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ABSTRACT 

International monitoring organizations call for child mortality indicators to be disaggregated by 

gender. However, there remains a paucity of studies, especially, from the sub-Saharan region aimed 

at producing accurate forecasts of child mortality indicators with their sex variations. This study 

aims at investigating disparities in indicators of childhood mortality rates by sex in Ghana by 

employing vector autoregressive (VAR) model to analyze jointly annual recorded data on total, 

male and female under-five mortality rates (TU5MR, MU5MR, FU5MR, respectively). The results 

show gradual declining under-five mortality trends among sexes in both the historical and forecasted 

rates. The trivariate traditional and instantaneous Granger causality analyses found that any of the 

mortality indicators Granger causes the other two combinations, except TU5MR to MU5MR and 

FU5MR. The forecast error variance decomposition analyses revealed that FU5MR was the most 

exogenous variable while long-term impulse response function analyses indicated that unit shocks 

in FU5MR significantly increased TU5MR. The VAR(2) model forecast constructed revealed that 

contrary to recent predictions based on wider interval data derived from demographic health 

surveys, Ghana may meet the SDG 3.2.2 if ongoing efforts are sustained and that focusing policies 

and interventions on reducing FU5MR would largely contribute to reducing TU5MR in Ghana. 

 

Keywords:  Child mortality; under-five mortality rate; sex disparities; vector autoregression; 

forecasting 
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1. Introduction 

Sex remains a primary factor for disaggregating indicators of childhood mortality for analytic and 

monitoring purposes [1]. Most countries worldwide have seen substantial reductions in childhood 

mortality rates in recent times. Despite this, it remains crucial to ensure that these survival 

improvements are equitable to children as much as possible. Up to the age of 5 years, survival tends 

to favor girls over boys, with a mortality sex ratio greater than 1 [2]. Due to changes in the 

distributions of associated causes of death, generally advantageous to girls at lower mortality rates, 

their survival tends to increase as total mortality rates decline. After early infancy, however, girls 

do not show the same advantages in survival due to infectious diseases; thus, sex differentials in 

child mortality tend to be lower than those of infant mortality, with those of under-five mortality 

taking values between the two [3]. Excess female mortality could indicate the presence of factors 

outweighing the expected biological survivorship conferred on girls during these ages, as would occur 

if girls are subjected to unequal access to healthcare, nutrition, or sex-related biases because of 

community preference for males [4]. On the other hand, higher-than-expected sex mortality ratios, 

indicative of inequities against male children, might point to a change in mortality to an extent 

greater than biologically expected. For instance, Drevenstedt et al. [5] identified that a declining 

prevalence of infectious diseases and a concurrent rise in perinatal causes led to an increase in sex 

ratios of infant mortality, following which improvements in obstetric and perinatal care resulted in 

its decline. 

 Differences in sex mortality ratio have been attributed to an interplay among biological, social, 

and environmental factors [5]. Despite contributing to sex disparities in adult mortality indicators, 

lifestyle and behavioral factors are improbable determinants of infant mortality [5]. Further, other 

determinants of typically high or low mortality sex ratios may exist, including disparities in the 

treatment of girls compared to boys as reported in studies conducted in Asian countries [6,7]. 

Identifying countries with similarly unusual levels of sex disparities in childhood mortality, 

suggesting possible differences in treatment, is key to monitoring sex discrimination [2]. Also, 

although the sex mortality ratio is generally considered an important indicator of equity in the 

healthcare of children, its effective use has been restricted by the lack of clear-cut ideal ratios [8]. 

One of the earliest applications of vector autoregressive (VAR) modeling to child mortality 

investigated the dynamic relationship between infant mortality and fertility, and their connection 

with demographic transition [9]. More recently, VAR models have been applied in econometrics to 
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investigate the impact of healthcare spending on infant and child mortality [10] and in public health 

to identify the roles played by socioeconomic well-being and female sex on childhood mortality in 

Bangladesh [11]. Rajab et al. [12] examined the spread of COVID-19 infection in the UAE, Saudi 

Arabia, and Kuwait using a VAR model to jointly forecast the number of new cases and deaths 

while Li and Lu [13] proposed a spatio-temporal version of VAR (STAR) to forecast mortality rates 

according to age, depending on historical and neighboring values. 

 To the best of our knowledge, no previous study has focused on trends in long-term sex 

disparities in childhood mortality indicators in Ghana or has aimed at forecasting these disparities. 

Understandably, such a task aimed at estimating trends in sex disparities, especially in a setting 

such as Ghana with unreliable vital registration services, cannot be expected to be straightforward, 

and these data are either limited or noisy compared to total estimates without regard to sex. The 

present article, therefore, aims to fill the existing gap in the literature by utilizing data from the 

UNICEF Data Warehouse [14] from 1970 to 2020 to examine trends in sex differentials in under-

five mortality rate (U5MR) using a VAR model and perform a 5-year forecast of each indicator to 

inform the effectiveness of previous and existing policies directed toward reducing inequalities in 

childhood mortality. VAR is typically used to model the joint dynamic behavior of multivariate 

time series of events such as deaths or infectious diseases. The VAR model generalizes the univariate 

autoregressive model for predicting time series of U5MRs as a vector, considering each component 

or variable as a linear function of historical lags in its series and those of other variables. The 

advantage of the VAR model is that it allowed us to incorporate total and sex-wise mortality rates 

in a single model, thereby yielding a much better paradigm for prediction [12]. In this case, the time 

series of total, male, and female U5MRs (TU5MR, MU5MR, and FU5MR, respectively) are assumed 

to be related and combined to obtain a joint forecasting model for more accurate forecasts, taking 

into account the cross-correlation between the mortality rate datasets. 

 The remaining aspects of the paper are structured into four sections. Section 2 of this paper 

focuses on constructing an adequate VAR model for TU5MR, MU5MR, and FU5MR as system 

variables. After constructing and diagnosing such a model, Section 3 presents our approach to 

making statistical inferences about the mortality model by way of impulse response function (IRF) 

analysis, Granger causality testing, cointegration analysis, and performing a 5-year forecast using 

the VAR process. Section 4 gives a detailed discussion on the study findings, and also presents the 
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strengths and limitations of the study while Section 5 finalizes the paper by drawing conclusions 

from the study. 

