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Abstract

Background: Early onset of type 2 diabetes and cardiovascular disease are
common complications for women diagnosed with gestational diabetes. About
half of the women with gestational diabetes develop postpartum prediabetes
within 10 years of the index pregnancy. These women also have double the risk of
developing cardiovascular disease than women without a history of gestational
diabetes. Currently, there is no accurate way of knowing which women with
gestational diabetes are likely to develop postpartum prediabetes. This study
aims to predict the risk of postpartum prediabetes in women diagnosed with
gestational diabetes.

Methods: We build a sparse logistic regression-based machine learning model to
learn key variables significant for the prediction of postpartum prediabetes, from
antenatal data with maternal anthropometric and biochemical variables as well as
neonatal characteristics of 607 UK women diagnosed with gestational diabetes.
We evaluate the performance of the proposed model in addition to other more
advanced machine learning methods using established metrics such as the area
under the receiver operating characteristic curve and specificity for
pre-determined values of sensitivity. We use K-L divergence and information
graphs to evaluate and compare different thresholds of classification for targeted
screening options in resource-constrained settings. We also perform a decision
curve analysis to study the net standardized benefit of our model compared to
the universal screening approach.

Results: Strikingly, our sparse logistic regression approach selects only two
variables as relevant but gives an area under the receiver operating characteristic
curve of 0.72, outperforming all other methods. It can identify postpartum
prediabetes in women with gestational diabetes using the Rule-in test with 92%
specificity at an optimal probability threshold of 0.381 and using the Rule-out
test with 92% sensitivity at an optimal probability threshold of 0.140.

Conclusion: We propose a simple logistic regression model, which needs only the
antenatal fasting glucose at OGTT and HbA1c soon after the diagnosis of GDM,
to predict, with remarkable accuracy, the probability of postpartum prediabetes in
women with gestational diabetes. We envision this to be a practical solution,
which coupled with a targeted follow-up of high-risk women, could yield better
cardiometabolic outcomes in women with a history of GDM.

Keywords: Gestational Diabetes Mellitus; Prediabetes; Type 2 Diabetes
Mellitus; Cardiovascular Risk; Machine Learning; Kullback-Leibler Divergence;
Information Graph
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Background

Gestational Diabetes Mellitus (GDM) is defined as any degree of prediabetes with

onset or first recognition during pregnancy. Women diagnosed with GDM have upto

10-fold higher risk of Type 2 Diabetes Mellitus (T2DM) compared to those without

GDM1 and their lifetime risk is around 60% for developing T2DM.2 In addition to

T2DM, GDM women have a twofold higher risk of Cardiovascular Disease (CVD), at

a younger age, and independent of intercurrent T2DM.3–6 GDM is associated with

an increased risk of cardiovascular dysfunction, including rise in cardiovascular risk

factors like blood pressure, and adverse changes in cholesterol and triglycerides.7

However, this risk is not the same for all women diagnosed with GDM.

There is some evidence that glucose levels during pregnancy are predictive of

prediabetes.8,9 Retnakaran et al.10 have shown that the risk of dysglycaemia at

12 weeks postpartum increases across the groups from normal Glucose Challenge

Test (GCT) and Normal Glucose Tolerance (NGT), to abnormal GCT and NGT, to

Gestational Impaired Glucose Tolerance (GIGT), to GDM. This has been supported

by other studies.11,12 Higher fasting glucose shows a high tendency of conversion to

T2DM in the postpartum period7,13 and antenatal fasting glucose > 5.7 mmol/L is

considered to be an important antenatal variable for the prediction of postpartum

abnormal glucose metabolism.14

Along with glucose values in pregnancy, many studies have proposed the signifi-

cance of gestational age at the time of diagnosis of GDM, in predicting postpartum

prediabetes.15,16 Specifically, women diagnosed at 24 weeks of gestation or earlier,

are at higher risk of having postpartum prediabetes.17 Similarly, the requirement of

insulin therapy during pregnancy, ethnicity, gravidity, BMI, weight at the time of

delivery, and neonatal weight, are other factors that have been shown to be associ-

ated with the risk of prediabetes.18 While there is ample evidence of multiple factors

being associated with T2DM onset in GDM-diagnosed women in general, there is no

personalized risk score that can predict whether a specific GDM-diagnosed woman

is likely to develop prediabetes/T2DM. Indeed, identifying women who are espe-

cially at high risk can help in implementing targeted, personalized interventions to

delay and prevent the onset of T2DM and its future complications.

Artificial Intelligence has begun to play a dominant role in healthcare, facilitating

optimal decision-making as well as personalized treatment. However, its use in the

development of predictive models for T2DM onset is still in its nascent stages.

Accurate prediabetes risk stratification at or before delivery for GDM women could

assist policymakers and clinicians in specifically targeting those at the highest risk,

especially in resource-constrained settings. The primary aim of this paper is to

investigate the predictive ability of the antenatal variables and derive a model for

personalized prediction of prediabetes. We explored the use of logistic regression

(LR) and tree-based machine learning algorithms for developing the prognostic

model. We report our findings on a multi-ethnic retrospective cohort in the UK.

