC dimers, beyond modular entanglement. The 
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strength of such global entanglement is quantified by the so-called average participation 

coefficient of the MC matrix, a graph-theoretical quantity measuring inter-module coupling 

(Guimerà & Amaral, 2005; see Materials and Methods). 

The distribution of MC participation coefficients for each group are shown in Fig. 4D. We 

found that the participation coefficients decreased significantly (Fig. 4D, left; Mann-Whitney 

U-test, p <0.001) from SNC to AD, while overall modularity did not vary significantly (Fig. 

4D, right). These results suggest that, in patients, coordination structure between fluctuations 

of FC dimers is impoverished: global entanglement is disrupted, making dimer fluctuations in 

different modules more random and mutually independent. 

 

Interlude: trimers and tetramers are genuine or “dimers are not enough”! 

Before entering a more detailed and regional specific account of changes to dFC 

organization observed at the regional level along the SNC-to-AD spectrum, it is important to 

stress that trimer and tetramer analyses are not redundant with the dimer-based analyses. 

Indeed, some studies have suggested that correlation between edges (captured by higher-order 

trimer and tetramer in a MC matrix) could just be an automatic byproduct of existing lower-

order dimer interactions (Novelli and Razi, 2022). This can be easily understood through 

some examples. Let consider for instance two strong dimers FCri and FCrj sharing a common 

root region r. If a third strong dimer FCij also exists –closing the triangle of edges (ri), (rj), 

(ij), then it is not surprising that a strong trimer MCri, rj is also detected: indeed, the 

fluctuations of the two leaf regions i and j are coordinated through a transverse dimer 

interaction, i.e. the strength of the trimer would be the byproduct of a triangular motif of 

dimers and would thus be a redundant consequence of them. Analogously, we may consider 

the case of a square motif of dimers FCij, FCjk , FCkl and FCli which could also give rise to 

strong tetramers because of the presence of one or more pairs of strong dimers. In other 

words, the detection of strong trimer and tetramer entries within the MC (or other forms of 

edge-centric FC) is not a sufficient condition for the existence of genuine high-order 

interactions (Battiston et al., 2020) that cannot be explained as stemming from motif 

arrangements of lower-order pairwise interactions. On the contrary, the existence of genuinely 

high-order interactions could be established by detecting trimer or tetramer couplings between 

the dimers in a motif, stronger than the dimers themselves involved in the motif. The question 

that then arises is, what is the structure of MC that we observe in our data? 
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To investigate the genuine or spurious nature of trimer and tetramer interactions, we 

systematically studied the inter-relations between MC and FC entries. First, we define the 

dimer strength FCr  = Σi FCri of a region r as the sum of the strengths of all the dimers 

incident to it. Analogously, we introduced the (root-pinned) trimer strength MCr  = Σij MCri, rj 

of a region r as the sum of the strengths of all the trimers of which r is the root. Conceptually, 

whereas FCr measures the average coordinating influence that the region r exerts on its 

adjacent nodes, MCr can be understood as quantifying the coordinating influence that r exerts 

on its incident links. As shown by Fig. 5A, the correlations between dimer and trimer 

strengths of a region are weak and not significant, both at the global (black lines) and within 

each group (bundles of colored lines) levels, and for both within-zone and inter-zone trimers 

and dimers strengths. Of note, the average strength of between-zone trimers and dimers 

strengths had a larger variance across groups, hence the positively slanted shape of the global 

point cloud when confounding all groups, despite negative trends within each group. 

Although weak, within-subject correlations between FCr and MCr were negative, suggesting 

that some regions can be “meta-hubs” (Lombardo et al., 2020) but not “hubs”, i.e. they can be 

the center of an entangled star subgraph of incident dimers, even if these dimers are 

individually weak and unable to systematically synchronize the fluctuations of adjacent 

nodes. Such meta-hubs could not have been identified through ordinary pairwise FC analyses 

only and manifest thus the existence of a real high-order multi-regional coordination. 
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Fig. 5. State-free dFC: Inter-relations between dFC trimers and FC dimers. We studied whether 

regions with a large FC strength (“FC hubs”, i.e. they are the center of a star of links strong on 

average) also have a large trimer strength (MC “meta-hubs”, i.e. they are the center of a star of links 

whose fluctuations are temporally correlated). (A) To do so we computed the correlation between 

dimer and FC strengths, for both within and between zones trimers and dimers. As shown by the 

scatter plots, these correlations were low, both at the global (light green cloud) and at the single 

clinical group (colored solid lines; green: SNC, yellow: NC, orange: aMCI, red: AD) levels. Within 

each group, they were furthermore moderately negative. Therefore, FC hubness and MC meta-hubness 

tend to be slightly anti-correlated. (B) Trimers were divided into three groups dependent on the 

location of their roots and leaves. We considered genuine a trimer such that the MC between the two 

dimers composing the trimer is stronger than the FC between the trimer leaves. The violin plots at the 

right show fractions of genuine trimers (for all trimers and subjects) as a function of the trimer type. 

For all types, there were substantial fractions of genuine trimers (i.e. higher-order interactions not fully 

explained by the underlying dimer interactions arrangement). See Figure S3 for analogous analyses on 

tetramers. 

 

We then moved to consider how many trimers cannot be considered as a manifestation of 

underlying triangular motifs of dimers. We defined a trimer rooted in a region r to be genuine 

if MCri,rj > FCij , i.e. if the observed trimer strength cannot be fully explained by a strong 

synchronization between the leaves. We then measured the observed fractions of genuine 

trimers. As shown by Fig. 5B, substantial fractions of genuine trimers could be found for all 

trimer types: genuine fractions amounted to 32 ± 7 % for within zone trimers (root and both 

leaves in a same zone) and increased to 43 ± 13 % for inter-zone trimers with leaves in two 

different zones, or 58 ± 9 % for inter-zone trimers with the root in a different zone than the 

leaves. Especially for inter-zone trimers, many trimers could not be trivially explained by the 

existence of triangles of dimers. 

Considering tetramers, we found larger redundancy with dimers. We defined the tetramer 

strength MCij  = Σkl MCij, kl  of a link (ij) as its total entanglement with other links. Figure S3A 

shows that a significant positive correlation existed between the dimer strength FCij of a link 

(ij) and its tetramer strength. That is, the stronger links were also the most entangled. 