 

2. Materials and methods 

2.1. Data source and variable descriptions  

We used openly-available annual U5MR data on Ghana, spanning the period 1970–2020, obtained 

from the UNICEF Data Warehouse (https://data.unicef.org/dv_index/), last accessed in August 

2022. The warehouse is a leading source of data on the pediatric population and is involved in the 

maintenance of many internationally valid indicators of healthcare in this population. Datasets 

contained in this warehouse are readily available for almost all countries, with data mostly spanning 

several decades. Here, in line with the WHO [15] definition, TU5MR is defined as the probability 

(calculated in rate form, per 1000 live births) that a child born between 1970 and 2020 would die 

from any cause before attaining the age of 5 years. The sex-wise composites FU5MR and MU5MR 

are the estimated probabilities (per 1000 live births) that a girl or boy born in Ghana between 1970 

and 2020 would die before their fifth birthday. Since one goal of the study was to provide five-year 

forecasts of three U5MRs (TU5MR, MU5MR, and FU5MR), time plots of these datasets are shown 

in Fig. 1. These plots demonstrated a noticeable trend in the data, indicative of non-stationarity in 

the three mortality indicators under study. 

 All statistical analyses were performed using RStudio 2022.07.2 in the R 4.2.2 environment 

(The R Development Core Team, Vienna, Austria) with the forecast, urca, vars, mFilter, tidyverse, 

and tseries packages. Statistical tests with p-value <0.05 were considered alongside their 95% 

confidence intervals (CIs) to indicate statistical significance. 

 

2.2. Vector autoregressive modelling  

The VAR model is one of the most successfully used and flexible approaches to multivariate time 

series analysis. It is a natural extension of the univariate autoregressive model, describing how a set 

of 𝑘 (endogenous) variables, in this case, the three under-five mortality time series (TU5MR, 

MU5MR, and FU5MR), evolve over time. The main steps involved in a typical VAR modeling as 

employed for the data analysis in this study are schematically presented in Fig. 2. The detailed 

methodology of VAR analysis is presented in the following sequel. 
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2.2.1. VAR model specification and estimation 

The structure of a VAR model is that each variable is a linear function of past lags of itself and 

other variables. Hence, for a given set of 𝑘 variables and time period 𝑡 = 1, . . . , 𝑇 , we have the 

vector 𝑌֏ = (𝑦φ֏, 𝑦ϵ֏, . . . , 𝑦ֆ֏ )
յ , where 𝑌քӴ֏ is the 𝑖th variable at time 𝑡. A VAR model is described 

by the number of preceding time periods the model utilizes, called order. A VAR model of order 𝑝, 

𝑉𝐴𝑅(𝑝), is defined by:  

𝑌֏ = ՓЈ + Փφ𝑌֏−φ + Փϵ𝑌֏−ϵ + ⋯+ Փ𝑌֏− + ε֏ ; 𝑝 > 0 (1) 

where 𝑌֏ is a 𝑘 × 1 vector of the dependent variables; ՓЈ is a 𝑘 × 1 vector of constants; Φք; 𝑖 =

1, 2,… , 𝑝 are 𝑘 × 𝑘 coefficient matrices; and ε֏ is 𝑘 × 1 serially uncorrelated error vector with 

multivariate normal distribution mean vector 0 and a nonsingular covariance matrix Σ. The VAR(p) 

model parameters Φ = (Փ
Ј
,Փ

φ
,Փϵ, … ,Փ) and Σ are estimated by the ordinary least squares (OLS) 

procedure following [16–18]: 

Φࣨ = (Փ̂
Ј
, Փ̂

φ
, Փ̂ϵ, … , Փ̂) = 𝑌 𝑍յ (𝑍𝑍յ )−φ (2) 

 Σࣨ = φ
յ−ֆ ∑ 𝜀֏̂𝜀֏̂

յյ

֏=φ
 (3) 

where 𝑌 = (𝑌φ, 𝑌ϵ, . . . , 𝑌յ  )յ , 𝑍 = (𝑍Ј, 𝑍φ, 𝑍ϵ, . . . , 𝑍յ−φ), 𝑍յ−φ = (𝑌֏−φ, 𝑌֏−ϵ, . . . , 𝑌֏−)
յ , 𝜀֏̂ = 𝑌֏ −

Φࣨյ 𝑍֏−φ, and Φࣨ is consistent and asymptotically distributed as𝑁ֆ(0,Σ). The order p is determined 

by fitting VAR(p) models with orders 𝑝 = 0, 1, . . . , 𝑝ֈռ֓ and then choosing the value of p to 

minimize various information criteria including the Akaike information criterion (AIC), Schwarz-

Bayesian information criterion (BIC), and Hannan–Quinn criterion (HQ), defined by:  

𝐴𝐼𝐶(𝑝) = 𝑙𝑛ੵ�ࣲ�ੵ +
2𝑘ϵ𝑝

𝑇
 

(4) 

 𝐵𝐼𝐶(𝑝) = 𝑙𝑛ੵ�ࣲ�ੵ + և։(յ)ֆɞ
յ

 (5) 

 𝐻𝑄(𝑝) = 𝑙𝑛ੵ�ࣲ�ੵ +
ϵև։(և։յ)ֆɞ

յ
 (6) 

 

2.2.2. Unit root and cointegration tests  

VAR model validity depends on the stationarity of its composite time series [19]. For example, 

regressing nonstationary TU5MR on MU5MR and FU5MR would yield a so-called spurious 

regression model in which ordinary least-squares (OLS) estimates and t-statistics would indicate 

the existence of a relationship, when in reality, this is not the case; thus, the results obtained via 

such an approach would be erroneous. The unit root tests, specifically, the Augmented Dickey–

Fuller (ADF) and Phillips–Peron (PP) tests, are employed to establish stationarity. The ADF 
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statistic is used to investigate the null hypothesis that a unit root is present in the time series 

against the alternative that no unit roots are present, and is usually applied to evaluate stationarity 

or trend stationarity. The test itself is an augmented version of the traditional Dickey–Fuller test 

applied to a larger and more complex set of time series. The ADF test statistic returns a negative 

number, with more negative values providing stronger evidence for the rejection of the null 

hypothesis at a predefined confidence level. The ADF test is executed via a similar approach as 

that used in the Dickey–Fuller test but is applied to the model: 

∆𝑌֏ = 𝛼 + 𝛽֏ + 𝛾𝑌֏−φ + 𝛿φ∆𝑌֏−φ + 𝛿ϵ∆𝑌֏−ϵ + ⋯+ 𝛿∆𝑌֏− + 𝜺۱ (7) 

where 𝛼 is a constant, 𝛽 is the coefficient on a time trend 𝑡, 𝑝 is the lag order of the autoregressive 

process, 𝛾 is the coefficient of the response variable with lag order 1, 𝛿φ, 𝛿ϵ,… , 𝛿 denote the 

parameter estimates with respect to the differenced response variables with lag-orders 𝑡 − 1, 𝑡 −

2,… , 𝑡 − 𝑝, and ∆ is a difference operator. By including lags of order 𝑝, the ADF test permits 

application to higher-order autoregressive processes; thus, the lag length 𝑝 needs to be set. One 

approach is to test down from high orders and examine t-values on coefficients while another 

approach involves examining the AIC and BIC values. The unit root test is then performed under 

the null hypothesis of 𝛾 = 0 against the alternative that 𝛾 > 0. Upon calculating the test-statistic 

𝐴𝐷𝐹ᇑ = 𝛾̂ 𝑆𝑒(𝛾̂)⁄ , we compare it to the relevant critical values of the Dickey–Fuller test, and reject 

the null hypothesis if 𝐴𝐷𝐹ᇑ  is more negative than the critical value.  

