1	Quantification of early nonpharmaceutical interventions aimed at slowing
2	transmission of Coronavirus Disease 2019 in the Navajo Nation and
3	surrounding states (Arizona, Colorado, New Mexico, and Utah)
4	Short Title: The COVID-19 epidemics in the Navajo Nation and surrounding states
5	Ely F. Miller ¹ , Jacob Neumann ^{1#} , Ye Chen ² , Abhishek Mallela ^{3†} , Yen Ting Lin ⁴ , William S.
6	Hlavacek ⁵ , Richard G. Posner ^{1*}
7	¹ Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United
8	States of America
9	² Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, Arizona,
10	United States of America
11	³ Department of Mathematics, University of California, Davis, California, United States of
12	America
13	⁴ Computer, Computational, and Statistical Sciences Division and Center for Nonlinear Studies,
14	Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
15	⁵ Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los
16	Alamos, New Mexico, United States of America
17	[†] Current address: Theoretical Division and Center for Nonlinear Studies, Los Alamos National
18	Laboratory, Los Alamos, New Mexico, United States of America
19	[#] Current address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca,
20	New York, United States of America
21	*Corresponding author. Email: <u>richard.posner@nau.edu</u>
22	
23	

24 Abstract: During an early period of the Coronavirus Disease 2019 (COVID-19) pandemic, the 25 Navajo Nation, much like New York City, experienced a relatively high rate of disease 26 transmission. Yet, between January and October 2020, it experienced only a single period of 27 growth in new COVID-19 cases, which ended when cases peaked in May 2020. The daily 28 number of new cases slowly decayed in the summer of 2020 until late September 2020. In 29 contrast, the surrounding states of Arizona, Colorado, New Mexico, and Utah all experienced at 30 least two periods of growth in the same time frame, with second surges beginning in late May to 31 early June. To investigate the causes of this difference, we used a compartmental model 32 accounting for distinct periods of non-pharmaceutical interventions (NPIs) (e.g., behaviors that 33 limit disease transmission) to analyze the epidemic in each of the five regions. We used Bayesian 34 inference to estimate region-specific model parameters from regional surveillance data (daily 35 reports of new COVID-19 cases) and to quantify uncertainty in parameter estimates and model 36 predictions. Our results suggest that NPIs in the Navajo Nation were sustained over the period of 37 interest, whereas in the surrounding states, NPIs were relaxed, which allowed for subsequent 38 surges in cases. Our region-specific model parameterizations allow us to quantify the impacts of 39 NPIs on disease incidence in the regions of interest. 40

41 Keywords: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Ordinary
42 Differential Equations (ODEs), Mathematical Model, Statistical Inference, Markov Chain Monte
43 Carlo (MCMC).

44

45

47 Introduction

48	An outbreak of pneumonia of unknown cause starting in Wuhan, China was recognized
49	in late December 2019 and widely reported in early January 2020 [1, 2]. The disease was later
50	named Coronavirus Disease 2019 (COVID-19) [1]. The causative agent was identified as a novel
51	coronavirus, later named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
52	COVID-19 rapidly spread to other countries [1, 2, 3], and the World Health Organization
53	(WHO) declared the COVID-19 outbreak a pandemic on March 11, 2020 [4]. In the United
54	States (US), during the early months of the pandemic, two regions were severely affected as
55	measured by cumulative number of COVID-19 cases per capita: Diné Bikéyah, more commonly
56	known as the Navajo Nation, and New York City.
57	On May 18, 2020, the Navajo Nation had the highest cumulative number of COVID-19
58	cases per hundred thousand in the US (2,344 cases per 100,000 residents), surpassing the New
59	York City metropolitan statistical area (MSA), which had 1,806 cases per 100,000 residents
60	[5,6]. Remarkably, both regions significantly slowed the transmission of COVID-19 and
61	prevented additional surges in new COVID-19 cases until late September 2020 while many other
62	regions, including the states of Arizona, Colorado, New Mexico, and Utah, each experienced a
63	series of two surges in cases during the same period [6].
64	The President of the Navajo Nation and the Governors of the surrounding states of
65	Arizona, Colorado, New Mexico, and Utah independently issued guidance and mandates to
66	control the spread of COVID-19. These non-pharmaceutical interventions (NPIs) enforced or
67	encouraged an array of behaviors that putatively protect susceptible individuals from SARS-

- 68 CoV-2 infection, such as curtailing of travel, reduction in face-to-face interaction, face mask-
- 69 wearing, working from home, etc. Although the governmental actions across the five regions

were similar, there were notable differences, particularly in the duration of mandates, as we will discuss later. The disease transmission dynamics in the five regions were also different. In the Navajo Nation, the number of new cases detected daily rose sharply in late March to early April, peaked in May, and then steadily declined until late September 2020 [7]. In contrast, in each of the surrounding states, there were at least two periods of growth in new cases between 01-March-2020 and 14-September-2020 [6].

