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Abstract

Interventions to mitigate the spread of infectious diseases, while succeeding in their goal,
have economic and social costs associated with them. These limit the duration and intensity
of the interventions. We study a class of interventions which reduce the reproduction number
and find the optimal strength of the intervention which minimises the final epidemic size for an
immunity inducing infection. The intervention works by eliminating the overshoot part of an
epidemic, and avoids a second-wave of infections. We extend the framework by considering a
heterogeneous population and find that the optimal intervention can pose an ethical dilemma
for decision and policy makers. This ethical dilemma is shown to be analogous to the trolley
problem. We apply this optimisation strategy to real world contact data and case fatality rates
from three pandemics to underline the importance of this ethical dilemma in real world scenarios.
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1 Introduction

Infectious disease epidemics have been suppressed and mitigated using a combination of non-pharmaceutical
interventions (NPIs) such as lock downs, social distancing, mask wearing and contact tracing, and
by pharmaceutical interventions such as immunising the population using vaccines. In the absence
of vaccines, NPIs are the primary option. However, NPIs, and in particular, lock downs, can have
significant economic, mental health and social costs associated with them. Instead of protracted
or repeated lock downs (as observed during the COVID-19 pandemic), a one-shot intervention has
been suggested as a possible alternative for diseases which induce immunity upon recovery from
infection. An intense but short-duration lockdown is imposed near the peak of the epidemic to stop
the transmission during the overshoot phase of the epidemic and reduce the final size (total number
of infections) to the herd immunity threshold of the epidemic (number immune in the population
required to stop the growth in infections) [1]. The overshoot phase is when the number of active in-
fections start to decline (effective reproduction number is less than one), but a significant number of
new infections are created. The overshoot is the difference between the final size and herd immunity
threshold. Thus such interventions reduce the overshoot to zero (See Glossary in the supplementary
material for detailed definitions of technical terms).

In this work, we explore an alternative strategy to achieve the same outcome through a pro-
longed but weaker intervention instead of a short and intense intervention. Such an intervention, if
implemented early, will have the added benefit of reducing and delaying the peak of the epidemic as
well, in contrast to the one-shot intervention [1]. As with the one-shot intervention, the rationale
of this strategy is to calibrate the intervention in such a manner that the final size of the mitigated
epidemic is identical to the herd immunity threshold of the original epidemic. Therefore, when the
intervention ends, there is no risk of further introductions developing into future epidemics or a
second wave of infections. We show that this strategy is an optimal strategy for minimising the final
size in the long term.

In the context of COVID-19 modelling, research on optimal interventions has attempted to
include economic costs along with the objective of reducing infections: using detailed agent-based
models [2] and fine-tuned intervention strategies [3, 4], a balance is sought between socio-economic
and health costs to minimise the total cost [5], or the claim that interventions reduce the economic
well-being of a society has been challenged [6, 7]. Optimal interventions have also been studied as
resource allocation problems where a limited stockpile of vaccine is available or a limited ‘amount’
of social distancing is acceptable and the objective is to find the distribution of the intervention that
minimises the reproduction number or a health-related objective function [8, 9, 10].

We do not include economic costs in an explicit manner in our model. The amount of reduction
in R0 can be interpreted as the cost – the higher the reduction in R0, higher the social and economic
cost of intervention. The calculations involved in finding the optimal strategy mainly rely on the
knowledge of the basic reproduction number (or the next generation matrix). We show that in
populations with transmission heterogeneity, implementing an optimal intervention to minimise
the final size could involve a moral/ethical dilemma for decision makers, which is analogous to
the commonly known trolley problem [11, 12]. The dilemma arises as a result of transmission
heterogeneity in the population. We performed a literature search with relevant keywords and were
unable to find any research that examined non-pharmaceutical interventions with an ethical dilemma
(See supplementary material for keywords). A pre-print, ref. [13], had a similar approach in that they
optimised synthetic contact matrices from various European countries to minimise deaths or years
of life lost by achieving herd immunity for the COVID-19 epidemics. Their model and intervention
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scenarios are quite complex: transmission model with six stages of infection, waning immunity
and duration of intervention. They find through numerical methods that increasing transmission
in younger age groups is required to minimise the years of life lost for the COVID-19 epidemics.
Another article, ref. [14], also utilised this strategy of achieving herd immunity in a model with SIR
disease and resource growth dynamics in the context of COVID-19. This study did not explore any
strategies where transmission is increased. Our work differs from the above-mentioned studies as we
explore strategies that increase transmission, in detail and discuss the ethical dilemma. The model
we use has the minimal complexity required to explore the underlying mechanisms of this ethical
dilemma for a wide range of basic reproduction numbers and to show the impact of heterogeneity
and population structure on epidemics and interventions.