 The PP test can also be used to investigate the null hypothesis that a time series is integrated 

of order 1. It is structured on the Dickey–Fuller test of the null hypothesis 𝜌 = 1 based on the 

model: 

∆𝑌֏ = (𝜌 − 1)𝑦֏−φ + 𝜀֏ (8) 

with ∆ representing the first difference operator. Similar to the ADF test, the PP test addresses 

the issue that the order of autocorrelation for the process generating data for 𝑌֏ might be higher 

than admitted in the test equation, rendering 𝑌֏−φ endogenous and thereby invalidating the Dickey–

Fuller t-test. Unlike the ADF test which handles this issue by introducing lags of ∆𝑌֏ as regressors 

in its equation, the PP test corrects the t-test statistic non-parametrically. It is robust with respect 

to unspecified autocorrelation and heteroscedasticity in the disturbance process of the test equation 

[18].  

 Specifically, the three mortality indicators (variables) employed would be considered 

cointegrated if any of their linear combinations is stationary. Cointegration in such a time series 
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vector would be assessed on the intuition that they have a long-term equilibrium relation [20–22]. 

To identify the presence of cointegration, and thus, the number of cointegrated time series, we 

applied the Johansen approach using the relevant trace and maximum eigenvalue statistics. In 

applying the Johansen approach, we consider a VAR(p) model with integration order 1, 𝐼(1), which 

is reformulated as:  

∆𝑌֏ = 𝜇 + 𝚷𝑌֏−φ + ∑ 𝚪Δ𝑌֏−φ
−φ

ք=φ
+ 𝜺۱  (9) 

with 𝚷 = ∑ Φք − 𝐈


ք=φ
 and 𝚪 = −∑ 𝚽ۦ



ք=φ
. If the coefficient matrix Π reduces to 𝑟 < 𝑘, there must 

exist matrices 𝜶 and 𝜷 with dimensions 𝑘 × 𝑟 and rank 𝑟 each such that 𝚷 =  𝜶𝜷 is stationary. 

Assuming that 𝑟 is the number of cointegration relationships, 𝛼 is the number of adjustment 

parameters in the vector error correction model, and each column of 𝜷 is a cointegrating vector, we 

can infer that for a given 𝑟, the maximum likelihood (ML) estimator of 𝜷 defines the combination 

of 𝑌֏−φ yielding the 𝑟 largest canonical correlations of ∆𝑌֏ with 𝑌֏−φ upon correcting for lagged 

differences and deterministic variables when present. Johansen [23] proposed two forms of likelihood 

ratio tests for the significance of these canonical correlations involving the reduction of the ranks of 

𝚷. The trace and maximum eigenvalue test statistics are given in Equations Error! Reference 

source not found.  and Error! Reference source not found.  below: 

𝐽֏֍ռվր(𝑟) = −𝑇 ం lnॕ1 − �̂�քॖ


ք=֍+φ

,  
(10) 

 𝐽ֈռ֓ (𝑟) = −𝑇 ln(1 − �̂�֍+φ). (11) 

where 𝑇  is the sample size and �̂�ք is the 𝑖th largest canonical correlation. 

 𝐽֏֍ռվր(𝑟) tests the null hypothesis of 𝑟 cointegration vectors versus the alternative of 𝑘 

cointegrating vectors, whiles 𝐽ֈռ֓(𝑟) tests the null hypothesis of 𝑟 cointegrating vectors versus the 

alternative of 𝑟 + 1 cointegrating vectors. Although Johansen’s methodology is usually applied to 

systems characterized solely by 𝐼(1), theoretically, the presence of stationary variables is not an 

issue and there is little need for pre-testing to establish the order of integration [23]. 

 

2.2.3. Structural analysis  

The VAR(p) model has several parameters which can be difficult to interpret due to complex 

interactions and feedbacks between the variables. A standard VAR modeling often reports on 

structural analysis, which involves Granger causality tests, IRFs, and forecast error variance 

decompositions (FEVDs). 
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2.2.3.1.Granger causality 

The Granger causality tests are performed to study the causal relationship among the variables in 

the system. It begins by comparing the following unrestricted models: 

∆𝑌֏ = 𝛼φ + ∑ 𝛽φք∆𝑦֏−φ
ֈք

ք=φ
+ ∑ 𝜃φօ∆𝑋֏−ք

ֈϵ

ք=φ
+ 𝑒ք֏  (12) 

 ∆𝑋֏ = 𝛼ϵ + ∑ 𝛽ϵք∆𝑦֏−ք
ֈք

ք=φ
+ ∑ 𝜃ϵօ∆𝑌֏−ք

ֈϵ

ք=φ
+ 𝑒ք֏  (13) 

with the restricted models: 

∆𝑌֏ = 𝛼φ + ∑ 𝛽φք∆𝑦֏−ք
ֈք

ք=φ
  (14) 

 ∆𝑋֏ = 𝛼ϵ + ∑ 𝛽ϵք∆𝑦֏−ք
ֈք

ք=φ
 (15) 

where, ∆𝑌֏ and ∆𝑋֏ first-order forward differences of the variables; 𝛼, 𝛽, and  are the parameters 

we need to estimate; 𝑒ք֏ represents standard random errors, and m is the optimal lag order chosen 

using the information criteria. Equations Error! Reference source not found.  are convenient for 

analyzing linear causal relationships among the variables. If 𝜃φ is statistically significant and 𝜃ϵ is 

not, we can say that changes in variable 𝑌  Granger cause changes in variable 𝑋 or vice versa. If 

both 𝜃φ and 𝜃ϵ are statistically significant, 𝑋 and 𝑌  have a bivariate causal relationship. If neither 

is statistically significant, neither changes in 𝑌  nor 𝑋 have any effect on the other variable. 