76 Insights into why the Navajo Nation experienced only a single period of growth in new 77 COVID-19 cases during the period of interest while neighboring regions experienced two 78 distinct phases of increasing case counts could point to strategies for controlling transmission of 79 diseases similar to COVID-19 in the future. A possible explanation for the difference between 80 the Navajo Nation (with one phase of growth in disease incidence) and the surrounding states 81 (each with two phases of growth in disease incidence) is that NPIs were more effective and/or 82 more sustained in the Navajo Nation. To evaluate this hypothesis, for each of the five regions of 83 interest, we sought to use region-specific daily case reporting data to infer parameters of a 84 compartmental model for COVID-19 transmission that accounts for subpopulations of 85 susceptible individuals protected or not from SARS-CoV-2 infection by NPIs. The model 86 structure allows for multiple phases, or periods, of NPIs. Each phase is associated with three 87 parameters: an onset time, a sum of rate constants that defines a timescale for transition to a 88 setpoint level of adoption of disease-avoiding behaviors, and the setpoint (the fraction of the 89 regional population adopting disease-avoiding behaviors). We have previously shown that this 90 model is able to reproduce the dynamics of regional COVID-19 epidemics in 2020 in 280 of 384 91 MSAs in the US [8], including the 15 most populous metropolitan areas [7], and in all 50 states 92 [9].

93	We adopted a Bayesian inference approach enabled by Markov chain Monte Carlo
94	(MCMC) sampling to obtain samples of region-specific parameter posteriors. Inferences were
95	conditioned on one to three periods of NPIs, uniform proper priors, a negative binomial model
96	for surveillance noise, estimates of selected parameters taken to have the same values across all
97	regions of interest [7], and were based on daily counts of new cases available from January 21 to
98	September 14, 2020. Following Lin et al. [7], we used model selection to determine the most
99	parsimonious number of NPI periods. A model structure and parameterization were thus found
100	for each region of interest. Each parameterization allows the model with selected structure to
101	explain the corresponding regional epidemic curve. The parameter posteriors found indicate that
102	NPIs were not more effective but were more sustained in the Navajo Nation than in the
103	surrounding states.

104 Methods

105 The COVID-19 surveillance data used to parameterize the model for the Navajo Nation 106 was obtained from the Navajo Times COVID-19 webpage [5]. The Navajo Times provided daily 107 reports of new confirmed COVID-19 cases over the period of interest. The reported source of 108 this information was the Navajo Nation Department of Health (NNDOH) [10]. The COVID-19 109 surveillance data used to parameterize the models for Arizona, Colorado, New Mexico, and Utah 110 were obtained from a GitHub repository maintained by The New York Times newspaper [11]. 111 This GitHub repository collects new case reports from local health agencies in the United States. 112 For each of the four states, we aggregated county-level case counts to obtain state-level case 113 counts. 114 Information and data used to compare NPI mandates in each of the four states

neighboring the Navajo Nation were obtained from the *John Hopkins Coronavirus Resource*