In the following sections, we explain the modelling framework, results of our analysis, and con-
clude with a discussion of our modelling assumptions and the ethical dilemma that decision-makers
could face.

2 Methods

We used deterministic SIR and SIR-like models to study the optimal intervention. In sub-section
2.1 and 2.2, we explain the models used for a homogeneous population and for a heterogeneous pop-
ulation, respectively, in addition to describing the calculations for finding the optimal intervention.
In sub-section 2.3 we describe how this optimisation strategy is applied to real-world data and in
sub-section 2.4 we explain how an optimal intervention can be found if there is a delay in the start
of the intervention.

2.1 Homogeneous population

We use an SIR model with the variables s, i and r to represent the fractions of individuals in the
total population who are susceptible, infected and recovered respectively [15, 16]. The population
is assumed to be closed (no entry/exit) and it is normalized such that s+ i+ r = 1.

In this case, the final size of the epidemic is completely determined by the basic reproduction
number R0 and can be obtained using the following equation [15, 16]:

ln
s(t2)

s(t1)
= −R0(r(t2)− r(t1)), (1)

where s(t1) and s(t2) are the fractions of susceptible and r(t1) and r(t2) are the fractions of recovered
individuals in the population at time instants, t1 and t2. Using the conditions i(t1) ≈ 0, r(t1) = 0
and i(t2) ≈ 0, which describe the population at the start and end of an epidemic, the well known
final size relation can be obtained [17, 15, 16, 18]

r(∞) = 1− e−R0r(∞). (2)

An intervention that reduces transmission would affect the basic reproduction number as R0 →
R0(1 − c) where 0 ≤ c ≤ 1. In the case of a homogeneous population, the herd immunity is
achieved when the fraction of susceptible individuals in the population is less than 1

R0
. Therefore,

we substitute s(t2) = 1/R0 and s(t1) = 1 and solve for c. We find the optimal reduction in the basic
reproduction number is

c = 1− lnR0

R0 − 1
. (3)
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We verify this analytical result in section 3.1 by simulating an epidemic where R0 is changed to
R0(1 − c) in the early stage of the epidemic and the intervention is switched off once the active
infections, i(t), decline to a negligible number.

2.2 Heterogeneous population

In a heterogeneous population, individuals may be further stratified into groups. To represent
the fraction of individuals in the total population who belong to a group k, we use the variables
sk, ik and rk such that sk + ik + rk = nk, where nk is the proportion of the population who
belong to group k and

∑
k nk = 1. Heterogeneity in transmission characteristics can affect the

behaviour of epidemics in a significant manner. Epidemics in populations with different transmission
structures but identical reproduction numbers can have widely different final sizes. An epidemic in
a heterogeneous population can be described by the following SIR-like model, assuming identical
duration of infection for all groups and measuring time in the units of the average infection duration,

dsk
dt

= −sk
∑
l

Bklil, (4)

dik
dt

=

(
sk
∑
l

Bklil

)
− ik, (5)

drk
dt

= ik. (6)

The term Bkl is the average number of infectious contacts that an individual in group l causes in
group k. The next generation matrix, G [19], can be constructed for this system with entries:

Gkl(t) = sk(t)Bkl. (7)

The term Gkl is the expected number of infections that would be caused in fully susceptible group k
by an infected individual in group l. The dominant eigenvalue of G gives the reproduction number
of the system [19].

The epidemic sizes for this model are given by [17, 18]

rk(∞) = nk(1− e−
∑

l Bklrl(∞)). (8)

It should be noted that we normalize the final size for the heterogeneous population to be the number
of infections in a group as a fraction of the total population.