 

2.2.3.2.Impulse response functions  

The VAR(p) model also has the following Wold’s decomposition (or representation): 

𝒀֏ = µ + 𝝍φε֏−φ  + 𝝍ϵε֏−ϵ + ⋯+ 𝝍ε֏−ք + ⋯ (16) 

where 𝛙֎ are 𝑘  𝑘 matrices with an (𝑖, 𝑗)th element, 𝜓քօ
֎ , interpreted as the dynamic multiplier or 

impulse response: 

𝜕𝑦քӴ֏+֎

𝜕𝜀օӴ֏

=
𝜕𝑦քӴ֏

𝜕𝜀օӴ֏−ք

= 𝜓քօ
֎  , for 𝑖, 𝑗 = 1, 2,… , 𝑘 

(17) 

under the condition that 𝑉𝑎𝑟(𝜺۱) = 𝚺 is equal to a diagonal matrix, implying that the elements of 

𝛆۱ are uncorrelated [18]. To make the errors uncorrelated we estimate the triangular structural 

VAR(p) model: 

𝑩𝑌֏ = 𝑪 + Γφ𝒀֏−φ + Γϵ𝒀֏−ϵ + ··· + Γ𝒀֏−  + 𝜼֏  (18) 

where 𝑩 is a lower triangular matrix with 1s as diagonal elements and uncorrelated (or orthogonal) 

errors 𝜼֏, known as structural errors. Then, Wold’s decomposition of 𝒀֏ based on orthogonal errors 

𝜼֏ can be given by: 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.17.23286087doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.17.23286087
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

𝒀֏ = µ + ΘЈ𝜼֏  + Θφ𝜼֏−φ + Θϵ𝜼֏−ϵ + ··· +Θ𝜼֏−ք + ⋯ (19) 

where ΘЈ = 𝑩−φ is the lower triangular matrix. The impulse responses to the orthogonal shocks 𝜼֏ 

are given by 

𝜕𝑦քӴ֏+֎

𝜕𝜂օӴ֏

=
𝜕𝑦քӴ֏

𝜕𝜂օӴ֏−֎

= 𝜃քօ
֎  , for 𝑖, 𝑗 = 1, 2, … , 𝑘 > 0 

(20) 

in which 𝛳քօ
֎  represents the (𝑖, 𝑗)th element of Θ֎. A plot of 𝛳քօ

֎  against 𝑠 is referred to as the 

orthogonal IRF of 𝑌ք  with respect to 𝜼֏.  

 

2.2.3.3.Forecast error variance decompositions 

The FEVD accounts for the portion of the variance of the forecast error in predicting 𝒀֏Ӵյ+փ due 

to the structural shock 𝜂օ. Using the orthogonal shocks 𝜼֏ the h-step ahead forecast error vector, 

with known VAR coefficients, may be expressed as 

𝒀յ+փ − 𝒀յ+փ|յ = ∑ Θ𝜼յ+փ−֎
փ−φ

֎=Ј
  (21) 

where for a particular 𝑦քӴյ+փ, the forecast error has the form: 

𝑦քӴյ+փ − 𝑦քӴյ+փ|յ = ∑ 𝜃քφ
֎ 𝜂φӴյ+փ−֎

փ−φ

֎=Ј
+ ⋯+ ∑ 𝜃քֆ

֎ 𝜂ֆӴյ+փ−֎
փ−φ

֎=Ј
  (22) 

with variance due to orthogonality of the structural errors:  

𝑉𝑎𝑟ि𝑦քӴյ+փ − 𝑦քӴյ+փ|յ ी = 𝜎ᇅȯ

ϵ ∑ (𝜃քφ
֎ )ϵփ−φ

֎=Ј
+ ⋯+ 𝜎ᇅՐ

ϵ ∑ (𝜃քֆ
֎ )ϵփ−φ

֎=Ј
  (23) 

where 𝜎ᇅՏ

ϵ = 𝑉𝑎𝑟(𝜂օ֏) and the portion of the variance due to shock 𝜂օ is defined by: 

𝐹𝐸𝑉𝐷քօ(ℎ) =
𝜎ᇅՏ

ϵ ∑ (𝜃քօ
֎ )ϵփ−φ

֎=Ј

𝜎ᇅȯ

ϵ ∑ (𝜃քφ
֎ )ϵփ−φ

֎=Ј
+ ⋯+ 𝜎ᇅՐ

ϵ ∑ (𝜃քֆ
֎ )ϵփ−φ

֎=Ј

 
(24) 

called the FEVD, which depends on recursive causal ordering used to identify structural shocks 𝜂օ. 

 

2.2.3.4.VAR forecasting  

After ensuring adequacy of the fitted VAR(p) models, the h-step ahead forecasts are made using 

the best linear form 𝑌յ+փ given by: 

𝑌յ̂+փ|յ = ΦࣨЈ + Φࣨφ𝑌յ̂+փ−φ|յ + Φࣨφ𝑌յ̂+փ−ϵ|յ +. . . +Φࣨ𝑌յ̂+փ−|յ  (25) 

with forecast error: 

𝑌յ+փ − 𝑌յ̂+փ|յ = ∑ 𝜓֎𝜺յ|փ−֎
փ−φ

֎=Ј
+ ॕ𝑌յ+փ − 𝑌յ̂+փ|յ ॖ  (26) 

and forecast covariance matrix: 

�ࣲ�(ℎ) = 𝚺(ℎ) + ∑ 𝜓֎𝜺յ|փ−֎
փ−φ

֎=Ј
+ 𝑀𝑆𝐸ॕ𝑌յ+փ − 𝑌յ̂+փ|յ ॖ  ≈ 𝚺(ℎ) + ∑ 𝜓֎̂�ࣲ�

փ−φ

֎=Ј
𝜓֎̂

յ   (27) 
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where ॕ𝑌յ+փ − 𝑌յ̂+փ|յ ॖ is the error due to estimating VAR(p) parameters and 𝜓̂
֎ = ∑ 𝜓̂

֎−օ�ࣲ�ۧ
֎

օ=φ
. 

The (1 − 𝛼)100% CIs for the components of 𝑌յ+փ are computed by: 

𝑦ք̂Ӵյ+փ|յ ± 𝑍ᆿ ϵ⁄ �̂�ք(ℎ); 𝑖 = 1, 2, … , 𝑘 (28) 

where �̂�ք(ℎ) is the square root of the ith diagonal element of �ࣲ�(ℎ). 

 

2.3. VAR model diagnostics 

2.3.1. Serial correlation analysis 

The Portmanteau test was performed to check absence of autocorrelation in the residuals of the 

estimated VAR(2) model generated for U5MRs. The null hypothesis is tested for residual no serial 

correlations (autocovariances are zero) with test-statistic: 

𝑄փ = 𝑇 ϵ ∑ (𝑇 − 𝑖)−φ𝑡𝑟(𝐶 ̂
օ
փ

օ=φ
𝐶 ̂

Ј
−φ𝐶 ̂

օ𝐶
̂
Ј
−φ)  (29) 

where 𝐶 ̂
օ = φ

յ ∑ 𝜀֏̂𝜀֏̂−ք
յ

֏=ք+φ
, and has approximately

տց
ϵ  distribution with degrees of freedom 𝑑𝑓 =

ℎ𝑘ϵ [16,24]. 