Interestingly, several tetramers could still be considered genuine. We defined a tetramer 

genuine when MCij,kl > FCij , i.e. when the two composing dimers were strongly correlated, 

despite (at least one of) the dimers being individually weak. Under this definition, Figure S3B 

shows that up to 55 ± 10 % of tetramers composed of interzone dimers were genuine. 
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We conclude that in general, the information conveyed by trimer and tetramer analyses is 

not completely redundant with the one conveyed by dimers, as many trimer and tetramer 

metrics cannot be explained solely in terms of dimers and thus express actual higher-order 

correlations. 

dFC trimers and tetramers are more impacted in aMCI and AD than FC dimers 

After defining various metrics to quantify the involvement of specific regions and links 

into pairwise and higher-order interactions, as previously described, we then studied how 

dimer, trimer and tetramer strengths varied across the four cohorts in our study. 

First, we found that for both dimer and trimer interactions, the stronger effects were found 

considering inter-zone interactions. Figure 6A reports group differences for inter-zone dimers 

and Figure 6B for inter-zone trimers (mixed-zone or same-zone leaves are not treated 

separately). Results for within-zone dimers and trimers are shown in Figures S4A and S4B, 

respectively. In contrast to within-zone interactions, group-level comparisons for within-zone 

dimer and trimer interactions were not significant.  

 

In general, when averaging over all brain regions (Figs. 6A and 6B, left), general averages 

of dimer and trimer strengths progressively decreased from SNC, to NC, aMCI and AD 

groups. This decrease, notably, was significant when comparing the two extreme SNC and 

AD groups. The effect was particularly strong for inter-zone trimer strengths (p = 0.005, 

Mann-Whitney U-test, Bonferroni correction, for trimers), whose average value for the AD 

group not only decreased but changed its sign as it became negative. In contrast, within-zone 

trimer strengths remained strongly positive (Fig. S4B). This means that, in the AD group, 

several regions are involved in a mixture of negative and positive trimer interactions. Positive 

interactions tend to synchronize the fluctuations of FC links, unlike negative interactions that 

tend to push them in an anti-phase interaction. Furthermore, the mixture of positive and 

negative couplings results in a dynamic conflict scenario, known in the statistical mechanics 

as “frustration” (Vannimenus and Toulouse, 1977) and has been associated to disordered 

organization and a slowed-down relaxation to equilibrium (Mezard et al., 1988). The 

emergence of frustrated inter-zone trimer interactions is a strong qualitative discriminative 

marker of the AD group (see Discussion for possible interpretations of this finding). 

The decrease of inter-zone trimer-strengths and their switch to negativity in the AD group 

is confirmed also when focusing on individual brain regions, rather than the average (Figure 
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6B, right). Remarkably, strong decrease in trimer strengths were observed in regional 

subdivisions of the Temporal Pole and of the Parahippocampal gyrus, along the Hippocampus 

proper and Amygdala. Some of these regions (Entorhinal cortex in the Parahimpocampal 

gyrus and the Hippocampus), are among the first to be affected by neurofibrillary 

accumulation in AD pathology (Braak stages 1 and 2). In these same regions, we found a 

similar trend at the level of dimer strengths even when differences were not significant 

(Figure 6A, right). Of interest, the stronger effects at the level of dimer strengths were found 

in the Cingulate gyrus which are affected by early beta amyloid depositions and later on with 

neurofibrillary accumulation.  Interestingly, the regions exhibiting the strongest effects at the 

level of trimers were not the ones with the strongest effects at the level of dimers (and vice 

versa; Fig. 6A right vs Fig. 6B right). The two analyses reveal thus complementary aspects of 

how pathology affects the spatiotemporal organization of functional interactions. 
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Fig. 6. State-free dFC: strengths of inter-zone FC dimers, trimers and tetramers across clinical 

groups. (A) Average strength of inter-zone FC dimers decreased from SNC-to-AD both globally (left) 

and locally at the level of individual regions (right). At the global level, significant differences were 

found between the SNC and AD groups (p-value = 0.005, Mann-Whitney U-test, Bonferroni 

correction). Locally the decrease was significant in anterior and posterior cingulate gyrus, bilaterally 

(Mann-Whitney U-test, Bonferroni correction). (B) Inter-zone trimer strengths, similarly to FC dimers, 

showed a reduction trend across the groups, both globally (left) and locally (right). At the regional-

level the reductions in dFC trimers were widespread among regions, including early-affected regions 

without noticeable FC strength variations across clinical groups, with an interesting tendency toward 

negative trimer strengths in the AD group, associated to developing “frustration” of higher-order 

interactions in a statistical mechanics sense (and, correspondingly, increased dynamical disorder and 

conflict; see Discussion). Finally, (C-D) tetramers strength showed a significant drop from SNC to 

AD groups in both brain-wide averaged intra-zone (C) and inter-zone (D) subsets. See Figure S4 for 

intra-zone dimer and trimer strengths, not showing significant variations across groups. 

Lastly, we assessed differences on tetramer strengths across groups. In Figure 6 we show 

the average tetramer strengths for intra-zone (Fig. 6C) and inter-zone (Fig. 6D) tetramers. In 

both cases, we observed a significant reduction of tetramer interactions from the SNC, to the 

NC, MCI and AD groups. In the case of inter-zone tetramers, the drop in strength was large in 

the MCI group, with levels close to those in the AD group. 

In summary, AD was associated with extensive reductions of not only dimer strengths, but 

more importantly, trimer and tetramer strengths. Furthermore, inter-group differences were 

salient when considering higher-order trimer and tetramer compared to dimer interactions.  

 

 

Discussion 

We have shown a large variety of changes associated with dFC across the cognitive 

spectrum from cognitively over-performing SNC subjects to AD. The rich set of 

complementary analysis approaches we deployed consistently converge toward a common 

message: AD is associated with a disordering of the rich spatiotemporal fluctuations that 

characterize healthy dFC. 

It is worth noting that while BOLD activity misses many fast neuronal processes due to its 

slow sampling rate, what Functional Connectivity dynamics track are not neural level 

processes but variations of global brain state that can occur on much slower time-scales. So 

dFC with a long TR accounts for variations of the way in which the repertoire of internal 
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states is sampled, more than for variations of neural signals themselves. As a side note, these 

slow fluctuations are also what mean-field connectome-based whole-brain models are fit to 

reproduce via the stochastic sampling of their emergent repertoire of dynamic modes (Hansen 

et al., 2015, Fousek et al., 2022). 