The recipe for optimisation is similar to the homogeneous case. In the heterogeneous case, we
find the level set where the reproduction number is equal to one (analytically in the case of two
groups and numerically for more groups), which is the infinite set of values of sk that would achieve
the herd immunity threshold. Then, we optimise subject to this constraint to find the values, s∗k,
that minimises the cost function (the final size or a weighted sum of final sizes of each group). From
this we obtain r∗k = nk − s∗k. Finding the level set requires finding the proportion of susceptibles of
each group, sk, which would ensure that the reproduction number (top eigenvalue of G) is equal to
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one. In equation (8), the final sizes, rk(∞), can be replaced by the optimal final sizes, r∗k, to find
the optimal contact matrix. Comparing the original contact matrix with the optimal one tells us
how the contact structure of a population must be changed in order to obtain the optimal outcome.

A crucial point to note here is that unlike with the homogeneous population, it is possible for
certain elements of B and for certain final sizes to increase, r∗k > rk(∞), in order to minimise the
cost function. In other words, the optimal intervention corresponds to an increase in transmission
among certain groups or among pairs of groups. In such cases, the change in reproduction number
can not be a measure of the economic or social cost. Nonetheless, this leads to some interesting
results which are presented in the next section.

A weighted cost function which is a weighted sum of the final sizes in each group is useful when we
are interested in minimising a certain outcome of infections rather than the number of infections, for
example, deaths or hospitalisations. The optimisation problem of finding the state of the population
which minimises a general objective function and fulfils the herd immunity condition can be solved
semi-analytically for the case of two groups and is presented in the supplementary material. For
more than two groups, we solve the optimisation problem numerically.

A schematic diagram of the optimisation procedure for both homogeneous and heterogeneous
population is shown in Supplementary Figure 6.

2.3 Real world contact matrix

We used a contact matrix calculated using surveys from a sample population stratified into six age
groups in the Netherlands [20]. The contact matrix scaled by a disease specific parameter gives the
next generation matrix. Using the next generation matrix and the age distribution, the optimal
intervention for a given cost function can be obtained. We calculated the optimal intervention using
this contact matrix for a range of R0 values and four different cost function weightings (an unbiased
cost function and three from observed case fatality rates (CFRs) of 2009 pandemic in Mexico and
1918 pandemic in the USA and COVID-19 pandemic) [21, 22, 23]. The age groups, their population
sizes and CFRs are shown in Table 1. Note that the age stratification used in the CFR study for the
1918 pandemic do not match exactly with the age groups of the contact matrix and furthermore the
estimates were extracted from figures. For the 2009 pandemic and COVID-19, CFR was reported
with a high age resolution but the size of the age groups was not immediately available. Due to
lack of data on infection fatality rates, we are using the CFRs as a proxy for the probability that an
infected individual dies. Thus the CFR values and the results relying on them are meant to be for
illustration purposes only.

The severity of the dilemma in the optimal intervention can be quantified through the number
of infections (or deaths) caused due to the intervention per infection (or death) prevented. It can
be calculated using

Severity of dilemma (for infections) =
Sum of all increases in final sizes

Sum of all the decreases in final size
, (9)

Severity of dilemma (for deaths) =
Sum of all increases in deaths

Sum of all decreases in deaths
(10)
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Age group
(years) Group name Group size

(Netherlands)

CFR
(COVID-19/

multinational)

CFR
(2009 flu/
Mexico)

CFR
(1918 flu/

USA)
1-5 Children 0.06 0.000031 0.0096 0.0168
6-12 Pre-adolescents 0.09 0.000008 0.0038 0.0047
13-19 Adolescents 0.11 0.000028 0.004 0.0082
20-39 Young adults 0.34 0.000214 0.026 0.0272
40-59 Middle adults 0.23 0.001807 0.054 0.0149
60 + Elderly 0.17 0.029520 0.059 0.0378

Table 1: The age groups used in the contact matrix from ref. [20], their names used in this article,
size of the group (as a proportion of the total population), approximate estimates of case fatality
rates (CFRs) obtained from refs. [21, 22, 23]

2.4 Delayed intervention in a homogeneous population

In the above sections, we have assumed that the basic reproduction (or the next generation matrix)
is a known entity and therefore an intervention is implemented right at the start of the epidemic.
Calculating the strength of the optimal intervention requires knowledge of the reproduction number,
the intervention would have to start after the epidemic has been established and enough observational
data has been collected to calculate the reproduction number. While the basic principle would still
hold, a delay could change the strength of the optimal intervention. To find the optimal strength
for a delayed intervention, we use the final size relation with the final state s = 1/R0, i = 0 and
an initial arbitrary state sL, iL at a time instant tL when the intervention begins. We replace basic
reproduction number in equation (1) with R0(1− c) and solve for

c = 1− ln sLR0

R0

(
sL + iL − 1

R0

) . (11)

Using a numerical solution of the SIR equations, sL and iL can be found and the above equation
can be solved for c. The equation (11) reduces to equation (3) when sL = 1, iL = 0, and c = 1
when sL = 1/R0 and iL > 0. If sL < 1

R0
, then c > 1 which is biologically meaningless and reflects

the fact that the population is already below the herd immunity threshold.