116	Center [12]. This NPI resource webpage collects state-wide NPI mandates issued by each US
117	state's governor and plots when they were issued against daily new cases to visualize the effect
118	of NPIs on trends in new COVID-19 cases. The John Hopkins Coronavirus Resource Center
119	collects policy data from various state-specific websites such as state and governor websites and
120	from the National Governors Association. It should be noted that information in this resource
121	characterizes state-level mandates only; information about county-level mandates is less readily
122	available and was not considered in this study. Information about NPI mandates in the Navajo
123	Nation was obtained from the NNDOH public website [10]. Using policy data collected by John
124	Hopkins Coronavirus Resource Center and reported by the NNDOH, we compared
125	governmental mandates in the Navajo Nation and the four surrounding states.
126	The model we considered in this study is that of Lin et al. [7]. It is a compartmental
127	model that divides a regional population of interest into susceptible (S), exposed (E), infectious
128	(I), and removed (R) compartments (Fig 1). Exposed persons transition through a series of five
129	stages, introduced to capture the distribution of incubation times observed for COVID-19 [13].
130	The model also accounts for quarantine, self-isolation because of symptom awareness,
131	hospitalization, and death. Importantly, persons are allowed to transition between two modes of
132	behavior, in which they are either protected (imperfectly) from infection (because of adoption of
133	disease-avoiding behaviors) or are mixing freely (i.e., taking no special precautions to prevent
134	infection). The model tracks 25 compartments and each compartment corresponds to an ordinary
135	differential equation (ODE). There is an auxiliary 1-parameter measurement model, which
136	relates the variables of the compartmental model to reported new cases through surveillance
137	testing [7]. The equations of the mechanistic compartmental model and the measurement model
138	can be found in Appendix 1 of Lin et al. [7].

139	The model accounts for an initial phase of NPIs beginning at time $t = \sigma$, where σ is fixed				
140	to the date the region of interest accumulated at least 200 COVID-19 cases. The model can be				
141	extended to account for n additional periods. Thus, the total number of NPI periods considered in				
142	a regional model is given by $n + 1$ [7]. The start of a new NPI phase is accompanied by step				
143	changes in the values of the three NPI parameters. In the models for the Navajo Nation (NN),				
144	Arizona (AZ), Colorado (CO), New Mexico (NM), and Utah (UT), we considered three possible				
145	settings for <i>n</i> (the number of additional NPI periods beyond the initial period): $n = 0$ (only one				
146	NPI period over the entire period of interest), $n = 1$ (two NPI periods), and $n = 2$ (three NPI				
147	periods). The setting for n was determined as described below.				
148	To determine the structure of the compartmental model for each region of interest (i.e.,				
149	the number of distinct NPI phases), we used a heuristic model-selection method. In this				
150	approach, we calculated the value of the Akaike information criterion corrected for small sample				
151	size (AICc) for n and $n + 1$ versions of the model, where $n = 0, 1$. We also calculated the value				
152	of the Bayesian information criterion (BIC) for the same two versions of each model. Δ AICc is				
153	defined as the change in AICc between n and $n + 1$ versions of the models: $\Delta AICc = AICc^n - 1$				
154	AICc ⁿ⁺¹ . \triangle BIC is defined similarly: $\triangle BIC = BIC^n - BIC^{n+1}$. We adopted $n + 1$ over n when				
155	both of the following conditions held true: $\Delta AICc > 10$ and $\Delta BIC > 10$. The method of model				
156	selection described above was used to decide between the use of $n = 0$ and $n = 1$, and between				
157	the use of $n = 1$ and $n = 2$ [7, 14].				

158 In the case of only an initial NPI period (n = 0), the compartmental model and auxiliary 159 measurement model have 20 parameters combined. Five of the parameters are considered 160 adjustable; these parameters are all region-dependent. The other 15 parameters are taken to have