Our results showed that a pertinent description of dFC organization and its changes across 

groups can be formulated in terms of two anatomical zones segregating ventral from dorsal 

areas (Fig. 6D). We found that the system spends less time in states with fluid Zone I 

dynamics and high global integration, visiting them more transiently, while it gets stuck on 

the contrary in less integrated states exhibiting Zone I hypersynchronisation (Fig. 2). At the 

dimer level, pairwise interactions between regions in different zones get more irregularly 

bursty (Fig. 3). At the level of higher order trimers and tetramers, meta-connectivity analysis 

revealed a loss of coordination between the fluctuations of different sets of links, as quantified 

by dropping participation coefficients (Fig. 4D). Trimer interactions between Zone I and Zone 

II, as well as tetramers, were weakened more distinctively than the inter-zone dimer 

interactions. Remarkably, regions in our limbic subnetwork for which conventional dimer 

analyses were not different between groups, showed a remarkably reduced involvement in 

trimer interactions between zones (Fig. 6). Overall, these findings point together toward a 

“loss of structure” in dFC in parallel to the cognitive gradient across groups. This is in 

agreement with previous studies that showed a reduction of the complexity of spontaneous 

fluctuations of coordinated activity (Tait et al., 2020).  

Nevertheless, even though being quite encouraging, a conclusive validation of our findings 

would require using larger cohorts, which preferably contains information on cortical thinning 

and PET scans of tau and Aβ depositions, to test whether their distributions correlate with the 

local network dynamics alterations we observe (thus establishing them as potential 

physiopathological causes of these changes) or not (advocating for alternative explanations, 

see later discussion). Similarly, our choice of regions and parcellations was arbitrary, 

generally based on the successful use of the same parcellation in previous modelling-based 

analyses of the same cohort (Zimmermann et al., 2018b). A better resolution fMRI from 

further cohorts would allow validating our results with finer and more extended parcelations, 

especially for the subcortical regions (Tian et al., 2020) that constitute the core of the limbic 

network on which we have focused.  

Interestingly, our qualitative description emerges from radically different approaches to 

dFC parameterization: a state-based approach (the PBM method by Thompson and Fransson, 
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(2016)); and a state-less approach (the random walk descriptions of dFC by Battaglia et al. 

(2020) and Lombardo et al. (2020)). The PBM method is firmly rooted in the developing field 

of temporal network theory (Holme and Saramäki, 2012). Temporal networks allow 

describing inter-regional communication as it unfolds in time, similarly to a call-center, where 

operators can handle a multitude of brief first-contact calls at certain moments and dedicate 

extensive time to select customers at other times (Kovanen et al., 2013). Or to a primary 

school, where students interact in small groups during lectures and play in mixed larger 

groups in the playground during school-breaks (Gemmetto et al., 2014). Eventually, even 

fluctuations between segregated or integrated states in brain systems at different scales (Shine 

et al., 2016;  Pedreschi et al., 2020) give rise to network dynamics not dissimilar to these 

social systems. Note that our use of terms such as “burstiness” or “activation” (cf. Fig. 3D and 

E) is also mediated from the jargon of temporal networks theory and should not be mistaken 

with the usual meaning of these terms in neuroscience, as they refer to FC link dynamics 

rather than to neuronal firing rates (exactly as we use the adjective “temporal” in the sense of 

“time-dependent” and not in association with “temporal lobe”). 

The dFC random walk approach (Arbabyazd et al., 2020; Battaglia et al., 2020; Lombardo 

et al., 2020; Petkoski et al., 2023) models rs dFC as a temporal network as well, but focuses 

on the variation from one network frame to the next, more than on the geometry of individual 

network frames. dFC is seen as a flow in network space and the non-randomness of network 

reconfiguration was investigated via a time-to-time correlation approach known as Meta-

Connectivity (Lombardo et al., 2020). In a dFC context in which the mode of coordination 

between regions is not frozen in time but changes smoothly, meta-connectivity reveals how 

the fluctuations of one or more regions modulate the degree of coordination between the 

fluctuations of other regions. In other words, meta-connectivity is an indicator of “many-body 

coordination”. Indeed, the terminology of dFC “dimers, trimers, tetramers” is reminiscent of 

perturbative diagrammatic expansions in Statistical Physics, such as the virial expansion 

(Landau and Lifshitz, 1980), in which clusters of increasingly large size account for 

progressively more elaborate and nonlinear patterns of many-body interactions. MC can thus 

be considered yet another form of high-order functional connectivity, adding up to a list of 

other approaches to track higher-order coupling (Torres et al., 2021; Santoro et al., 2023) as 

hypergraph or homological methods (Battiston et al., 2020; Petri and Barrat, 2018; Sizemore 

et al., 2018), which have already identified synergistic aspects of human brain functioning 

(Luppi et al., 2022; Varley et al., 2023). 
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Unfortunately, both of the dFC methods implemented in this study provide results 

depending on specific parameter choices. For instance, concerning the state-less random walk 

approach, the selection of a window-size remains ultimately arbitrary. The window-size 

selected was short in contrast to other studies. However, our statistical analyses suggest that 

this window size results in similar discriminatory power as longer windows (Fig. S2A). 

Furthermore, it is necessary to use short windows because the PBM method suggests that 

dwell-times in consistent FC state epochs are often short and thus dFC is intrinsically fast 

(Fig. S2B). The need to track the covariance of fast FC fluctuations has inspired additional 

approaches analogous to MC, as edge-centric Functional Connectivity (eFC; Faskowitz et al., 

2020). In this approach, covariance is estimated between individual events of instantaneous 

co-fluctuation, without arbitrary windowing. However, we showed in Lombardo et al. (2020) 

that, despite the significant relation between MC and eFC, the use of a sliding-window in the 

MC approach produces a smoothing effect that partially denoises the graph structure of inter-

link meta-connections, allowing a cleaner determination of modules and “meta-hub” nodes 

with large trimer strengths. 