2.5 Model assumptions

The homogeneous model assumes that all individuals in the population are identical and every indi-
vidual is equally likely to come in contact with every other individual. To introduce some complexity
in this model, we use the heterogeneous model where individuals are stratified into homogeneous
groups. We are using deterministic differential equation models with continuous variables to simu-
late the dynamics. This means that the number of active infections can decay exponentially but can
never reach zero. Thus, the models used here can not simulate a scenario in which an intervention
eliminates a disease before reaching herd immunity threshold, as was the case in Australia, New
Zealand, Hong Kong, mainland China, Singapore and several other jurisdictions (broadly known as
the Zero-COVID strategy). Throughout the paper, we use the Susceptible → Infected → Recov-
ered (SIR) disease progression. Therefore, our analysis applies to diseases that induce long term
immunity or for which re-infection is not possible.
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3 Results

3.1 Homogeneous population

Simulation of the SIR model differential equations confirms our assertion in equation (3). As shown
in Figure 1, a ‘weak’ intervention reduces the final size but does not reduce the overshoot to zero. A
strong intervention, on the other hand, reduces the final size as long as the intervention is in place
but a resurgence occurs as soon as the intervention ends. The final health outcome under the strong
intervention is worse than (or at least comparable to) the weak intervention, while incurring a higher
social and economic cost during the intervention. The resurgence occurs because the small number
of infections and sufficient number of susceptibles remaining in the population lead to new infections
after the intervention is lifted. An intervention which is strong enough to minimise the final number
of infections, while avoiding a resurgence, is the one whose final size (during the intervention) matches
the herd immunity threshold of the unmitigated epidemic. This is the optimal intervention.

Figure 1: (A) Simulation of four types of intervention for an epidemic with R0 = 1.5 in a homoge-
neous population: (i) No intervention – leads to largest final size, (ii) Weak intervention – reduces
the final size, (iii) Strong intervention – reduces final size during the intervention, but leads to a
resurgence in infections once the intervention is removed, (iv) A moderate intervention but optimal
– final size is same as the herd immunity threshold. (B) The global minima for the final size shows
that an optimal intervention strength exists. The resurgence of infections under a strong sub-optimal
intervention is subject to certain assumptions which are discussed in the text. (C) The final size
without any intervention (equation 2) and the final size with optimal intervention (same as the herd
immunity threshold for Recovered state) is shown against the basic reproduction number.

3.2 Heterogeneous population

Introducing heterogeneity in the model opens up a space of interventions that is not seen in the
homogeneous case. In the homogeneous case, the herd immunity threshold is defined by a single
point, but in the case of a structured population, the threshold is given by a collection of points.
This can be seen by considering the following: the condition required for reaching herd immunity is
that the typical infected individual must not infect more than one individual. In the homogeneous
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case, one can randomly choose a sufficient number of individuals and immunise them to ensure
that the number of infectious contacts is less than one. If the population is structured, the typical
infected individual must not infect more than one individual, on an average. As long as the average
number of infectious contacts is less than one, herd immunity is achieved, irrespective of how the
immunisation has been distributed among the various groups in the population. Thus there are
infinitely many interventions that lead to herd immunity and prevent resurgence. Out of all these
possibilities, we define the optimal intervention to be the one which minimises the final size.

When the population can be described using two sub-populations or groups, the optimal inter-
vention belongs to one of the following types: the first group is fully infected, the second group is
fully infected, or none of the groups are fully infected. This creates the possibility that under the
optimal intervention, the number of infections in one of the groups is larger than what would have
occurred in the unmitigated epidemic, subject to the structure of the population. In Figure 2 we
show an example in which this occurs. This leads to an ethical dilemma wherein a certain group
in the population incurs a higher cost (due to an increased number of infections) than would have
happened without the intervention in order to minimise the cost for the whole population. Thus,
the non linearity of the infectious disease dynamics, combined with population structure, lead to
an ethical dilemma for policy/decision-makers which is analogous to the well-known trolley prob-
lem [11, 12] (see Figure 2). The trolley problem involves a setup in which a train is going to hit
a group of people who are lying on the tracks. The train can not be stopped, but a lever can be
pulled to switch the train onto a different track on which fewer people are lying. The dilemma that
is posed by this situation is whether it is ethical to save more lives by ending a lesser number of,
but, different lives?