 

2.3.2. Model heteroskedasticity  

The presence of autoregressive conditional heteroskedasticity (ARCH) tends to invalidate VAR 

parameter estimates of VAR(p) and hence undermine their efficiency and inferences performed on 

them. To test for ARCH effects, a multivariate Lagrange multiplier (MLM) test based on the 

auxiliary regression model was applied: 

𝑣𝑒𝑐ℎ(�̂�֏�̂�֏
յ ) = 𝜷ٕ + 𝑩غ𝑣𝑒𝑐ℎ(𝛼֏̂−φ𝛼֏̂−φ

յ ) + ⋯+ 𝑩ۭ𝑣𝑒𝑐ℎ(𝛼֏̂−𝛼֏̂−
յ ) + 𝜶֏ (30) 

where 𝜷Ј is a φϵ 𝑘(𝑘 + 1)-dimensional vector, 𝑩φ,𝑩ϵ,… ,𝑩 are φ
ϵ
𝑘(𝑘 + 1) × φ

ϵ
𝑘(𝑘 + 1) matrices, and 

𝜶֏ is a spherical error vector process. The hypothesis test, 𝐻Ј:𝑩φ = 𝑩ϵ = ⋯ = 𝑩 = 𝟎 (lack of 

ARCH effects in residuals) versus 𝐻φ:𝑩օ ≠ 𝟎; for 𝑗 ≥ 1 is performed with test-statistic: 

𝑀𝐿𝑀 =
1

2
𝑇𝑘(𝑘 + 1) − 𝑇𝑡𝑟(�ࣲ�֑րվփ�ࣲ�−φ)  (31) 

where �ࣲ�֑րվփ is the estimator for the error covariance matrix in model (30) while �ࣲ� = 𝑇 −φ ∑ 𝜺۱̂𝜺۱̂
ۗۗ

غ=۱
 

is the estimator of the error covariance matrix in model (1), which is asymptotically distributed as 

𝜒տց
ϵ  with degrees of freedom 𝑑𝑓 = ȯ

ȃ(𝑝𝑘ϵ(𝑘 + 1)ϵ). 

 

2.3.3. Tests for normality and structural stability in VAR( p) residuals 
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Although VAR model residuals and observed variables do not need to be normally distributed for 

the model to be valid, normality in residual distribution is of interest as it facilitates predictive 

inference. Multivariate versions of the Jarque–Bera, skewness, and kurtosis tests were implemented 

on the VAR(2) model residuals standardized via Cholesky decomposition of the covariance matrix 

of centered residuals. Structural breaks in the residuals of the under-five mortality rates were tested 

for the fitted VAR(2) model based on the first 𝛫 observations for 𝑘 = 𝑘φ, 𝑘ϵ, . . . , 𝑘լ , where 𝑘φ is 

characterized by the necessary degrees of freedom required for estimation. Plots of each recursive 

estimate with respective standard errors or confidence limits for 𝑘 = 𝑘φ, 𝑘ϵ, . . . , 𝑘լ can provide 

useful information on the possibility of structural breaks. Subsequently, an OLS cumulative sum 

(OLS-CUSUM) approach was used to plot empirical fluctuation processes to visualize structural 

variations in all three mortality indicators. The OLS-CUSUM test statistic could alternatively have 

been used, typically computed as: 

𝑆հխմ = max
֏

րց(֏)
ց(֏)

  (32) 

in which 𝑒𝑓𝑝(𝑡) represents the empirical fluctuation process and 𝑓(𝑡) is constrained on the boundary 

𝑏(𝑡) = 𝜆f(𝑡). We would then entertain the null hypothesis if |𝑆| < |𝑏(𝑡)| [25]. 

 

3. Results 

3.1. Stationarity and cointegration tests   

The unit root tests presented in Section 2.2 were applied to determine whether the three 

nonstationary mortality time series require differencing to render them stationary or regression on 

deterministic functions of time. The ADF and PP tests were performed for each U5MR variable 

under the null hypothesis of non-stationarity at a 5% significance level, the results of which are 

presented in Table 1. The results confirmed that all three variables had nonstationary levels (p-

values ≥0.05). We, thus, incorporated trends into the model generated, and needed not detrend 

each series as the vars library is capable of fitting VAR(p) models with trend as a deterministic 

regressor. Applying the VARselect function in the vars package showed that 2 lags were optimum 

based on the selection criteria, AIC, BIC, and HQ, as outlined in equations 4–6. The Johansen 

cointegration test was further performed to examine whether there exist long-run relationships 

(cointegration) among the employed time series mortality models. Table 2 outlines the critical and 

test statistic values derived from the Johansen cointegration procedure. From the likelihood ratio 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.17.23286087doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.17.23286087
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

(trace) and maximum eigenvalue tests of cointegration, we adjudged that at most two of the U5MR 

time series were cointegrated at ranks 𝑟 ≤ 1 and 𝑟 ≤ 2, and significance levels 10%, 5%, and 1%. 

 

Table 1.  Results of Augmented Dickey–Fuller (ADF) and Phillips–Perron unit root tests 
Time series 
variables 

 ADF test Phillips–Perron test 

 Test 
statistic 

Lag 
order 

p-
value 

Z 
statistic  

Truncation lag 
parameter 

p-
value 

TU5MR  1.2292 3 0.99 -3.9248 3 0.8869 
MU5MR  1.5760 3 0.99 -5.1623 3 0.8112 
FU5MR  1.6803 3 0.99 -2.8169 3 0.9402 
TU5MR, total under-five mortality rate; MU5MR, male under-five mortality rate; FU5MR, female 
under-five mortality rate 

 

Table 2.  Results of Johansen cointegration test 
  Likelihood ratio (trace) approach  Maximum eigenvalue approach 

 𝑱۱ۯ۞۠ۢ(𝒌ٕ) 10% 5% 1%  𝑱۪۞۵ (𝒌ٕ) 10% 5% 1% 
𝒓 ≤ 𝟐  4.93 10.49* 12.25* 16.26*  4.93 10.49* 12.25* 16.26* 
𝒓 ≤ 𝟏  28.67 22.76 25.32 30.45*  23.74 16.85 18.96 23.65 
𝒓 = 𝟎  136.27 39.06 42.44 48.45  107.59 23.11 25.54 30.34 

𝑟, rank of cointegrated vectors; 𝐽 , Johansen’s statistic; * Statistically significant 
 

3.2. VAR model estimation  

3.2.1. VAR model construction 

Fitting the VAR(p) model Error! Reference source not found.  by incorporating both constant and 

trend deterministic regressors, and without exogenous variables to the U5MRs data, we obtained 

the multivariate model estimates of TU5MR and its sex composites (MU5MR, FU5MR) via 

equations (2)–(6) with 𝑝 = 2. The results parameters and their statistical significance are shown in 

Table 3. The results show that both the constant and trend deterministic regressors are statistically 

significant in all the three U5MR series (with p-values <2×10-16). Also, neither the first nor second 

lags of MU5MR, FU5MR, and TU5MR showed any significant influence on TU5MR and MU5MR 

in the overall model. On the other hand, the first lags of FU5MR significantly and nearly doubled 

subsequent trends in FU5MR in the established VAR(2) model (showing 𝛽 = 1.771, p-value = 

0.0189), in addition to significant effects of the constant and trend deterministic regressors. 