We show that a simple logistic regression model with antenatal fasting glucose and

antenatal HbA1c predicts prediabetes in GDM women with a sensitivity of 92% for

the Rule-in test and specificity of 92% for the Rule-out test.
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Methods
Data Acquisition

A retrospective audit of electronic database records of postpartum screening at 6

to 13 weeks of women diagnosed with GDM, from January 2016 to December 2019,

was conducted at an NHS trust hospital in the UK. GDM was diagnosed using

NICE 2015 criteria.19 Complete data is available for 607 women for the following

variables: age, height, weight, BMI, systolic and diastolic BP at booking, ethnicity,

gravida, parity, smoking status, married status, employment status, gestational age

at delivery, mode of delivery, birth weight, breastfeeding status, and biochemical

variables such as antenatal fasting glucose (A-FG), antenatal postprandial glucose

(A-PG), antenatal HbA1c (A-HbA1c), postpartum fasting glucose (P-FG), postpar-

tum postprandial glucose (P-PG) and postpartum HbA1c (P-HbA1c). Postpartum

Oral Glucose Tolerance Test (OGTT) was carried out at 6 weeks and following the

change in the NICE guidelines, postpartum HbA1c was carried out at 12-13 weeks

following delivery. We define prediabetes as: P-FG ≥ 5.6 mmol/l OR P-PG ≥ 7.8

mmol/l OR P-HbA1c ≥ 40 mmol/mol. ppIFG was defined as P-FG ≥ 5.6 mmol/l

and ppIGT was defined as P-PG ≥ 7.8 mmol/l, respectively. We define T2DM as:

P-FG ≥ 7.0 mmol/l or P-PG ≥ 11.1 mmol/l or P-HbA1c ≥ 48 mmol/mol.20 Normal

Glucose Tolerance (NGT) is considered otherwise.

Statistical Power Analysis

We did a power analysis to determine if the available sample size was sufficient

to identify the difference in effect between the normal and prediabetes-diagnosed

GDM women. We used the statsmodels library and the TTestIndPower class in

Python to calculate the power analysis for Student’s t test for independent samples.

For a statistical power of 90%, a minimum sample size of 130 (99 normal and

31 prediabetes) is required for the observed effect size calculated using Cohen’s d

statistic. We provide the details of power analysis in the Supplementary material.

Machine Learning

We perform Machine Learning (ML) in Python version 3.7. We compare logistic

regression with tree-based methods to build the prognostic model for the predic-

tion of early prediabetes in GDM women. These algorithms inherently address the

imbalance in the representation for each of the binary classes of prediabetes out-

come using the ‘balanced’ parameter. The ‘balanced’ mode uses the values of y

to automatically adjust weights inversely proportional to class frequencies in the

input data, as the ratio of the total number of samples to the product of the num-

ber of classes and the number of occurrences in each class. Mathematically, the

class weight is calculated as 1/(2 × fraction of women in the class). We build the

tree-based model using a simple decision tree algorithm, whose performance im-

proves using ensemble methods such as bagging and boosting. All these algorithms

use hyperparameters that can significantly affect the performance of these meth-

ods on an unseen set. We determine the optimal values of these hyperparameters

using nested cross-validation. More specifically, we make the entire data undergo

leave-one-out cross-validation (CV1) for model evaluation and we perform an in-

ternal stratified 4-fold cross-validation (CV2) on the training folds of CV1 for hy-

perparameter optimization. We impute the missing values with the Multivariate
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Imputation by Chained Equations (MICE) technique, using the other non-missing

covariates. We scale the training data in CV1 using the StandardScaler function

and use the saga solver in the logistic regression model. The saga solver is a variant

of the stochastic average gradient (sag) solver that also supports the non-smooth

L1 penalty, which promotes feature selection. The tree-based algorithms perform

feature selection inherently, governed by the optimized hyperparameters in CV2.

We perform hyperparameter optimization and model training only on the training

folds (n− 1 samples) in CV1, with an independent set (1 sample) exclusively held

out for testing. We aggregate the model predictions on each held-out sample across

the n training folds of CV1 and plot the Receiver Operating Characteristic (ROC)

curve for this aggregated set. We use the area under the ROC curve as a measure

of performance. Finally, we apply it in a similar fashion on the full data to obtain

the final model for deployment. We provide the details of the different tree-based

methods employed in the supplementary materials.

Composite Risk Score calculation

Using the coefficients from the final fitted logistic regression model on the full

data, we develop a composite risk scoring system using the best selected ante-

natal variables to predict the probability of prediabetes in GDM-diagnosed women.

We calculate the composite risk score as the probability of class 1 obtained from

the logistic regression model. It is given by the expression 1/(1 + e−b), where

b = b0 + b1 · x1 + b2 · x2 + ... + bm · xm where b0 is the intercept and bm coeffi-

cient of mth variable (xm), respectively.

We compute specificity, positive predictive value (PPV), negative predictive value

(NPV), accuracy, and the F1 score at five predetermined values of sensitivity (60%,

70%, 75%, 80%, and 90%) for the optimal selected model. We give the defini-

tion/formulae for all these in the supplementary section.