Diseases often lead to a worse health outcome (mortality rate, hospitalisation rate, chance of
leading to chronic conditions etc.) in certain groups of the population (the elderly age groups for
instance). Instead of minimising the final size of the epidemic (which is the sum of final sizes in
each group), it may be more prudent to minimise a cost function which is a linear combination of
the final sizes in the groups, such that a group with a worse outcome of infection is given a higher
weight in the cost function. As changing the cost function would change the optimal solution, the
cost function plays a role in determining the ethical dilemma. For the example shown in Figure 2,
the ethical dilemma is no longer present if a weighted cost function is used as infections are being
reduced in both groups.

3.3 Real world contact matrix

When the basic reproduction number is close to one, at least one of the age groups is required to
endure a higher final size for all the cost functions we used (Figure 3 and Supplementary Figures
3, 4 and 5). The cost functions are weighted using estimates of case fatality rates (CFRs) of the
2009 influenza pandemic, the 1918 influenza pandemic, and COVID-19 pandemic [21, 22, 23]. In
addition to looking at the final sizes and how they change in various age groups, we can use the
case fatality rates to estimate the deaths in each of the age groups and how they change with the
optimal intervention.

For the COVID-19 pandemic, pre-adolescents have the lowest CFR, and it increases for higher
age groups (Figure 3 and Table 1). Figure 3 (columns B and C) shows that as R0 is increased,
the age groups start to experience an increase in infections (relative to no intervention case) in the
following order – pre-adolescents, adolescents, children and finally young adults, which is also the
order in which the CFR increases. Thus, the CFR may explain the nature of the ethical dilemma.
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Figure 2: Population structure and non linearity of infectious disease dynamics lead to an ethical
dilemma. (A) A plot of the infections in the two groups of the population. The corresponding cost
function and next generation matrix are shown. The red curve shows the herd immunity threshold,
the cross shows the final size without an intervention, the circle shows the final size if the optimal
intervention is used. (B) A comparison of the interventions when the cost functions are different.
The first plot shows that the optimal intervention leads to an increase in the number of infections in
the first group. It is an example of the ethical dilemma of implementing the optimal intervention,
which is explained further in (C). The second figure shows the plot for the cost function when the
first group is given twice the weight as the second group, which means prevention of infections
in the first group takes precedence over the second group. In this case, the intervention reduces
the infections in both the groups. (C) The ethical dilemma involved in implementing optimal
interventions is analogous to the well-known ‘trolley problem’. If the decision-maker does not act,
the incoming epidemic (represented as a trolley) is going to cause many infections. If the decision-
maker implements an optimal intervention (switches the tracks), the number of infections in the
total population is minimised, but someone who otherwise would have been safe from infection,
becomes infected (shown by the increased number of infections of group (II)).
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Figure 3: COVID-19 pandemic: A real-world contact matrix from a sample of the Dutch population
is used to determine the effect of optimal intervention on different age groups for a range of R0

values. Estimates of case fatality rates for the COVID-19 pandemic in Mexico have been used to
weight the cost function (for minimising total deaths in the population) [23]. Rows (1) and (2) show
the plots for infections and deaths respectively. Column (A) shows the epidemic size and deaths if
no intervention was performed. Column (B) shows the relative change in epidemic size and deaths
under optimal intervention. Column (C) shows the magnitude of change in epidemic size and deaths
under optimal intervention. Column (D) shows the severity of the ethical dilemma (see main text
for definition) with R0. The legend for columns (A, B, C) shows age groups and the number in
bracket shows the weight assigned to it in the cost function. These weights are proportional to the
case fatality rates.

10

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 18, 2023. ; https://doi.org/10.1101/2023.02.18.23286135doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.18.23286135
http://creativecommons.org/licenses/by-nc/4.0/


At R0 ≈ 1.3, the severity of ethical dilemma is highest, with 0.55 new infections for every infection
prevented and 0.0025 new deaths for every death prevented (panels 1D and 2D of Figure 3). The
severity for deaths is quite low compared to other pandemics because of the large disparity in the
CFR across age for COVID-19.