An additional aspect of the state-based PBM approach, is that it involves partially arbitrary 

steps as the choice of a number of states. The retrieved FC states depend on the extracting 

algorithm that depends on the brain parcellation and choice of regions of interest utilized. We 

found four states and increased dwell-times in states with hyper-connectivity within Zone I. 

This finding of increased probability in AD of visiting hyper-connected states is in agreement 

with some state-based dFC studies (Gu et al., 2020), but in contrast with others (Fu et al., 

2019; Schumacher et al., 2019), which instead find higher dwell-times in disconnected states. 

Such discrepancies may arise because in the PBM method clustering of states is performed on 

activation patterns rather than on time-resolved functional networks. Our procedure has the 

advantage of showing that network dynamics is partially dissociated from node dynamics, 

with the possibility of hyper-connected FC modules arising both in presence of higher or 

lower activity of the nodes composing this module (Fig. 2A). It may reduce the chance, 

however, of detecting extreme events along dFC or transient atypical network configurations 

that would be naturally assigned to separate clusters when directly clustering networks. 

Finally, the mentioned studies used reference parcellations with a larger number of regions or 

focusing on more distributed network components, while here we particularly emphasize 

selected regions of interest, such as temporal and paralimbic cortices, known to develop 

epileptiform activity (Bakker et al., 2012; Cretin et al., 2016; Vossel et al., 2013). Thus, 

within the probed sub-system of interest, hypersynchrony may become particularly prominent 
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and over-expressed (hence, the enhanced dwell-time in hyper-connected FC states), a fact that 

has direct pathophysiological relevance. 

Despite the arbitrary steps involved, both approaches independently provide sets of results 

with a high mutual consistency, making unlikely that our analyses reflect exclusively methods 

artefacts. Both methods confirm indeed that a dFC description in terms of two zones is 

pertinent, as the distinction between Zones I and II organizes the modular structure of both FC 

states in the state-based PBM approach (Fig. 2A) and of the MC matrices in the state-free 

dFC random walk approach (Fig. 5B and C). Furthermore, both methods confirm that the 

increased severity of cognitive decline across the four groups correlates with a reduced inter-

zone coordination: more time spent in states with weaker integration (Figs. 2B-C) and 

reduced inter-zone trimer strengths (Fig. 6B). Such semantic agreement is remarkable 

especially given the limitations of our approaches. Meta-connectivity analyses could be 

improved by seeking, beyond plain module detection, for a hierarchical community structure, 

that is often present in large networks (Jeub et al., 2018; Peixoto, 2014). State-based analyses 

could profit of better clustering approaches, as used by Rasero et al. (2018). However, while 

acknowledging these limitations, we found our four states and MC communities to be already 

highly interpretable, in term of the anatomical nature of the entangled links.  

Particularly interesting is the fact that the weakening of inter-zone trimer interactions 

across the four groups decreases to such extent that some of these trimer switch from a 

positive to a negative value. As previously mentioned, the coexistence of negative and 

positive couplings in a graph or a hypergraph of interacting units is referred to in statistical 

physics as “frustration” (Toulouse, 1986), since it is associated with the emergence of 

conflicts preventing smooth relaxation to an equilibrium. To put these results in context, let us 

imagine that a dynamic FC link (a dimer FCij) is positively coupled to a second dimer FCkl 

and negatively coupled to a third dimer FCmn, and that the second and the third dimer 

simultaneously increase in strength (i.e. FCkl and FCmn get larger). Then the dynamics of FCij 

will “freeze” under the contrasting influence of the positive bias applied by FCkl (pushing it to 

assumer stronger values), and the negative bias applied by FCmn (pushing it to assume smaller 

values). Thus, the change of positive to a negative inter-zone influence –as the one signaled 

by the negative inter-zone trimer strengths of many limbic region within Zone I–  gives rise to 

conflicts between the flows of Zone I and Zone II regions in AD patients, in contrast to 

control subjects where the fluctuations of the same regions are naturally synchronized.  
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In particular in the context of cognition, Zone II regions such as the posterior Cingulate 

Cortex (pCC) have been postulated to play a regulatory role on the level of brain meta-

stability, balancing “free-wheeling” internal cognition and  focused outward attention (Leech 

et al., 2012; Leech and Sharp, 2014). In control groups, pCC has strong positive dimer 

coupling and moderately negative trimer coupling with regions in Zone I (Fig. 6). This could 

allow the pCC to quickly coordinate with individual Zone I regions (and share information 

with them via direct positive FC dimers), while simultaneously “lowering the volume” of 

intra-zone I communication (via pCC-rooted negative trimers with Zone I leaves). In AD 

subjects, this subtle equilibrium is lost, resulting potentially in perturbed integration of 

information within and between Zone I regions. Remarkably, pCC is also a key hub of the 

Default Mode Network (Raichle et al., 2001), a system whose dFC had already been 

suggested as a biomarker in the conversion to AD (Jones et al., 2012; Puttaert et al., 2020).  

Interestingly, our analyses on trimer strengths could detect inter-group differences within 

Zone I regions, for which the dimer analyses did not found significant differences. A possible 

explanation for the better sensitivity of trimer-based analyses could trivially be due to a larger 

sample-size, as there were more possible trimers than dimers, resulting in similar average 

strengths but with a lower variance. However, another possibility could be that higher-order 

interactions are readily affected by the pathology process earlier or at a higher degree than 

pairwise interactions. This fact is difficult to assess from our dataset, which is not 

longitudinal. Yet, this possibility is supported by our results showing that higher-order trimers 

and tetramers terms convey in many cases genuinely new information, not redundant with 

dimer analyses. Indeed, even if we agree with other reports (Novelli and Razi, 2022) that 

dimer terms can sometimes explain trimer and tetramer term, we found in addition important 

trimer entanglement among otherwise individually weak dimers (Fig. 5A) that lacked strong 

pairwise interactions between their dangling leaves (Fig. 5B).  Such genuine trimers cannot be 

explained by dimer motifs and describe thus a qualitatively different phenomenology, 

invisible to conventional FC analyses. Similar considerations apply to tetramers (Fig. S3), 

which although generally weaker in strength than dimers and trimers, form an additional and 

pervasive background “medium” which also actively steer coordinated FC dimer fluctuations, 

with an overall influence degraded by the pathological process (Fig. 5C and D). In the future, 

for an even better appreciation of pathology effects on higher-order interactions, one may use 

methods that facilitates the generalization to arbitrarily high orders, even higher than the third 

or the fourth one, such as maximum entropy fitting (Ezaki et al., 2018; Savin and Tkačik, 