Kullback-Leibler (K-L) Divergence and Information Graphs to evaluate and compare

diagnostic tests and select optimal cut-point

We use the information theory approach in Lee et al.,21 Samawi et al.,22 and Benish

et al.,23 briefly summarized below, to select the optimal probability threshold for

accurate prediction of the binary outcome of prediabetes. An important approach

followed in medical diagnostics is to predict the ‘Rule-in and Rule-out’ potential of

the diagnostic test to safely include the patients in need of treatment and discard

those not in need, respectively. At a probability threshold c reported by the ML

algorithm, suppose the proportion of the diseased population correctly predicted

as diseased is given by g1(c) and that of the non-diseased population correctly

predicted as non-diseased is given by g2(c). Both g1(c) and g2(c) are Bernoulli

probability distributions and are simply the sensitivity and specificity, respectively

at the threshold value of c. The K-L divergence (or relative entropy) measures the

separation between these two probability distributions and is given by:

D(g1∥g2) = g1(c)× ln
g1(c)

1− g2(c)
+ (1− g1(c))× ln

1− g1(c)

g2(c)
(1)

D(g2∥g1) = (1− g2(c))× ln
1− g2(c)

g1(c)
+ g2(c)× ln

g2(c)

1− g1(c)
(2)
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By definition, D(g1∥g2) ≥ 0, D(g2∥g1) ≥ 0. The KL divergence is close to 0 when

there is little difference between the two distributions. A high D(g1∥g2) value indi-

cates the increase in information of predicting disease onset. We calculate D(g1∥g2)
and D(g2∥g1) for 1000 cut points at an interval of 0.001 from 0 to 1. We chose Tin

with cut-point cin corresponding to Dmax(g1∥g2) as the diagnostic test with greatest

rule-in potential. We chose Tout with cut-point cout corresponding to Dmax(g2∥g1)
as the diagnostic test with greatest rule-out potential. We calculate Pin = eD(g1∥g2),

which is the ratio of post-test odds to the pre-test odds of having the disease for a

randomly selected diseased individual. We also calculate Pout = e(D(g2∥g1), which is

the ratio of pre-test odds to the post-test odds of having the disease for a randomly

selected non-diseased individual. Pin, Pout ≥ 1.

Next, we calculate the Information Distinguishability measure, ID(g1∥g2) = 1 −
e−D(g1∥g2) and ID(g2∥g1) = 1 − e−D(g2∥g1), to study and compare the separation

provided by the diagnostic test between the diseased and the non-diseased distri-

butions. We calculate the objective function TKLdiscrete(c) = D(g1∥g2)+D(g2∥g1)
and chose the optimal cut-point cin−out corresponding to max(TKLdiscrete(c)) to

achieve maximum information for Tin−out with high potential in both rule-in and

rule-out situations. Further, we plot information graphs to characterize and com-

pare the performance of our diagnostic tests at different cut-points depending upon

the rule-in or rule-out potential. The expected value of the relative entropy provides

a measure of the expected diagnostic information and plotting it as a function of

the pre-test probabilities yields an information graph. The equations used to plot

the information graphs are given as follows: Let Di be the true status and Ti be the

diagnostic test result for the patient, respectively, (i = {0, 1}, 0: disease absent, &

1: disease present). If x = Pr(D1), then the diagnostic information obtained from

a +ve, and -ve test result (I+(x), I−(x), respectively) and the expected diagnostic

information (IE(x)) are given as follows.

I+(x) =
x× g1(c)× ln(g1(c))

Pr(T1)
+

(1− x)× (1− g2(c))× ln(1− g2(c))

Pr(T1)
− ln(Pr(T1))

(3)

I−(x) =
x× (1− g1(c))× ln(1− (g1(c))

1− Pr(T1)
+

(1− x)× g2(c)× ln(g2(c))

1− Pr(T1)
− ln(1− Pr(T1))

(4)

IE(x) = x× g1(c)× ln(g1(c)) + (1− x)× (1− g2(c))× ln(1− g2(c))+

x× (1− g1(c))× ln(1− (g1(c)) + (1− x)× g2(c)× ln(g2(c))−

Pr(T1)× ln(Pr(T1))− (1− Pr(T1))× ln(1− Pr(T1))

(5)

Pr(T1) = x× Pr(T1|D1) + (1− x)× Pr(T1|D2) (6)

= x× g1(c) + (1− x)× (1− g2(c)) (7)

In addition, we also plot the information graph by representing the total K-L

divergence as the discrete Bregman divergence, which is the sum of the vertical dis-
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tances between the negative Shannon entropy function (see Supplementary material

for details) and tangents to it at probabilities p = g1(c) and p = 1− g2(c).

Decision Curve Analysis

We carry out Decision Curve Analysis (DCA) to evaluate and compare the perfor-

mance of our model in comparison to the ‘treat all’ and ‘treat none’ approaches.