 

Table 3. Multivariate estimates obtained using VAR(2) models of TU5MR and its sex composites 
𝒀۱  𝒀۱−ۭ  Estimate  SE  t-statistic  p-value = 

Pr(>|t|) 
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TU5MR  MU5MR.l1  -0.224  0.587  -0.381  0.705 
  FU5MR.l1  1.045  0.710  1.472  0.149 
  TU5MR.l1  0.992  1.213  0.818  0.418 
  MU5MR.l2  -0.070  0.702  -0.100  0.921 
  FU5MR.l2  -0.125  0.572  -0.218  0.828 
  TU5MR.l2  -0.774  1.187  -0.652  0.518 
  const  44.058  2.827  15.584  <2×10-16*** 
  trend  -0.613  0.041  -15.141  <2×10-16*** 
           

MU5MR  MU5MR.l1  0.613  0.600  1.022  0.313 
  FU5MR.l1  0.231  0.725  0.319  0.752 
  TU5MR.l1  0.967  1.239  0.781  0.439 
  MU5MR.l2  -0.378  0.717  -0.528  0.600 
  FU5MR.l2  0.321  0.584  0.549  0.586 
  TU5MR.l2  -0.917  1.212  -0.756  0.454 
  const  46.409  2.887  16.073  <2×10-16*** 
  trend  -0.645  0.041  -15.604  <2×10-16*** 
           

FU5MR  MU5MR.l1  -0.935  0.599  -1.560  0.1265 
  FU5MR.l1  1.771  0.724  2.445  0.0189* 
  TU5MR.l1  0.972  1.238  0.785  0.4368 
  MU5MR.l2  0.067  0.716  0.094  0.9256 
  FU5MR.l2  -0.455  0.584  -0.779  0.4403 
  TU5MR.l2  -0.566  1.211  -0.467  0.6430 
  const  41.409  2.885  14.355  <2×10-16*** 
  trend  -0.574  0.041  -13.899  <2×10-16*** 
           

SE, standard error; TU5MR, total under-five mortality rate; MU5MR, male under-five mortality 
rate; FU5MR, female under-five mortality rate 
*p-value <0.05, ***p-value <0.0001 

 

3.2.2. VAR model diagnostic tests 

The goodness-of-fit of the estimated VAR(2) models constructed in the previous section was further 

examined using various diagnostic tests, including analyses of serial correlation, heteroskedasticity, 

residual normal distribution, and structural stability. The serial correlation analysis yielded 𝜒ϵ =

171.82 (p-value = 0.4623), indicating the non-existence of serial correlations in the estimated VAR 

models. The heteroskedasticity test also came out with 𝜒ϵ = 168.98 (p-value = 0.7115), indicating 

the absence of ARCH effects in the estimated models. The Jarque–Berra test of normality produced 

𝜒ϵ = 4.71 (p-value = 0.5815), which indicated that the resulting study models are characterized by 

fairly normally distributed residuals. This verdict based on the normality test was also supported 

by the multivariate tests of skewness and kurtosis which yielded 𝜒ϵ = 2.95 (p-value = 0.3994) and 
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𝜒ϵ = 1.76 (p-value = 0.6236), respectively. Finally, the OLS-CUSUM plots of the empirical 

fluctuation processes for each under-five mortality rate variable (Fig. 3) was found contained within 

the 95% confidence bands, indicating the absence of structural breaks in the model residuals. 

Furthermore, the smaller confidence intervals surrounding the parameter estimate for the entirety 

of each empiric fluctuation process reflect greater estimation certainty. Generally, the results from 

the outlined diagnostic examinations gave the indication that the constructed VAR(2) models are 

adequate for prediction and forecasting. 

 

3.4. Instantaneous and Granger-type causality analyses  

Table 4 presents the bivariate and trivariate Granger causality analysis results. None of the three 

mortality indicators Granger caused another in the bivariate analysis (all p-values >0.05). However, 

in the trivariate causality results, all combinations were highly significant (p-values <0.0016), except 

the combination with H0: TU5MR ↛ (MU5MR, FU5MR) (p-value = 0.8589). This implies that 

TU5MR did not Granger cause MU5MR and FU5MR, which was intuitive. The counter null 

hypothesis H0: (MU5MR, FU5MR) ↛ TU5MR, however, yielded significant results (p-value = 

2.2×10-16) as expected, implying that MU5MR and FU5MR Granger caused TU5MR. Further, 

MU5MR Granger caused FU5MR and TU5MR with bidirectionality, as did FU5MR in the Granger 

causality analysis against MU5MR and TU5MR (Table 4). All trivariate combinations yielded 

highly significant p-values for all null hypotheses with bidirectionality (feedback) (Table 4). These 

results imply that knowing the future values of any two mortality indicators would help better 

forecast the other and that future values of any of the three indicators can be forecasted with a 

smaller forecast error variance if the current, historical, and future values of the other two are 

incorporated into the model. 

 

Table 4.  Results of bivariate and trivariate traditional Granger-type and instantaneous causality 
tests among TU5MR, MU5MR, and FU5MR  
 Granger causality  Instantaneous causality  
Null hypothesis F-statistic p-value = 

Pr(>F)  
2 p-value = 

Pr(>2) 
  MU5MR ↛ TU5MR 0.9071 0.3458   
  FU5MR ↛ TU5MR 0.9501 0.3347   
  TU5MR ↛ MU5MR 0.7353 0.3955   
  TU5MR ↛ FU5MR 1.1661 0.2857   
  MU5MR ↛ FU5MR 1.1769 0.2835   
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  FU5MR ↛ MU5MR 0.7536 0.3897   
  MU5MR ↛(FU5MR, TU5MR) 4.7671 0.0013** 23.857 6.599×10-6**** 
  FU5MR↛(MU5MR, TU5MR) 4.6350 0.0016** 23.954 6.286×10-6**** 
  TU5MR ↛ (MU5MR, FU5MR) 0.3277 0.8589 24.311 5.259×10-6**** 
  (MU5MR, TU5MR) ↛ FU5MR 39.536 2.2×10-16**** 23.954 6.286×10-6**** 
  (FU5MR, TU5MR) ↛ MU5MR 38.497 2.2×10-16**** 23.857 6.599×10-6**** 
  (MU5MR, FU5MR) ↛ TU5MR 40.842 2.2×10-16**** 24.311 5.259×10-6**** 
MU5MR, male under-five mortality rate; FU5MR, female under-five mortality rate; TU5MR, total 
under-five mortality rate; x ↛ y, x Granger causes / instantaneously Granger causes y 

 

3.5. Variance decomposition and IRF analyses 

Results from the analyses so far have focused on the essential aspects of intrasample tests, which 

are generally helpful in discerning plausible endogenous Granger-type relations for the period 1970–

2020. However, these results cannot be applied to deducing the extent of exogeneity of the three 

mortality rates beyond the period of study. To confirm the relative strengths of Granger-type 

causality, we considered the two approaches, FEVD and IRF analyses, as presented in Section 2.2.3. 