For the 2009 flu pandemic (Supplementary Figure 4), pre-adolescents have the lowest CFR, and
it increases with age (Supplementary Figure 4 and Table 1). Supplementary Figure 4 (columns B
and C) shows that as R0 is increased, the age groups start to experience an increase in infections
(relative to no intervention case) in the following order – adolescents, pre-adolescents, and finally
young adults, which is not in the increasing order of CFRs. Thus, the CFR does not explain the
nature of the ethical dilemma. For infections, the severity of dilemma is highest at about R0 = 1.3,
where 0.44 new infections are created for every infection prevented. For deaths, the dilemma is
the most severe at both R0 = 1.3 and 2.25, where 0.045 new deaths are caused for every death
prevented.

For the 1918 flu, the CFR with age is often described as a ‘W’ shaped curve (Supplementary
Figure 5 and Table 1). Supplementary Figure 5 (columns B and C) shows that as R0 is increased,
the age groups start to experience an increase in infections (relative to no intervention case) in the
following order – adolescents, pre-adolescents, and finally middle adults, which is also the order in
which the CFR increases. Thus, the CFR may explain the nature of the ethical dilemma. At the
peak of severity (R0 ≈ 1.3), 0.47 new infections are created for each infection prevented and 0.12
new deaths for every death prevented.

For realistic CFRs, the dilemma in terms of infections is quite severe at its worst, with almost
1 person getting infected for protecting two individuals from getting infected. Some features of the
ethical dilemma are common to all three pandemics. As R0 is increased, the severity of dilemma
never quite reaches zero but seems to approach zero in a non-monotonic manner and pre-adolescents
and adolescents always endure an increase in infections. The nature of the ethical dilemma may be
explained by the CFRs of the age-groups in the 1918 and COVID-19 case, but not in the case of the
2009 pandemic.

For an unbiased cost function (Supplementary Figure 3), we see very different results. The
severity of dilemma is zero for most of the R0 range. In the space where the dilemma does occur,
only the young adults and adolescents experience an increase in final size. At the most severe ethical
dilemma, 0.175 new infections are created for every infection prevented.

3.4 Delayed intervention

We calculate the optimal strength of the intervention and simulate the model to confirm the math-
ematical analysis in Section 2.4. Using equation (11) we observe that the strength of optimal
intervention increases in a super-linear manner with the duration of delay. The results are presented
in Figure 4. As the population approaches the herd-immunity threshold, the strength of intervention
approaches one – corresponding to the one-shot intervention [1].

4 Discussion

In this work, we have examined a strategy of optimal intervention which allows the epidemic to
cause just enough infections to induce herd immunity, eliminate the overshoot, and prevent future
introductions from becoming epidemics. In addition to minimising the final size, this intervention
would also slow down the growth of the epidemic and reduce the peak, which allows time to develop
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Figure 4: Left: The time series of cumulative infections (i + r) for optimally controlled epidemics
for a range of delays in the intervention. The vertical dash-dot lines show the time at which the
intervention starts, and its corresponding time series is represented by the same color. Right:
The strength of optimal intervention, c, plotted against the delay in intervention tL using equation
(11). The super-linear increase in the strength, c, shows the need for an early implementation.
Parameters: Homogeneous SIR model with basic reproduction number R0 = 1.5 and γ = 1.
Intervention is implemented for a duration of 50 time units.

treatments and increase healthcare capacity. For a homogeneous population, the results are straight-
forward – decrease the transmission by a pre-determined amount so that the final size reaches the
herd immunity threshold and no more. A sensitivity analysis of the homogeneous model and inter-
vention strategy was performed where the optimal strength of intervention and the resulting final
size were computed for both the actual value of R0 and a ‘measured’ value of R0 with four different
error rates (See Supplementary Figure 2). We find that in both underestimation and overestimation
of R0, the epidemic size is larger, but it is better to overestimate R0.

In the case of heterogeneous transmission, our results indicate that the optimal strategy may
require increasing infection in some of the groups and decreasing it in others, in order to minimise
the final size for the whole population. This is analogous to the trolley problem, and it calls for a
discussion around the ethics of subjecting certain groups to a higher rate of disease incidence, and
the feasibility of this policy. If increasing transmission in certain groups is not viable either due to
operational reasons or ethical considerations, herd immunity can still be achieved (and resurgence
prevented) by reducing transmission in all groups. We have also explored the role of the cost
function in determining the ethical dilemma by weighting the final sizes of different age groups using
case fatality rates of the 1918, 2009 and COVID-19 pandemic and shown that the ethical dilemma
happens in all three cases. Our work shows that even without an explicit consideration of economic
and social costs of an intervention, there are challenging ethical questions to be answered for the
first order problem of minimising the final size.