fixed values. The 15 fixed parameters are S_0 , σ , I_0 , m_b , ρ_E , ρ_A , k_L , k_Q , j_Q , f_A , f_H , f_R , c_A , c_I , and 161 162 c_{H} . The parameter S_{0} represents the total population of the region of interest, as determined by 163 census data [15], which we took to be fixed. I_0 refers to the starting number of infected 164 individuals. We used $I_0 = 1$. ρ_E and ρ_A refer to the relative infectiousness of exposed persons 165 and asymptomatic persons, respectively, compared to symptomatic persons [16, 17]. Infected persons are taken to enter quarantine with rate constant k_0 and persons with symptoms and mild 166 disease are taken to self-isolate with rate constant j_0 . Persons in the protected subpopulation (i.e., 167 168 persons adopting disease-avoiding behaviors) are taken to be less likely to acquire or transmit 169 disease by a factor m_b . In the model, the incubation period is divided into 5 stages. Movement 170 from one stage to the next occurs with rate constant k_L [13]. The fraction of exposed persons who never become symptomatic is represented by f_A . The fraction of symptomatic persons who 171 172 progress to severe disease (and hospitalization or isolation at home) is represented by f_H [18]. The fraction of persons with severe disease who recover is represented by f_R . Persons with 173 174 asymptomatic disease leave the immune clearance stage of infection and recover with rate 175 constant c_A [19]. Persons with mild symptomatic disease recover with rate constant c_I [20]. Persons with severe disease recover with rate constant c_H [21]. The five adjustable parameters 176 are t_0 , p_0 , λ_0 , β , and f_D . The parameter t_0 refers to the start time of local sustained COVID-19 177 transmission; p_0 is the initial non-zero value of $P_{\tau}(t)$, the stationary fraction of the local 178 179 population that is practicing disease-avoiding behaviors; λ_0 is the initial non-zero value of $\Lambda_{\tau}(t)$, 180 a sum of rate constants that establishes a time scale for the establishment of the quasi-stationary 181 state of NPIs; β is the disease transmission rate constant (or contact rate parameter) in the 182 absence of NPIs; and f_D is the fraction of new infections detected in surveillance. The parameter f_D characterizes the effectiveness of surveillance and relates new cases to new infections. In the 183

184 model, $P_{\tau}(t)$ and $\Lambda_{\tau}(t)$ are taken to be step functions. Each of these functions has a value of 0 185 until $t = \sigma$ and thereafter changes value at a set of n times (if n > 0), denoted $\tau = \{\tau_1 > \sigma, ..., \tau_n > \tau_{n-1}\}$. The value of n starts at 0 and is incremented through model selection as 187 described above. There is one additional adjustable parameter, r, the dispersion parameter of a 188 negative binomial distribution NB(p, r) used to characterize noise in case detection [7]. The 189 value of r is inferred jointly with the five adjustable model parameters. 190 In the case of one additional NPI period beyond the initial period (n = 1), three more

adjustable parameters are used, which are denoted τ_1 , p_1 , and λ_1 . The latter two parameters determine the new values of $P_{\tau}(t)$, and $\Lambda_{\tau}(t)$ at time $t = \tau_1$, the start time of the second phase of NPIs. In general, three more adjustable parameters are added to the model each time *n* is incremented. The equations of the compartmental model and of the auxiliary model can be found in Appendix 1 of Lin et al. [7].

196 Bayesian inference of adjustable region-specific model parameter values was based on 197 new daily case count data for NN, AZ, CO, NM, or UT. MCMC sampling was performed to 198 obtain samples of the parameter posterior. We used an adaptive MCMC sampling algorithm 199 described earlier [22] and implemented in the PyBioNetFit software package [23]. PyBioNetFit 200 job setup files for the inferences performed in this study, including data files, are available online 201 (https://github.com/lanl/PyBNF/tree/master/examples/Miller2022NavajoNation). We quantified 202 uncertainty in daily case reports through resampling of the parameter posteriors so as to generate 203 a posterior predictive distribution for daily number of new cases detected [7].

204 Results

205	The objective of our study was to quantify the effect of early non-pharmaceutical
206	interventions (NPIs) on the transmission of COVID-19 in the Navajo Nation (NN) and
207	surrounding states: Arizona (AZ), Colorado (CO), New Mexico (NM), and Utah (UT). We
208	achieved this by applying Bayesian inference enabled by Markov chain Monte Carlo (MCMC)
209	sampling to obtain posterior samples for NPI parameters of a mechanistic region-specific
210	compartmental mathematical model for each region of interest (Figure 1). Inference was based
211	on COVID-19 daily confirmed case count data. Because we set out to quantify the effectiveness
212	of early NPIs during the emergence of SARS-CoV-2 in the US, we used case data available for
213	the period starting on 21-January-2020 and ending on 14-September-2020.
214	The model we used to analyze data from the NN and surrounding states is illustrated in
215	Figure 1. The model accounts for movement between different states of protection against
216	SARS-CoV-2 infection because of disease-avoiding behaviors. In the model, persons are allowed
217	to be in three states of protection: a state in which an uninfected person is protected imperfectly
218	against infection because of disease-avoiding behaviors, a state in which an uninfected person is
219	more exposed to infection because they do not take any special precautions to avoid infection,
220	and a state in which an infected person is quarantined or in self-isolation. In the model, an initial
221	NPI period ($n = 0$) begins as soon as the number of cumulative cases reaches or exceeds 200. A
222	new NPI period is introduced through the model-selection procedure described in Methods.
223	When a new NPI period is introduced, n is incremented and NPI parameters change.
224	Figure 2 and Figure 3 show 95% credible intervals of posterior predictive distributions
225	for daily case detection for the NN and the four surrounding states. Posterior predictive
226	distributions were found by drawing from parameter posterior samples generated through
227	MCMC sampling, thereby propagating parametric uncertainty into prediction uncertainty. In the