Finally, we compare the correctly identified non-attenders (sensitivity) vs follow-ups

avoided (the true negatives + false negatives, obtained from the optimal selected

model), to calculate the number of women requiring enhanced care, to maximize

targeted postpartum follow-up.

Results

Postpartum glucose status was available for 394 (64.91%) out of the 607 women.

340 (56.01%) women underwent OGTT at 6 weeks and 128 (21.09%) underwent

the postpartum HbA1c around 13 weeks. prediabetes is present in 92 (23.35%)

women. Of these 47 (51.09%) were abnormal by P-FG, 33 (35.87%) by P-PG, and

39 (42.39%) by P-HbA1c. We show the baseline characteristics of these 394 women

in Table 1.

Machine Learning Analysis

The data is imbalanced (as expected), with a 23.35% representation of the pos-

itive prediabetes class. We compare simple logistic regression with different clas-

sification tree methods for predicting prediabetes from training on this small and

imbalanced data set. We use class-weight = balanced in the logistic regression algo-

rithm and ‘balanced’ classification tree-based algorithms from the imbalanced-learn

python package for developing the tree-based prognostic models. The predictive per-

formance of our proposed framework improves significantly by applying ensemble

methods of bagging and boosting to the base decision tree estimator but remains

lower than LR. LR gives the area under the ROC curve of 0.7203 from aggregating

the test predictions from the leave-one-out cross-validation (Fig 2a). Using the base

decision tree algorithm and leave-one-out cross-validation, the area under the ROC

curve for the aggregated test predictions is 0.6210, bagging decision trees improves

it to 0.6883. Random forests further improve it to 0.6944 using 4-fold stratified

cross-validation in CV1 and the maximum area under the ROC curve from the

tree-based algorithms is 0.6991 from balanced bagging using histogram-based gra-

dient boosting tree classification algorithm using 4-fold stratified cross-validation.

We use 4-fold stratified cross-validation in CV1 instead of leave-one-out for random

forests and the boosting algorithm due to the high time complexity of leave-one-out.

We conclude that the simplest prediction algorithm for binary classification, LR,

outperforms the advanced tree-based methods in the prediction of prediabetes. Our

final composite risk score using the LR model with A-FG and A-HbA1c is highly

robust for the prediction of prediabetes in GDM women. Out of the n=394 runs of

leave-one-out cross-validation, antenatal fasting glucose and antenatal HbA1c are

selected 318 (> 80%) times.
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Composite Risk Score calculation

Based on our proposed final Logistic regression model, we calculate the composite

risk score, c (or P(prediabetes)), as

P (prediabetes) =
1

1 + e−(−8.36+0.58×A-FG+0.10×A-HbA1c)
(8)

Kullback-Leibler (K-L) Divergence and Information Graphs to evaluate and compare

diagnostic tests and select optimal cut-point

Tin with Dmax(g1(c), g2(c)) = 0.30 and cin = 0.381 has high specificity of

92%, in concurrence with the ‘Rule-in-specific-test’ principle and Tout with

Dmax(g2(c), g1(c)) = 0.28 and cout = 0.140 has high sensitivity of 92%, again in

concurrence with the ‘Rule-out-sensitive-test’ principle. Pin = 1.35 and Pout = 1.23

for Tin, and Pin = 1.21 and Pout = 1.33 for Tout, which is the increase (de-

crease) in disease odds after the test for a diseased (control) individual. Tin−out

with max(TKLdiscrete(c)) = 0.51 for cin−out = 0.260 has Pin = 1.31 and

Pout = 1.27. Also, maximum of the Youden’s index, Jmax = 0.34 (J(c) =

g1(c)+g2(c)−1), and maximum F1-score = 0.49 occurs at the same cin−out = 0.260.

e(Tin(KLin)−Tout(KLin)) = e(0.30−0.19) = 1.12 > 1, which implies that positive result

obtained by Tin is more likely to be true than positive result obtained by Tout. In

other words, Tin is more specific and yields fewer false positives compared to Tout.

Similarly, e(Tin(KLout)−Tout(KLout)) = e(0.21−0.28) = 0.93 < 1 shows that Tin is less

sensitive with more false negatives.

We generated the information graphs using the equations for I+(x), I−(x), and

IE(x) as a function of x = Pr(D1), as shown in Fig 3a, 3b, and 3c. We can observe

that Tin provides the most diagnostic information when the test result is positive,

and the pre-test probability of a positive result (Pr(D1)) is low. Tout provides the

most diagnostic information when the test result is negative, and the pre-test proba-

bility of a positive result is high. For Tin−out, we obtain more diagnostic information

when the test yields a positive result than a negative one and we obtain maximum

information from a positive result at a lower pre-test probability than that from

the negative result. In Fig 3d, we can see the information gained using the discrete

Bregman divergence representation of TKLdiscrete by adding the vertical distances

from the negative Shannon Entropy function to the tangents drawn at probability

p = g1(c) and 1− g2(c).