The optimal interventions shown for the 1918, 2009, and COVID-19 pandemics are not meant
to be policy advice because the estimates of CFR were approximate and also because influenza and
COVID-19 can be described by an SIR-like model only when new variants of the pathogen do not
emerge. They are meant to show that the ethical dilemma we have discussed in this paper is not
merely a theoretical observation in the parameter space of the mathematical model but a possibility
that one should be aware of for future epidemics and pandemics.

Ethical dilemmas in public health are well known, and there have been debates on prioritisation
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based on age for vaccination during the COVID-19 pandemic [24]. Prioritising one age group means
that another group receives less protection, but under no circumstances does a discriminatory vaccine
distribution policy increase the chances of infection in a group compared to the no vaccine scenario.
Thus the dilemma presented in our paper is fundamentally different to a vaccine allocation dilemma
and is equivalent to the trolley problem. We have used mathematical modelling to show that optimal
interventions may require a policy-maker to contend with a trolley problem like situation where the
epidemic under an optimal intervention will infect someone who would not have been affected if
there was no intervention. We found two works which use an intervention similar to ours, but they
did not consider increase in transmission as a strategy for optimal outcomes [14] or did not discuss
the ethical implications [13]. Therefore, we believe that our paper contributes to an important point
of discussion with regards to optimality of non-pharmaceutical interventions.

In addition to the ethical dilemma shown through our modelling here, interventions which require
increasing transmission prompt an ethical discussion in relation to disadvantaged groups. Cultural,
economic and social conditions factor into the contact structure of any human population – a high
number of contacts due to living in close spaces, a high susceptibility to infection due to preexisting
health conditions, or poor access to healthcare facilities, etc. Mathematical models of epidemics
can throw light on possible choices of policy and may even help us pick the ones that lead to
optimal outcomes. But the decisions made by policymakers are intertwined with political will,
their popularity, and social attitudes. These eventually determine whether a particular intervention
is favoured by a decision-making body [25, 26]. Disadvantaged groups, across the world, do not
exercise sufficient political power to represent their interests in decision making bodies. In such a
case, a decision-making body may find it convenient to subject a disadvantaged group to a higher
final size in order to decrease the net final size for the whole population and achieve herd immunity.
The intervention strategy presented here, always carries such risks with it; and representation of
disadvantaged groups thus becomes essential, especially for a policy such as this one.

There are also some practical limitations to the strategy presented here. There would be a
natural tendency for individuals to protect themselves from getting infected even if interventions are
not in place, so asking individuals to increase their transmission may not be a feasible strategy [27].
The optimal interventions could require a group of individuals to fully isolate themselves from the
rest of the population. Such interventions are difficult to implement, as there would always be a
small possibility for infections to be introduced into the isolated group [27]. If the transmission in
other groups is increased, it would imply a larger chance of introduction into the isolated group.

We have assumed an SIR structure for disease progression in an individual. But, as long as the
disease can be reasonably described by a model in which individuals do not become susceptible after
getting infected, we would expect our results to be valid. A crucial detail that we have ignored is
the stochastic and discrete nature of disease spread since it can capture the elimination behaviour
of outbreaks, i.e., it can incorporate the difference between existence and absence of infections. The
deterministic assumption and the use of continuous variables in our model means that after an
intervention is over, the small number of infections present in the population will lead to another
epidemic if herd immunity is not achieved (shown in Figure 1, strong intervention). This however, is
one of the possible outcomes. It is possible that the intervention completely eliminates all infections
in the population, in which case a new epidemic does not result from any residual infections. However,
even in this case the population remains vulnerable to an epidemic due to lack of herd immunity.
Thus, a new epidemic can occur if new infectious individuals are introduced into the population.
Another possibility is that the epidemic may get established with a delay due to the stochastic
dynamics. Factors around contact-tracing and surveillance capacity (to eliminate the disease) and
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travel restrictions (to prevent introduction of new infections) are important for the selecting the
optimal policy response, in addition to the results presented here.
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