2017) or other information-theory approaches (Rosas et al., 2019). 
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Another question is what the mechanistic origin could be of the observed spatio-temporal 

complexity of dFC (and of its alterations). Previous studies have shown that structured dFC 

may emerge as an effect of global brain network dynamics to be tuned at a slightly subcritical 

working point (Arbabyazd et al., 2020; Glomb et al., 2017; Hansen et al., 2015), or as a 

consequence of cascades of neuronal activations (Rabuffo et al., 2021) that occur due to the 

flow on the manifold created by the symmetry breaking of the connectome (Fousek et al., 

2022). However, these studies did not use very precise criteria when referring to their capacity 

to render dFC. In the future, the statistical descriptors of dFC alterations that we introduce 

here, such as regional spectra of trimer and tetramer strengths, may be used as more detailed 

fitting targets for the tuning of mean-field models aiming at explaining the circuit 

mechanisms for the emergence of higher-order interactions. Such models, once fitted, may 

also allow reverse-engineering the physiological changes that are responsible for the 

degradation of spatiotemporal dFC complexity along the SNC-to-AD spectrum.   

It is likely that the dFC alterations we observe between groups are caused at least in part by 

underlying biological causes of AD, as the aggregation of misfolded proteins that cause cell 

death and atrophy (Soto & Pritzkow, 2018). However, not all the symptoms can be explained 

by these mechanisms. Among them, the existence of symptom severity fluctuating across 

hours in a way not accountable for sudden variations of amyloid load (Palop et al., 2006) or, 

yet, the phenomenon of cognitive reserve where subjects with virtually identical or even 

higher amount of amyloid load than others can maintain a very efficient cognition, (cf. 

Snowdon (2005) for the famous “Nun Study” or Rentz et al., (2010) for a review of other 

studies with similar conclusions). These findings suggest that neurodegeneration may coexist 

with compensations of unspecified nature that allow “cognitive software” to operate properly 

despite “hardware damage” (see e.g. Petkoski et al. (2023) for examples of dynamic 

compensation in healthy aging, or Courtiol et al. (2020) for a similar phenomenon in 

epilepsy). Here, we propose the hypothesis that preserved dFC complexity may act as a 

possible form of cognitive reserve. We stress once again that, to check the soundness of this 

hypothesis, future analysis should rely on richer datasets that contain PET scans of tau and Aβ 

depositions, and possibly even a mechanistic model (Stefanovski et al., 2019; 2021) for their 

impact to the neuronal activity. 

Ultimately, the degradation of dFC organizational complexity that we here described may 

not only correlate with cognitive decline but also, eventually, contribute to cause it. Indeed, a 

dFC with a complex organization could be the hallmark of brain dynamics implementing 

“healthy” cognitive processing. Computation can emerge from collective dynamics as long as 
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this dynamics is sufficiently complex, i.e. neither too ordered nor too random (Crutchfield, 

2012; Crutchfield and Mitchell, 1995). More fundamentally, the existence of alternative 

information processing states –transient FC networks?– and of non-random transitions 

between these states –structured and complex dFC switching?– are two necessary conditions 

for whatever information processing system to perform computation (Turing, 1937). A 

speculative hypothesis is thus that the complexity of neural dynamics –and, more specifically 

the complexity of ongoing dFC which is a measurable shadow of hidden neural processes– is 

an instrumental resource for cognitive information processing. Cognitive deficits in pathology 

could arise just in virtue of this resource becoming scarcer, because of less structured and 

more random dynamics. This phenomenon has been speculatively observed in hippocampal 

neuronal assembly dynamics in epilepsy (Clawson et al, 2021). In this line of thinking, 

preserved dFC complexity would act as a “dynamic reserve” allowing the implementation of 

elaborate neural computations (or “software patches”) to compensate for progressing 

neurodegeneration. Analogously, enhanced dynamic complexity could be the substrate for the 

superior cognitive performance achieved by subjects in the SNC group with respect to NC 

subjects. A more direct exploration of the link between dFC complexity and cognitive 

processing in the healthy and pathological brain will be needed to inquire into this suggestive 

hypothesis. 

 

 

Materials and methods 

Participants 

The study included 73 subjects between 70 and 90 years of age from the fourth wave of the 

Sydney Memory and Ageing study (Sachdev et al., 2010; Tsang et al., 2013). The use of the 

database was approved by the Human Research Ethics Committee of the University Texas at 

Dallas. For detailed descriptive summaries on neuropsychological assessments for AD and 

amnesic aMCI, we refer the reader to Zimmermann et al. (2018). 

A specificity of our approach is the stratification of healthy controls with an additional 

“super normal” category putting our focus not only on mechanisms of disease but also on 

mechanisms of “health” based on cognitive performance. Results from twelve 

neuropsychological tests were combined in the following cognitive domains: 

attention/processing speed, memory, language, visuospatial ability, and executive function. In 

brief (Mapstone et al., 2017) we classified cognitive membership for each subject based on 
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the composite Z-scores as supernormal controls (SNC) or normal controls (NC). For this, the 

supernormal (SNC) group was defined as Zmem > 1.35 SD (~90th percentile) and 

Zcog > 0.7 SD. The normal control participants are conservatively defined with Zmem ± 0.7 SD 

(~15th %ile–85th %ile) of the cohort median. The classification of subjects as AD and aMCI 

described in Zimmermann et al was done by consensus included the following:  The amnesic 

MCI group was described by a cognitive decline at least in the memory domain 

(Zmem and/or Zcog < 1.5 SD below normative values), paired to subjective complaint of 

cognitive deficit and without deficits in activities of daily living (ADL). The AD group in 

presence of a diagnosis of Alzheimer's Disease according to DSM-IV criteria (American 

Psychiatric Association, 2000) assessed by a clinical expert panel that included significant 

cognitive decline in several cognitive domains in addition to significant decrease in ADLs 

(American Psychiatric Association, 2000; J. Zimmermann et al., 2018).  

  

fMRI acquisition and preprocessing 

Details about resting state functional MRI acquisition and preprocessing can be found in 

Zimmermann et al. (2018). We briefly mention, as relevant here that during the fMRI 

acquisition, participants were instructed to lie quietly in the scanner with their eyes closed. 