The FEVD estimated the proportion of each indicator’s forecast error variance that would result 

from a shock to another within the model while IRF reveals the shocks in the U5MRs. Further, 

FEVD would indicate the proportion of variation in the forecast error for each mortality rate that 

could be explained by its own innovations and those of the other rates based on orthogonalized 

impulse response coefficient matrices. The results of the FEVD analysis are shown in Table 5 

whereas those of the IRFs are presented in Fig. 4. The outcomes of both analyses indicate that 

FU5MR is the most exogenous variable as a high proportion of the shocks shown would be explained 

by its own innovations in comparison to its contributions to TU5MR and MU5MR (see Table 5). 

At the completion of 10 years, the forecasted error variance for FU5MR explained its internal 

innovations by approximately 93% while MU5MR and TU5MR explained their internal innovations 

by 11.2% and 0.4%, respectively. Further results of FEVD in Fig. 5 show that FU5MR was the 

most impactful exogenous variable, explaining about 93% of its own internal innovations, unlike 

MU5MR which only explained approximately 11% at the end of 10 years beyond the historical time 

series.  

Table 5. Results of variance decomposition (proportion of forecast variances attributable to internal 
and external innovations) analyses  
Period MU5MR FU5MR TU5MR 
Variance decomposition of MU5MR 

1 1.0000 0.0000 0.0000 
2 0.9629 0.0337 0.0033 
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3 0.8379 0.1595 0.0025 
4 0.6254 0.3726 0.0019 
5 0.4005 0.5978 0.0016 
6 0.2399 0.7585 0.0015 
7 0.1554 0.8428 0.0017 
8 0.1214 0.8764 0.0021 
9 0.1122 0.8851 0.0026 
10 0.1117 0.8850 0.0031 

Variance decomposition of FU5MR  
1 0.7482 0.2517 0.0000 
2 0.6562 0.3406 0.0030 
3 0.5107 0.4862 0.0029 
4 0.3503 0.6470 0.0025 
5 0.2167 0.7808 0.0024 
6 0.1306 0.8669 0.0023 
7 0.0870 0.9104 0.0025 
8 0.0705 0.9266 0.0028 
9 0.0674 0.9292 0.0032 
10 0.0686 0.9275 0.0037 

Variance decomposition of TU5MR  
1 0.9115 0.0731 0.0153 
2 0.8280 0.1650 0.0070 
3 0.6743 0.3214 0.0043 
4 0.4774 0.5196 0.0030 
5 0.2982 0.6993 0.0024 
6 0.1786 0.8191 0.0022 
7 0.1172 0.8805 0.0023 
8 0.0931 0.9042 0.0026 
9 0.0874 0.9095 0.0030 
10 0.0879 0.9085 0.0035 

MU5MR, male under-five mortality rate; FU5MR, female under-five mortality rate; TU5MR, total 
under-five mortality rate 

 The short-term (5-year) IRFs (Fig. 4(a)–4(d)) reveal that shocks in the TU5MR had almost 

no changes on FU5MR and MU5MR, while TU5MR increased sharply when FU5MR was applied 

as a shocker and increased gradually and declined close to its original values when the MU5MR was 

applied as a shocker. However, in the long-term (10-year) IRFs (Fig. 4(e) and 4(f)), FU5MR as a 

shocker resulted in significant increases in TU5MR, while MU5MR as a shocker led to significant 

decreases in TU5MR in response. Based on the results of FEVD and IRF analyses, it would be 

reasonable to suggest that focusing on FU5MR would have the most impact on decreasing TU5MR 

in the Ghanaian context.  

 

3.6. VAR forecasting 
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Table 6 and Fig. 6 show five-year predicted values of TU5MR, MU5MR, and FU5MR from 2021 

to 2025 based on the constructed VAR(2) models, which indicate gradual decrease for all the three 

mortality components. Based on the prediction, from 2021–2025, the TU5MR for Ghana is expected 

to decrease further by approximately 32%, from 44.71 to 30.38 per 1000 live births (95% CI: 27.84–

32.92), whereas sex-differentiated U5MRs are projected to reach 33.96 per 1000 live births (95% CI: 

31.63–36.29) for males and 26.64 per 1000 live births (95% CI: 23.85–29.43) for females. 

 

Table 6.  Forecasted 5-year total, male, and female U5MRs for Ghana (2021–2025) 
 MU5MR  FU5MR  TU5MR 
Year Forecast  95% CI  Forecast 95% CI  Forecast 95% CI 
2021 47.03 46.62–47.45  38.10 37.68–38.51  42.66 42.26–43.07 
2022 44.35 43.52–45.19  35.77 34.89–36.66  40.16 39.31–41.00 
2023 41.19 39.92–42.46  33.01 31.58–34.44  37.19 35.86–38.52 
2024 37.66 35.91–39.41  29.91 27.85–31.97  33.87 31.99–35.76 
2025 33.96 31.63–36.29  26.64 23.85–29.43  30.38 27.84–32.92 
MU5MR, male under-five mortality rate; FU5MR, female under-five mortality rate; TU5MR, total 
under-five mortality rate; CI, confidence interval 

 

4. Discussion 

There has been an urgent need to derive better forms of evidence for resource-limited settings to 

guide public health systems planning and resource allocation. However, there remains a paucity of 

studies aimed at obtaining accurate forecasts of child mortality rates in such settings. More 

specifically, no known study has yet forecasted sex variations in childhood mortality rates or 

modeled such differences in Ghana. The study was conducted in response to calls in recent times 

from international monitoring organizations to disaggregate U5MRs by sex [26,27]. We explored a 

VAR model for analyzing sex disparities in and forecasting U5MR based on 1970–2025 data obtained 

from the UNICEF Data Warehouse on Ghana. The model produces estimates of U5MR at the 

national level while capturing sex variations and provides a reproducible approach to projecting 

U5MR based on the three types of time series as a single vector that is data-driven and model-

based. Validation exercises were also suggestive of considerably adequate calibration and predictive 

performance. 

 

4.1. Study findings 
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Considering the existing rates of decline, Ghana is likely to achieve the childhood survival goal 

(SDG 3.2.2) for U5MR of ≤ 25 deaths per 1000 live births before 2030 [28,29], hopefully between 

2026 and 2028. This is contrary to the forecasts of Mejía-Guevara et al. [30] and Alhassan et al. 