Using the prognostic model with LR, 15 out of 100 women are above the optimal

threshold of 0.381, and focusing on these women could improve the early prediabetes

diagnosis. 28 out of 100 women are below the optimal threshold of 0.140, and testing

for early prediabetes diagnosis can be safely avoided in this category. The model

shows 92% sensitivity for the rule-in test and 92% specificity for the rule-out test,

Table 3 shows the sensitivity, specificity, PPV, NPV, F1 score, accuracy, and other

measures related to K-L divergence at different probability thresholds.

Decision Curve Analysis

In the decision curve analysis by comparing the ‘treat all’ and ‘treat none’ ap-

proaches, the ML model obtains a higher standardized net benefit as compared to

the universal screening of all GDM women for early prediabetes (Fig 2b).
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Discussion
In this study, we try to predict at the time of delivery if the women diagnosed

with GDM are at high risk of getting diagnosed with postpartum prediabetes at

6-13 weeks postpartum. For this purpose, we employ a variety of machine learning

techniques including both logistic regression and advanced tree-based algorithms

and train the models using routinely collected antenatal and delivery variables as

predictors. Our proposed model using nested cross-validation and logistic regression

algorithm can effectively predict prediabetes in GDM women, using only the ante-

natal predictors fasting glucose and HbA1c, with good sensitivity and specificity.

The use of machine learning for predicting postpartum prediabetes in GDM-

diagnosed women has been rarely studied. We are aware of only one study that

has made use of machine learning algorithms to predict the occurrence of T2DM

post-GDM: Krishnan et al.24 proposed random forest and gaussian naive Bayes

algorithms to predict T2DM after GDM, and achieved a modest specificity of 23%

at a sensitivity of 88%. It also lacked the use of advanced techniques to deal with

imbalanced data. Real-world medical data is scarce due to the different challenges

posed in its collection. To the best of our knowledge, there is no larger data collected

for studying prediabetes in GDM women than the data in the present study. In

our study, we propose a more personalized approach to identifying postpartum

prediabetes after GDM, at the antenatal visit itself, by calculating a simple score

based on only two easy-to-measure biochemical predictors, obtained using machine

learning techniques and a logistic regression algorithm, with good sensitivity and

specificity (each of 92% for Rule-out and Rule-in tests, respectively). Further, we

suggest different cut-offs for classifying high-risk women depending upon resource

availability.

The proposed prediction test needs only the antenatal fasting glucose (at the

time of antenatal OGTT) and HbA1c, usually measured soon after the diagno-

sis of GDM for clinical use. Thus, no additional tests/costs are involved, and

is easy to use by healthcare professionals. The information theory analysis pro-

poses different cut-offs for classification according to the requirement of ruling-in

or ruling-out the prediabetes condition in GDM-diagnosed women. All women di-

agnosed with GDM during pregnancy are recommended to have annual screen-

ing,19,25 although the compliance is currently poor.5,26 Therefore, we can allow

for more false positives than false negatives and propose cout = 0.140 as the op-

timal cut-off for classification. However, in low-resource settings, we can primarily

focus on women with P (prediabetes) ≥ cin = 0.381 and then consider women with

P (prediabetes) ≥ cin−out = 0.260 in the following step. If resource constraint is

not an issue, we can target women with P (prediabetes) ≥ cout = 0.140 as well.

Targeting GDM women stepwise according to their risk of developing prediabetes

is more personalized than the blanket approach of targeting all women with GDM.

This could be a pragmatic approach in settings with limited resources. The desired

cut-off out of cin, cout, or cin−out can be chosen depending upon the purpose and

setting in which this diagnostic test is used.

Postpartum weight loss has been shown to reduce the risk of incidence of T2DM

and recurrent GDM in the subsequent pregnancy.27,28 However, initiating such
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lifestyle interventions can be difficult due to lack of personalization and may not

produce optimum results due to poor adherence by the women.29 Our approach

to identifying women with a high risk of prediabetes (using any ‘c’) can provide

an improved understanding of individualized prediabetes risk which can be used to

target women for interventions (diet and lifestyle, encourage breastfeeding, etc) for

postpartum weight loss. This can in turn improve their T2DM and CVD risk profile.

Women are most conducive to interventions during pregnancy and also maintain

close contact with healthcare professionals. Identifying the high-risk women during

the antenatal visits will help the healthcare professionals to implement necessary

interventions throughout the remaining pregnancy period, and also encourage post-

partum follow-up.

We believe that the results obtained are supportive for testing and validating our

Rule-in and Rule-out composite risk score approach on a larger prospective dataset.