The TR used for the T2* weighted EPI sequence of time-resolved BOLD imaging was 2000 

ms. The acquisition time was of ~7 minutes. Data from all MRI modalities was preprocessed 

using FSL and QA followed Smith et al. (Smith et al., 2004). Subjects were removed if any of 

their scan acquisitions contained excessive artifacts including slice dropouts on the diffusion-

images (defined by zebra-like blurring or complete dropout; Pannek et al., 2012), the presence 

of orbitofrontal EPI signal dropout (Weiskopf et al., 2007), excessive motion on T1-images 

(i.e., ringing), or severe geometric warping. For details of additional fMRI preprocessing 

details (slice-timing correction, realignment and co-registration, linear detrending, head 

motion regression, probabilistic segmentation, spatial smoothing, etc.) please refer to Perry et 

al. (2017). 

 

Network parcellation 

For structural and functional parcellation the AAL atlas was used focused on 16 limbic 

regions (see Fig. 6D) associated with early degeneration in AD according to Braak and Braak 

staging as we did before (Joelle Zimmermann et al., 2018). The regions of interest included: 

Cingulate cortices (anterior, medial and posterior), Parahippocampal gyrus (including 
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Entorhinal cortex), Hippocampus proper, amygdala, and temporal pole (superior and middle). 

In this study, as pertinent given the spatial organization retrieved in many of the analysis 

results, we categorize regions as belonging: either to “Zone I”, including ventral regions 

(superior and medial portion of the temporal pole, parahippocampal gyrus, hippocampus 

proper and amygdala in both hemispheres); or to “Zone II”, which included the six cingulate 

cortical regions (posterior, medial, and anterior) in both hemispheres; Fig. 6D). This 

subdivision in two separate zones allowed us the categorization of network links from dimers 

to higher-order arrangements (trimers, tetramers) determining “within zone” or “between 

zone” interactions based on the relative zone membership of the different nodes involved. We 

remark that the delimitations of Zone I and Zone II are inspired from data-driven 

considerations (the spatial organization of FC state centroids in Figs 2 and MC modules in 

Fig. 4) rather than from a-priori subdivisions.   

 

State-based dynamic Functional Connectivity  

In this study, we applied two complementary dynamic functional connectivity (dFC) 

approaches to investigate non-stationarity of BOLD signals and capture the recurring, time-

varying, functional patterns. The first one was the so called point-based method (PBM) 

introduced by Thompson and Fransson (2016), referred here as state-based dFC. This method 

assumes the existence of a small set of possible discrete FC configurations.  

In this approach, BOLD signals of each subject were concatenated along the temporal 

dimension and transformed to z-scores using Fisher’s z-transformation to stabilize variance 

prior to further analysis. Following Thompson and Fransson (2016), we applied a k-means 

clustering algorithm on the concatenated time-series (Lloyd, 1982), to determine states based 

on global activity patterns (best partition out of 100 repetitions, max iterations 100). The 

optimal number of 4 clusters (k = 4) was validated based on detecting an elbow in the 

variation of the distortion score as a function of changing number of clusters k (Fig. S1B). 

Based on the collections of activity patterns at times assigned to each of the states, we 

computed Pearson correlation matrices, yielding k state-specific FC matrix FC(λ) (λ =1…4). A 

state was hence characterized by the centroid activation pattern of time-frames within the 

state cluster and by its state-specific FC matrix (see Fig. 2A and Fig. S1A). To characterize 

the spatial properties of state-specific FC,  we then used a graph-theoretical approach and 

measured global and local efficiencies (Achard and Bullmore, 2007; Latora and Marchiori, 
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2001) of the four FC(λ) networks (Fig. 2B) using the Brain Connectivity Toolbox (Rubinov 

and Sporns, 2010). 

To study the properties of the sequence of the dynamical states and the resulting temporal 

network dynamics, we followed Thompson and Fransson (2016) to construct a temporal 

network by using as network frame at a time t the graph FC(λ) of the state λ observed at time t. 

This procedure transformed each fMRI session with T timestamps into a temporal network 

with T frames, each including � � ��� � 1�/2 links between each undirected pair of nodes. 

These temporal networks were binarized thresholding links as a function of an arbitrary 

common threshold θ. We then computed various temporal metrics describing network 

dynamics. First, we calculated the mean dwell-time for each subject by averaging the number 

of consecutive time-points belonging to a given state before changing to a different state (Fig. 

2C). Second, we computed the proportion of time spent in each state as measured by 

percentage relative time (state census) (Fig. 2D). Third (for this step, binarization was 

necessary), we measured inter-contact times (ICT) of different links. ICTs for each link was 

defined as the temporal distance between events of link activation (i.e. link strength going 

above threshold) and offset (link strength going below threshold). For each link and each 

value of threshold θ, we computed the mean activation μ as a measure of mean duration of a 

link’s active intervals; the total active time fraction τ which is the total fraction of time in 

which a link was active relative to the duration of the imaging acquisition; and  the burstiness 

coefficient (Goh and Barabási, 2008) assessed by: 


�� �  �� � �
�� � � 

where �� and � are, respectively, standard deviation and the mean of the ICTs along the 

considered temporal network instance. The burstiness coefficient is bounded in the range 

�1 �  
 � 1, such that 
 � �1 indicates a periodic/tonic link activation time-course, 
 � 0 

a sequence with Poisson-like activation, and 
 � 1 corresponds to bursty (time-clustered) 

events of link activation (Fig. 3C). We finally evaluated also the memory coefficient (see 

always Goh and Barabási, 2008), which is the autocorrelation of the sequence of link 

activation times; i.e., if E(l)
s is the duration of the s-th individual activation of link l, then 

memory coefficient for link l is λ(l) = CC(E(l)
s , E

(l)
s+1), where CC denotes normalized Pearson 

correlation. Analogously, the burstiness and memory coefficients were averaged across links 

(or link classes, such as between-zone or within-zone links). 

Unlike the mean dwell-time or state census, mean ICTs and the quantifications computed 

from them, depend on the specific choice of threshold θ. In absence of clear criteria to choose 
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an optimum threshold value, we varied systematically θ in the range  1% ��� � � �
10% ��� and MAX is the global maximum FC entry across the retained FC(λ) state. The 

maximum value was equal to MAX = 0.87, therefore the range was 0.0087 � � � 0.087. 