[31] who predicted that Ghana would achieve the SDG for U5MR between 2030 and 2050. With 

regard to sex, the FU5MR may likely reach SDG 3.2.2 between 2025 and 2026, while the MU5MR 

will likely reach SDG 3.2.2 between 2027 and 2028. Even considering the upper limits of the 95% 

CIs, the TU5MR will likely reach approximately 25 per 1000 live births between 2027–2028; 

MU5MR and FU5MR will decline to this level between 2029–2030 and 2026–2027, respectively. 

Interestingly, our estimated annual rates of change based on historical data between 1970 and 2020 

were not significantly different from those estimated by Alhassan et al. [31] based on historical data 

from 1988 and 2017 (-3.7% vs. -2.99%; 95% CI: -7.5 to 8.92 for FU5MR and -3.1% vs. -3.2%; 95% 

CI: -7.96 to 7.76). In our estimates, there was no difference between both sexes with respect to the 

annual decline in U5MR between 1970 and 2020 (p-value = 0.9464) and the time series showed 

significant levels of cointegration. 

 A gradually declining trend was observed for both male and female children, with MU5MR 

being consistently higher than FU5MR for both historical and forecasted periods. Despite a mean 

sex ratio of U5MR of 1.16, the overall sex variations appeared to be relatively stable in historical 

and forecasted data, unlike countries with similar economic circumstances like Nigeria whose 

FU5MR has been projected to increase gradually between 2025 and 2030 [32]. Thus, unlike Nigeria, 

Ghana has shown a relatively well-preserved female survival rate, at least, in terms of U5MR, 

implying that the biological female advantage has been conserved over the years. Our model also 

showed that this situation will likely continue in the next 5–10 years, although the gap is gradually 

collapsing (Fig. 6). It is worth noting, however, that a MU5MR to FU5MR ratio in excess of unity 

is not necessarily sufficient grounds for concluding that girls do not experience inequity [33]. Girls 

could show lower U5MRs that are consistently below those of boys while experiencing excess deaths 

beyond those expected given their genetic and biological survivorship advantage [33–35].  

 The error variance decompositions revealed the individual effects of MU5MR and FU5MR on 

TU5MR, with both explaining half of future fluctuations in TU5MR at 4 years. In the longer term 

(at 10 years), MU5MR and FU5MR explained approximately 9% and 91%, respectively, of future 

fluctuations in TU5MR. These results confirmed those of the IRF analyses, implying that while 

focusing on both male and female U5MR could be useful for reducing TU5MR in the short term, 
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child mortality policies that target FU5MR will prove more useful for reducing overall TU5MR in 

Ghana in the long run. 

 

4.2. Strengths and limitations  

The present study, to the best of our knowledge, is the first to use a VAR model to forecast TU5MR 

and its sex differentials (MU5MR and FU5MR) for Ghana. As a strength, the VAR model uses 

lagged elements of endogenic variables at time 𝑡; thereby eliminating the simultaneity problem and 

making the OLS method applicable for estimation [36]. Also, as Verbeek [37] put it, a major 

advantage of the VAR modeling approach is that it yields a parsimonious model and more precise 

forecasts because the variables are modeled at the same time, and lagged components render a more 

informative model. Again, our model was based on annual data, making it possible to capture better 

trends compared to previous studies [30,31] that attempted to capture these trends using evidence 

from demographic health surveys whose data are collected at wider intervals. 

 Notwithstanding, the findings of our study should be construed taking into consideration 

certain methodological limitations. Despite its elegance in analyzing the short-lag effects of 

multivariate time series, the VAR model for predicting U5MRs is subject to some limitations as 

any other correlational analysis. Even though impulse response modeling assesses the direction of 

impact of each variable on the others, poor model selection threatens the interpretation of our 

findings. There may exist more variables and measurements that may better inform our conclusions. 

Further, in line with the saying that correlation does not equal causation, the strength of the VAR 

model generated herein lies in its ability to establish the correlation between any two of the U5MRs 

investigated. Beyond this, it yields spurious correlations, as is typical of any such regression model. 

Despite the aforementioned limitations, the present study provides a nationally representative 

exposition of TU5MR and sex variations in this important indicator in Ghana and the properties 

identified herein are generalizable to predictions of short- and long-term U5MRs in Ghana. 

 

5. Conclusions 

The present study attempts to utilize VAR to model sex differentials in U5MR in Ghana based on 

data from the UNICEF Data Warehouse from 1970–2020 [14]. It adds to the growing body of studies 

showing applications of multivariate statistical tools to population health for the effective design, 

planning, and utilization of health resources in curbing the deaths of children in resource-limited 
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settings like Ghana. In addition to a gradually declining U5MR, overall trends among the sexes 

were observed to be well maintained in the historical and forecasted data. Further, contrary to the 

previously published evidence and based on the predictive VAR model established here, Ghana may 

meet SDG 3.2.2 before 2030 and maintain appreciable declines in U5MR beyond the SDG era if 

policies and interventions aimed at reducing childhood mortality rates and gender inequities are 

sustained or scaled up. While the mechanisms underlying sex discriminative practices are complex 

and range from male/female cultural preference and intentional negligence on the part of parents 

and caretakers to biases in health resource allocation, these can hardly be investigated entirely 

based on quantitative modeling. We recommend that further research is necessary to document 

inequitable allocations of health resources and discriminative treatments between male and female 

children in Ghana. 
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Fig. 1. Time series plots showing historical variations in total, male, and female under-five mortality 
rates (U5MRs) in Ghana, 1970–2020 
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Fig. 2.  Basic flow chart showing the steps in VAR modeling of total, male, and female U5MR 
VAR, vector autoregression; U5MR, under-five mortality rate; ADF, Augmented Dickey–Fuller 
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Fig. 3. Ordinary least squares (OLS) cumulative sum (CUSUM) plots of parameter estimates of male 
(top-most), female (middle), and total under-five mortality rates (below) with their 95% level confidence 
bounds 
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Fig. 4. Short-term (5-year) impulse response plots of (A) FU5MR to a 1 standard deviation shock in MU5MR, (B) MU5MR to a 1 standard deviation shock 
in FU5MR, and (C, D) MU5MR and FU5MR to 1 standard deviation shocks in TU5MR. Also shown are longer-term (10-year) impulse response plots of 
TU5MR to single standard deviation shocks in (E) FU5MR and (F) MU5MR. MU5MR, male under-five mortality rate; FU5MR, female under-five mortality 
rate; TU5MR, total under-five mortality rate 
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Fig. 5. Forecast error variance decomposition (FEVD) plots for (A) male, (B) female, and (C) total 
U5MRs in Ghana for 10 periods beyond 2020 
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Fig. 6. Zoomed-in fan plots showing observed and 5-year VAR(2) forecasts of total, male, and female 
under-five mortality rates in Ghana (2021–2025) with their respective 95% confidence bands 
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