The key strength of our study is the use of a variety of machine learning techniques

and the comparison of the LR algorithm with tree-based algorithms for develop-

ing the prognostic model for individualized risk prediction of prediabetes following

GDM pregnancy. In addition, to the best of our knowledge, this is the first study that

used K-L divergence and information graphs for evaluating and comparing different

diagnostic tests at different cut-points and explaining their rule-in and rule-out po-

tentials. However, our study has important limitations. First, this is retrospective

data and hence other potential variables that could influence the prediabetes status

such as gestational weight gain and insulin treatment were not electronically avail-

able. Second, postpartum glucose status data was only available in 65.0% of the

cohort, although this follow-up rate for postpartum glucose testing was higher than

the national average. Finally, while the sample size is small (n = 394 and n = 92

for the prediabetes class) for machine learning analyses, this was adequate based

on the substantial predictive performance and the power calculations. In addition,

the only available literature to our knowledge that looked at predicting the onset

of T2DM following GDM was based on only 77 patient records with 15 variables.24

Conclusions
This study shows that our proposed model using a logistic regression algorithm is

effective for the prediction of prediabetes in GDM women by using the already avail-

able antenatal fasting glucose and antenatal HbA1c. We believe that this approach

is easy for practical use with no additional cost and could be extremely effective

for individualized risk stratification of GDM women. This approach could be used

for targeted glucose testing during the postpartum period in a resource-constrained

setting.
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Figures

Figure 1: Consort diagram of early postpartum glucose tolerance.

Caption: The flow chart displays the proportion of GDM women with and without prediabetes. The diagnosis of

prediabetes was made if: FPG ≥ 5.6 or 2-hr glucose ≥ 7.8 at postpartum OGTT or HbA1c ≥ 40 mmol/mol.

Figure 2: A. Estimated ROC for the prediction of postpartum prediabetes following a GDM pregnancy using ML

model B. Decision curve analysis for the standardized net benefit obtained for the optimal probability threshold.

Caption: Fig (a): AUROC (Area under the receiver operating characteristic) was used to evaluate the performance
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of our machine learning-based method using the logistic regression model on the validation cohort, n= 394 by

aggregating the predictions from the test folds of CV1. The area under ROC was 0.7203. The green dots on the

ROC curve represent Tin (cin = 0.381), Tin−out (cin−out = 0.260), and Tout (cout = 0.140), from left to right,

respectively. Fig (b): The DCA (Decision curve analysis) showed the net benefit obtained from the ML (blue)

prediction model. The net benefit of implementing our model in a clinical setting is larger when compared to the

follow-up of all GDM women for prediabetes. DCA was derived from the equation, Net benefit

=
TP−FP×(pt/1−pt)

N , where TP and FP are the true positives and false positives respectively, pt is the probability

threshold, and N is the total number of participants in the validation cohort, n=607.

Figure 3: Information graphs for comparing Rule-in and Rule-out test potentials of diagnostic tests using different

cut-points for predicting a low and high risk of prediabetes in GDM women

Caption: Information graphs provide means to distinguish between diagnostic test performance. We compared the

diagnostic information obtained from Tout, Tin−out, and Tin defined by the cut-points 0.140, 0.260, 0.381. A

positive diagnosis made by the ‘Rule-in-specific-test’ and a negative diagnosis made by the ‘Rule-out-sensitive-test’

gives us the most information, as expected. Fig (a), (b), (c): Maximum information from a positive test diagnosis

(blue) is obtained at a lower pre-test probability than the maximum information from a negative test diagnosis

(red). The diagnostic test with a lower cut-point gives maximum information when the diagnosis is negative (i.e, the

test is very sensitive and we can rule out the negative cases safely) and the diagnostic test with a higher cut-point

gives maximum information when the diagnosis is positive (i.e, the test is very specific to the disease and we can

rule in the positive cases safely). IE is the expected information from the diagnostic test (x × I+ + (1 − x) × I−,

where x is the probability of a positive test diagnosis). Fig (d): The sum of the distances between the tangents to

the negative Shannon entropy function at p = g1(c) and p = 1 − g2(c) is the discrete Bregman divergence, which

represents total K-L divergence.

Tables
Table 1: Comparison of antenatal, delivery and postnatal characteristics of GDM women with presence and absence

of prediabetes

Variable All prediabetes ppNGT
(N=394) (N=92) (N=302)

Maternal characteristics

Age 32.21 ± 5.40 32.38 ± 5.46 32.16 ± 5.39

Height (m) 1.64 ± 0.07 1.64 ± 0.07 1.64 ± 0.07

Weight (kg) 79.78 ± 19.80 84.32 ± 22.82 78.36 ± 18.58

BMI (kg/m2) 29.76 ± 6.81 31.21 ± 7.40 29.30 ± 6.56

Systolic BP (mmHg) 115.71 ± 13.62 116.07 ± 13.78 115.60 ± 13.59

Diastolic BP (mmHg) 69.98 ± 9.40 70.41 ± 8.18 69.85 ± 9.76

Parity

1 192 (48.98%) 43 (46.74%) 149 (49.67%)

>= 2 200 (51.02%) 49 (53.26%) 151 (50.33%)

Ethnicity

White European 303 (76.90%) 66 (71.74%) 237 (78.48%)

South Asian 46 (11.68%) 13 (14.13%) 33 (10.93%)

Others 45 (11.42%) 13 (14.13) 32 (10.60%)

Smoking category

Never smoked 190 (50.94%) 43 (49.43%) 147 (51.40%)

Ex-smoker 147 (39.41%) 34 (39.08%) 113 (39.51%)

Smoker 36 (9.65%) 10 (11.49%) 26 (9.09%)

Marrital Status

Single 21 (5.74%) 3 (3.45%) 18 (6.45%)