Absolute values of μ, τ and 
 varied with θ, however we pooled them together across 

different threshold values by computing relative variations (at each fixed θ) with respect to 

reference values (threshold-dependent), based on the NC group. For instance, for burstiness, 

we computed the relative excess burstiness for SNC, aMCI, and AD groups with respect to 

NCs (Fig. 2E) as: 

%
�,�� �  
�,�� � 
��,��

abs�
�,�� � 
��,�� � 

where � = SNC, aMCI, AD and � refer to intra-zone, and subsets of inter-zone links. 

Analogously, we evaluated excess deviations for the SNC, aMCI, and AD relative to the NCs, 

across all possible thresholds, for μ and τ. 

 

 

State-free dynamic Functional Connectivity 

In a second approach, we assumed that FC networks are continually morphing in time, 

without priors on the existence of discrete state switching events, following Battaglia et al. 

(2020), that conceptualized the evolution of FC as a stochastic walk in the high-dimensional 

space of possible network configurations. This stochastic walk however is not trivial, as 

different inter-regional links covary according to a specific higher-order correlation structure 

called meta-connectivity (Lombardo et al., 2020). State-free and smoothly varying dFC 

temporal networks were extracted using a sliding window approach, adopting the random-

walks and meta-connectivity approaches (Battaglia et al., 2020; Lombardo et al., 2020; 

Petkoski et al., 2023) released within the dFCwalk toolbox (Arbabyazd et al., 2020). 

A short window of size � � 5 TRs (10 s) was stepped without overlap over the BOLD 

time-series acquired in each fMRI session and then functional connectivity matrices (FC) 

were computed as window-restricted Pearson’s correlation matrices between BOLD time-

series segments. Each temporal frame provides hence � � ��� � 1�/2 undirected time-

resolved link estimates, which can be collected into a � ! " dFC stream, where T is the total 

number of windows. Each row of this stream provides the time-series of smoothed 

“instantaneous” variation of each FC link and the covariance between these variations can be 
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described by a l x l matrix called the meta-connectivity (MC, Fig. 3B,  (Lombardo et al., 

2020)). The general entry of MC is given by:  

MC������
� %&'' (dFC���, dFC���

,      

for every pair of links (�	
 and ���) formed respectively between the regions (ij) and (mn). 

Our choice of window length � � 5 TRs was guided by: first, the observation from state-

based dFC analyses that ~90% of epochs within a state lasted less than 5 TRs (Fig. S2A), so 

that fast dFC dynamics may be lost using much longer windows; second,   one-way ANOVA 

analysis on MC for a range of windows (from 3 to 20 TRs) showed that the best 

discrimination between SNC, NC, MCI and AD groups was achieved for � � 5 TRs, with 

high between-group standard deviation and low within-group standard deviation (Fig. S2B). 

These analyses together suggest a small window of size � � 5 TRs is both needed and 

sufficient to describe ongoing fast dFC fluctuations. 

Following and based on the correlation matrix between “dimers” (dynamic FC links 

between two regions i and j), the entries MCij, kl of the MC matrix are either computed based 

on the dynamics of four regions involved in the links (ij) and (kl), or at least three regions, 

when the two considered dimers share a common vertex (e.g. i = k). MC can thus be seen as a 

collation of higher-order interactions within the system, involving more than “two parts” 

(tetramers or trimers). In the case of a trimer, the region on which the two dimers converge to 

a “root” region, and the other two regions are the “leaves” of the trimer. In the case of a 

tetramer, each of the two non-incident dimers are called a “base”. 

MC modularity 

We used a graph-theory approach to quantify the communities of MC matrices. MC for all 

subjects were constructed and then averaged for each of the four subject’s groups (Fig. 3B). 

To detect the modular structures of MC, we used the community Louvain algorithm (Rubinov 

and Sporns, 2011).  We used a parameter Γ = 1.4, determined heuristically to yield a modular 

partition naturally interpretable in anatomical terms. To quantify the modularity changes 

across the groups, we computed the index of modularity (Q*) as measure of degree of intra-

module connectivity. Since MC is a signed matrix, we applied disproportionate scaling to the 

positive and negative values of modularity indices to consider a lower contribution of 

negative meta-link weights to the index of modularity (Rubinov and Sporns, 2011). To 

quantify the degree of inter-modular connectivity of group averaged MCs, we computed the 

Participation coefficient of each dFC dimer node following (Guimera, Roger; Amaral et al., 
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2005). This metric can be computed exactly as for an ordinary graph keeping in mind that FC 

links and meta-links among them are, respectively nodes and links in the MC graph. The 

Participation coefficient is close to one when meta-links of a link are distributed uniformly, 

therefore, integrated across MC modules and it is zero when all the meta-links of a link are 

segregated within its own MC module.  

Meta-strengths 

MC describes largely delocalized interactions but, for enhanced interpretability, it is 

important to describe the overall contribution of individual regions to the different higher-

order interactions. Hence, we defined various indices of meta-strength. 

Concerning trimer interaction, a natural definition of the trimer strength of a region j is 

given by: 

MC
 � - - MC	
,
�
�	

 ;   /, � 0 1 

Here j is the root of the summed trimers, hence the name of “root-pinned” trimer strength (to 

contrast it with alternative definitions, not used in this study, where the pinned region may lie 

at a leaf). Analogously, we can define tetramer strengths of a link (ij):  

  MC	
� � - - MC	
,��

��

 ;   /1 0 2� 

denoted as “base-pinned” as the frozen link is a dimer base of the tetramer. 

A trimer is defined between zones or within zones depending on the zones to which its 

leaves belong. If all leaves are in the same zone (independently from where the root is) then 

the trimer is considered within zone, otherwise it is considered between zones. For tetramers 

we distinguished tetramers with base within a zone (if both bases are within zone dimers) or 

base between zones (if both bases are between zones). There are more combinatorial cases for 

tetramers that were ignored in this study for simplicity. 