228 posterior predictive distributions, NN only has surge in disease incidence whereas the

surrounding states each have at least two surges.

230 Figure 2 and Figure 3 show curves for the daily number of new symptomatic infections 231 (vs. cases) based on maximum a posteriori (MAP) estimates for parameters (which are 232 equivalent to maximum likelihood estimates because of the use of uniform proper priors). In our calculations, the number of detected cases over a 1-d period is taken to be a fraction f_D of the 233 number of new symptomatic infections generated during that same period. The value of f_D is 234 235 region-specific. The MAP estimate for f_D is 0.2 for the Navajo Nation, 0.15 for Arizona, 0.35 for 236 Colorado, 0.04 for New Mexico, and 0.07 for Utah. 237 Figure 2 and Figure 3 indicate when distinct NPI periods were determined to have 238 begun. Table 1 summarizes results of the model-selection procedure used to decide between 1 or 239 2 or more NPI phases for each region of interest. The Navajo Nation was the only region of 240 interest to have $\Delta AICc$ and ΔBIC values indicating only one NPI phase. 241 Figure 4 shows the marginal posteriors of the setpoint parameters $\{p_0, ..., p_n\}$ for each 242 region, which were generated by MCMC sampling. Recall that each of these parameters 243 determines the quasi-stationary population fraction adopting disease-avoiding behaviors and that there is a distinct setpoint for each distinct NPI phase (e.g., p_0 , p_1 , and p_2 for a region with three 244 245 distinct NPI phases). For the Navajo Nation, we inferred only a single NPI phase over the period 246 of interest. This phase is characterized by a NN-specific value for the setpoint parameter p_0 . The 247 marginal posterior for p_0 for the NN is shown in Figure 4A. In surrounding states, we inferred 248 changes in adherence to disease-avoiding behaviors, i.e., different setpoints over time. The 249 marginal posteriors for the state-specific setpoint parameters are shown in Figures 4B-4E.

250	Comparison of the marginal posteriors for different NPI phases within a given state		
251	reveals a significant relaxation in disease-avoiding behaviors in each state. Figure 5 shows MAP		
252	estimates for NPI setpoint parameters (e.g., p_0) for each region of interest over time. A higher		
253	setpoint indicates a higher prevalence of disease-avoiding behaviors. For the period of interest,		
254	we found that all regions experienced a decrease in their setpoint parameter values after an initial		
255	NPI phase except the Navajo Nation. Although Arizona, Colorado, and Utah initially had a		
256	higher setpoint than the Navajo Nation, the Navajo Nation maintained the initial setpoint for a		
257	longer period in comparison to the surrounding states.		
258	Figure 6 shows Navajo Nation COVID-19 case data from 21-January-2020 to 5-		
259	February-2021 and projections of daily case counts for selected NPI scenarios after 14-		
260	September-2020. Between 21-January-2020 and 14-September-2020, the Navajo Nation		
261	maintained disease-avoiding behaviors (as characterized by the setpoint parameter p_0) and		
262	experienced only one surge in COVID-19 cases. However, after this period, the Navajo Nation		
263	experienced an additional surge in COVID-19 cases. The solid red curve in Figure 6 is the		
264	trajectory corresponding to the MAP estimate of p_1 , obtained using data collected after 14-		
265	September-2020, and the dotted curves are different hypothetical trajectories based on lower and		
266	higher values for the NPI parameter p_1 . We found that the Navajo Nation would have needed to		
267	maintain a value for p_1 greater than 0.27 after 14-September-2020 to avoid a surge in disease		
268	transmission.		
269	Figure 7 presents a timeline of governmental mandates between 21-January-2020 and 14-		
270	September-2020 in the Navajo Nation and the four surrounding states. Four mandates are		
271	considered, which are related to face mask wearing, mass gatherings, non-essential business		
272	closures, and weekend lockdowns. As can be seen, these mandates were in effect for the longest		

duration in the Navajo Nation. Mandates in surrounding states were in effect for shorterdurations and were imposed less consistently.