Employment own/partner

Unemployed 9 (2.56%) 3 (3.53%) 6 (2.25%)

At OGTT and Intrapartum

GA at antenatal OGTT (weeks) 28.16 ± 4.21 27.50 ± 4.08 28.37 ± 4.23

A-FG (mmol/L) 4.95 ± 0.87 5.38 ± 0.91 4.82 ± 0.81

A-PG (mmol/L) 8.55 ± 1.75 8.90 ± 1.75 8.44 ± 1.74

A-HbA1c (mmol/mol) 35.52 ± 4.69 38.13 ± 4.61 34.72 ± 4.42

GA birth (weeks) 37.91 ± 1.27 37.65 ± 1.28 37.99 ± 1.26

Preterm (GA ≤ 37 weeks) 53 (13.59%) 18 (20.00%) 35 (11.67%)
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Table 1 – continued

Variable All prediabetes ppNGT
(N=394) (N=92) (N=302)

Delivery mode

Spontaneous 197 (50.38%) 37 (40.66%) 160 (53.33%)

Instrument assisted 32 (8.18%) 6 (6.59%) 26 (8.67%)

Caesarean delivery 162 (41.43%) 48 (52.75%) 114 (38.00%)

Neonatal characteristics

Birth weight (grams) 3211.95 ± 467.75 3216.48 ± 511.41 3210.57 ± 454.58

Birth Centile

AGA (10-90th centile) 267 (74.58%) 61 (72.62%) 206 (75.18%)

SGA (< 10 centile) 42 (11.73%) 10 (11.90%) 32 (11.68%)

LGA (> 90 centile) 49 (13.69%) 13 (15.48) 36 (13.14%)

Male baby 183 (46.80%) 42 (46.15%) 141 (47.00%)

Breastfeeding initiated 207 (58.31%) 45 (54.88%) 162 (59.34%)

Postpartum maternal

biochemical characteristics

P-FG (mmol/L) 4.99 ± 0.62 5.64 ± 0.79 4.78 ± 0.38

P-PG (mmol/L) 5.59 ± 1.62 7.10 ± 2.08 5.12 ± 1.07

P-HbA1c (mmol/mol) 37.53 ± 4.84 42.22 ± 4.56 34.99 ± 2.55

Table 2: Factors associated with postpartum prediabetes by machine learning model

variables β (SE) OR (95% CI) p-value

A-FG (mmol/L) 0.5816 (0.207) (0.175, 0.988) 0.005

A-HbA1c (mmol/mol) 0.0996 (0.038) (0.025, 0.174) 0.009

Table 3: Performance of the diagnostic test for postpartum prediabetes at various probability thresholds
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Algo c g1(c) g2(c) PPV NPV F1 Accu J KLin KLout TKL Pin Pout IDin IDout TA
LR 0.145 0.90 0.36 0.3007 0.9237 0.4511 0.4873 0.2631 0.1833 0.2508 0.4342 1.2012 1.2851 0.1675 0.2219 30

0.169 0.80 0.48 0.3217 0.8902 0.4596 0.5584 0.2878 0.1792 0.2086 0.3878 1.1963 1.2319 0.1641 0.1883 42
0.193 0.75 0.57 0.3467 0.8821 0.4742 0.6117 0.3195 0.2106 0.2299 0.4405 1.2344 1.2585 0.1899 0.2054 49
0.201 0.70 0.62 0.3556 0.8692 0.4706 0.6345 0.3115 0.1986 0.2060 0.4046 1.2197 1.2288 0.1801 0.1862 54
0.239 0.62 0.71 0.3904 0.8589 0.4790 0.6853 0.3249 0.2255 0.2164 0.4419 1.2530 1.2416 0.2019 0.1946 63

Tout 0.140 0.92 0.34 0.2982 0.9358 0.4509 0.4746 0.2617 0.1942 0.2829 0.4771 1.2144 1.3269 0.1765 0.2464 28
Tin 0.381 0.36 0.92 0.5690 0.8244 0.4400 0.7868 0.2759 0.2965 0.2068 0.5033 1.3451 1.2298 0.2566 0.1868 85

Tin−out 0.260 0.58 0.76 0.4274 0.8556 0.4907 0.7208 0.3410 0.2661 0.2407 0.5069 1.3049 1.2722 0.2337 0.2140 69

DTC 0.113 0.64 0.52 0.1878 0.8934 0.2902 0.5406 0.1617 0.0528 0.0542 0.1070 1.0542 1.0557 0.0515 0.0528 50
0.114 0.60 0.57 0.1934 0.8920 0.2929 0.5711 0.1689 0.0575 0.0580 0.1154 1.0591 1.0597 0.0558 0.0563 54

Tout 0.871 0.26 0.93 0.3947 0.8792 0.3125 0.8325 0.1902 0.1745 0.1217 0.2962 1.1906 1.1294 0.1601 0.1146 90
Tin 0.871 0.26 0.93 0.3947 0.8792 0.3125 0.8325 0.1902 0.1745 0.1217 0.2962 1.1906 1.1294 0.1601 0.1146 90