 

Comparing MC and FC 

We also computed more conventional FC strengths (dimer strengths) for each node as: 

   FC�� � ∑ FC	�	       

where 4 is an index referring to intra-zone if / and ' are in the same zones (Fig. S4A), or 

inter-zone if they belong to different zones (Fig. 5A). To evaluate MC-FC redundancy on the 
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single subject-level, we computed the Pearson’s correlation between roots-pinned trimers and 

FC node-degrees for all nodes and subject (Fig. 4A)., by the following formula: 

∆���������� � %&''6FC�� ,  MC�� 7    

For the tetramers case, the same MC-FC comparison was done for edges computing: 

∆���������� � %&''6FC	
� ,  MC	
�� 7    

on the subject-level and for two intra- and inter-zone subsets (Fig. S3A).  

We also introduced notions of genuine trimer and tetramers, to identify higher-order 

interactions that were not completely explained by existing motifs of dimer interactions. We 

separated trimers into three groups: 1) within zone, 2) leaves in same zone, and 3) leaves in 

two zones. For a given trimer with ' as root and /, 1 as leave regions, we defined the following 

condition: 

�8	�,
� 9 :8	
     

for a trimer to be considered “genuine”, meaning that the trimer interaction coupling / and 1 
via ' is not a mere byproduct of the dimer between / and 1 but it is actually stronger (another 

interpretation is that the interaction path between i and j is “shorter” when the interaction is 

mediated by r than when it is direct).  Analogously, we separated tetramers into two groups: 

1) base in two zones, and 2) base in same zone. For a give tetramer with �/, 1� and �2, �� 

dimers, we the defined the following genuinity condition: 

�8	
,�� 9 :8	
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Supplementary tables  

 

Table S1. Differential impact of pathology on FC dimers and MC trimers and tetramers. 

 

 Intra-zone 

 SNC NC aMCI AD 

FC 0.543�0.170 0.564�0.155 0.549�0.186 0.490�0.180 

Trimers 0.359�0.139 0.348�0.126 0.333�0.146 0.318�0.144 

Tetramers*** 0.222�0.096 0.196�0.087 0.186�0.077 0.156�0.088 

 Inter-zone 

FC** 0.101�0.114 0.083�0.135 0.054�0.126 0.021�0.088 

Trimers** 0.039�0.078 0.019�0.083 0.013�0.072 -0.012�0.052 

Tetramers*** 0.183�0.134 0.187�0.117 0.138�0.137 0.139�0.120 

 

Average strengths of dimer, trimer and tetramer interactions, by clinical group and relation to anatomical zones. 

Values are means � SD; * significantly inter-group variations with P < 0.05; ** with P < 0.01; *** with P < 

0.001 (one-way ANOVA test).  

 

 

Table S2. Memory coefficients for dynamic links in the four groups 
 
 

 Intra-zone 

 SNC NC aMCI AD 

5% 0.1561 0.1310 0.1168 0.1037 

50% 0.1653 0.1383 0.1238 0.1098 

95% 0.1746 0.1457 0.1307 0.1158 

 Inter-zone 

5% 0.1407 0.1391 0.1404 0.0901 

50% 0.1452 0.1428 0.1443 0.0928 

95% 0.1498 0.1465 0.1481 0.0954 

The memory coefficient, by clinical group and relation to anatomical zones. Values are means and the 

confidence intervals; Intra-zone: SNC >>> NC, aMCI >>> NC, AD >>> NC ; Inter-zone : aMCI >>> NC, AD 

>>> NC ; where, >>> means  p-value smaller than 0.001. 
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Supplementary figures 

 

 

 

Fig. S1. Addition information on state-based dFC analyses. (A) Chord diagrams of FC(λ) states as 

an alternative illustration of Fig. 1A. Dark pink regions correspond to Zone I and light pink regions to 

Zone II. States 1 and 3 with low synchronization have stronger inter-zone connections than states 2 

and 4 with high synchronization. (B) We used an elbow criterion based on the Silhouette score to 

guess the optimal number of clusters. The distortion (linked to the distance between cluster centroids) 

slows down its decrease with k while the time of clustering keeps growing, leadings to estimate a 

number of retained clusters around four (C). We show here the dependence of the average burstiness 

coefficient β for all groups on different choices of binarization thresholds θ. which were averaged over 

dFC dimers into two intra- and inter-zone categories of links is shown (colored solid lines; green: 

SNC, yellow: NC, orange: aMCI, red: AD). The fact that the gap and the relative ranking between 

curves for the different groups remain consistent over different thresholds justifies the use of relative 

excess values for the analyses of Figure 3E. 
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Fig. S2. Length of window in MC approach. (A) Distribution of the duration of mean dwell-times in 

a consistent state (from the state-based PBM method), pooled over subjects and states (see Fig 2C). 

We see that ~90% of epochs last less than 5 TRs. (B) We applied one-way ANOVA on average MC 

strengths to determine the existence of inter-group differences. Shown here is the value of the F-

statistic for existence of inter-group differences, as a function of changing window size, from 3TRs to 

20TRs. We performed the analysis separately for intra-zone (green line) and inter-zone (violet line) 

subsets of trimers. Using larger windows would not improve the statistical detection of inter-group 

differences. A short window of length ω = 5TRs is thus already sufficient to capture between-group 

differences, maintaining at the same time the capability to track the very fast dFC fluctuations revealed 

by Fig. S2A.  
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Fig. S3. State-free dFC: Inter-relations between dFC tetramers and FC dimers. (A) Similarly to 

the MC-FC comparison at the trimer level (see Fig. 5A), we compared dimer and tetramer strengths 

now for edges. The scatter plots show values of FC dimers paired with the corresponding base-pinned 

tetramer strength of that dimer (i.e. the overall meta-coupling of that dimer to other remote and non-

incident dimers). Again, values are separated for intra- and inter-zone dimers and tetramers. Unlike for 

trimers, strong dimers are also the ones with the strongest tetramer strengths, as revealed by significant 

positive correlations. (B) Generalizing Fig. 5B for trimers, we also computed the fraction of genuine 

tetramers. The base in same zone subset of tetramers contained a low fraction of genuine tetramers, 

while this fraction raised for tetramers with an inter-zone base.  
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Fig. S4. State-free dFC: intra-zone FC dimers and dFC trimers strengths. (A) and (B) The FC 

dimers and dFC trimers for the intra-zone subset did not show any significant reduction of strength 

from SNC-to-AD group, despite moderately decreasing average values, both globally (left) and locally 

at the single region level (right). 
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