Tin−out 0.871 0.26 0.93 0.3947 0.8792 0.3125 0.8325 0.1902 0.1745 0.1217 0.2962 1.1906 1.1294 0.1601 0.1146 90

Bagging
DTC

0.244 0.90 0.21 0.1640 0.9221 0.2773 0.3122 0.1079 0.0410 0.0498 0.0909 1.0419 1.0511 0.0402 0.0486 20

0.306 0.81 0.32 0.1703 0.9068 0.2814 0.3909 0.1288 0.0420 0.0471 0.0890 1.0429 1.0482 0.0411 0.0460 30
0.349 0.76 0.45 0.1913 0.9146 0.3056 0.4924 0.2050 0.0906 0.1001 0.1907 1.0949 1.1053 0.0866 0.0952 42
0.370 0.71 0.51 0.1981 0.9091 0.3094 0.5355 0.2128 0.0932 0.0992 0.1925 1.0977 1.1043 0.0890 0.0945 47
0.468 0.60 0.76 0.3070 0.9179 0.4070 0.7411 0.3683 0.3083 0.2808 0.5891 1.3611 1.3242 0.2653 0.2449 71

Tout 0.468 0.60 0.76 0.3070 0.9179 0.4070 0.7411 0.3683 0.3083 0.2808 0.5891 1.3611 1.3242 0.2653 0.2449 71
Tin 0.564 0.45 0.89 0.4194 0.9036 0.4333 0.8274 0.3411 0.3760 0.2765 0.6525 1.4565 1.3184 0.3134 0.2415 84

Tin−out 0.564 0.45 0.89 0.4194 0.9036 0.4333 0.8274 0.3411 0.3760 0.2765 0.6525 1.4565 1.3184 0.3134 0.2415 84

RFC 0.371 0.90 0.29 0.1793 0.9423 0.2989 0.3807 0.1882 0.1040 0.1354 0.2394 1.1096 1.1450 0.0988 0.1266 26
0.431 0.81 0.47 0.2080 0.9345 0.3310 0.5178 0.2776 0.1689 0.1979 0.3667 1.1840 1.2188 0.1554 0.1795 43
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P
a
g
e
1
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o
f
1
5

Algo c g1(c) g2(c) PPV NPV F1 Accu J KLin KLout TKL Pin Pout IDin IDout TA
0.446 0.76 0.50 0.2085 0.9235 0.3271 0.5406 0.2616 0.1436 0.1591 0.3027 1.1544 1.1725 0.1337 0.1471 46
0.466 0.71 0.56 0.2158 0.9167 0.3306 0.5787 0.2634 0.1417 0.1501 0.2918 1.1522 1.1619 0.1321 0.1394 52
0.502 0.60 0.66 0.2365 0.9065 0.3398 0.6548 0.2671 0.1486 0.1452 0.2938 1.1602 1.1563 0.1381 0.1351 62

Tout 0.618 0.40 0.89 0.3833 0.8952 0.3898 0.8173 0.2864 0.2737 0.2046 0.4782 1.3148 1.2270 0.2394 0.1850 85
Tin 0.729 0.17 0.99 0.6667 0.8734 0.2740 0.8655 0.1575 0.2782 0.1352 0.4134 1.3207 1.1448 0.2428 0.1265 96

Tin−out 0.618 0.40 0.89 0.3833 0.8952 0.3898 0.8173 0.2864 0.2737 0.2046 0.4782 1.3148 1.2270 0.2394 0.1850 85

Bagging
HGBC

0.173 0.90 0.24 0.1699 0.9318 0.2857 0.3401 0.1406 0.0641 0.0805 0.1447 1.0662 1.0838 0.0621 0.0774 22

0.226 0.81 0.37 0.1808 0.9179 0.2956 0.4315 0.1764 0.0742 0.0851 0.1593 1.0771 1.0888 0.0715 0.0816 34
0.274 0.76 0.45 0.1921 0.9152 0.3066 0.4949 0.2080 0.0931 0.1029 0.1960 1.0976 1.1083 0.0889 0.0977 42
0.308 0.74 0.50 0.2028 0.9176 0.3185 0.5330 0.2384 0.1187 0.1296 0.2482 1.1260 1.1383 0.1119 0.1215 46
0.366 0.71 0.59 0.2303 0.9213 0.3475 0.6091 0.2992 0.1828 0.1922 0.3750 1.2006 1.2120 0.1671 0.1749 55

Tout 0.562 0.47 0.87 0.3750 0.9037 0.4154 0.8071 0.3316 0.3220 0.2512 0.5732 1.3799 1.2855 0.2753 0.2221 82
Tin 0.562 0.47 0.87 0.3750 0.9037 0.4154 0.8071 0.3316 0.3220 0.2512 0.5732 1.3799 1.2855 0.2753 0.2221 82

Tin−out 0.562 0.47 0.87 0.3750 0.9037 0.4154 0.8071 0.3316 0.3220 0.2512 0.5732 1.3799 1.2855 0.2753 0.2221 82
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