275 **Discussion**

276 In this study, we used a compartmental model to quantify the overall effect of non-277 pharmaceutical interventions (NPIs) on COVID-19 transmission in specific regions, namely the 278 Navajo Nation and the four surrounding states. The model for a given region includes a set of 279 NPI setpoint parameters, each of which represents the quasi-stationary fraction of the regional 280 population that is practicing disease-avoiding behaviors for a given period. By using surveillance 281 data (daily case counts) to infer the region-specific values of the NPI setpoint parameters, we 282 quantified the relative overall effectiveness of NPIs across the regions of interest. We detected 283 changes in disease-avoiding behaviors over time using a model selection procedure, which 284 indicates when an NPI setpoint needs to change value for consistency with surveillance data. A 285 limitation of our approach is that we cannot ascertain the relative effectiveness of individual 286 NPIs. Another limitation is that our model can only explain surges in disease incidence by 287 relaxation of NPIs. The model does not account for other factors that could cause surges, such as 288 increased disease transmissibility associated with emergence of a viral variant or loss of 289 immunity.

From 21-January-2020 to 14-September-2020, we found that the Navajo Nation maintained the initial NPI setpoint throughout this period (Figure 4 and Figure 5), consistent with a single surge in COVID-19 incidence (Figure 2). In contrast, we found that the surrounding states of Arizona, Colorado, New Mexico, and Utah did not. That is, each surrounding state had two or more NPI phases, marked by different NPI setpoints and multiple surges in COVID-19 incidence. These findings are consistent with a comparison of governmental mandates across the

five regions of interest (Figure 7). Sustained NPIs is unique to the Navajo Nation and suggests an explanation for why this region experienced only one surge in COVID-19 cases while other regions experienced multiple surges.

299 Interestingly, we inferred that the fraction of the NN population adopting disease-

300 avoiding behaviors upon initial implementation of NPIs was lower than that in Arizona,

301 Colorado, and Utah and similar to that in New Mexico. These results implicate sustained NPIs

302 (rather than effectiveness of NPIs) as the reason for the different disease transmission dynamics

303 between the Navajo Nation (only a single surge in disease incidence) and the surrounding states

304 (multiple surges).

305 Our results suggest that NPIs, even if only partially adopted, can slow and control disease 306 transmission if mandates are consistent and are not relaxed prematurely or to too great an extent. 307 We determined that the Navajo Nation's NPI setpoint parameter value between 21-January-2020 308 and 14-September-2020 was 0.35 but the value changed to 0.19 after 14-September-2020, in 309 concert with a second surge in disease incidence. We determined the minimum NPI setpoint 310 parameter value needed to maintain control of disease transmission (i.e., to avoid a surge in 311 disease incidence) to be 0.27 (Figure 6). In other words, the second surge could have been 312 prevented if 27% of the population had maintained disease-avoiding behaviors after 14-313 September-2020.

We inferred two other notable differences between the regions of interest beyond differences in adoption of effective NPIs. First, surveillance efforts may have had different levels of effectiveness. Our MAP estimates for f_D , the fraction of new infections detected, ranged from a low of 0.04 for New Mexico to a high of 0.35 for Colorado. Colorado, New Mexico, and Utah had similar numbers of cases per 100,000 residents but the inferred differences in surveillance

319	effectiveness suggest that COVID-19 impacts were significantly greater in New Mexico and
320	Utah than in Colorado. Second, there were differences in contagiousness across the regions of
321	interest. Our MAP estimates for β , the contact rate parameter, ranged from just over 0.3 per day
322	for the Navajo Nation and New Mexico to just over 0.5 per day for Arizona. Using the formula
323	for the basic reproduction number R_0 given by Mallela et al. [9], these differences in β estimates
324	translate into the following estimated R_0 values for the five regions: 3.6 for New Mexico, 3.7 for
325	the Navajo Nation, 4.4 for Utah, 4.6 for Colorado, and 5.9 for Arizona. Thus, the relatively high
326	adoption of effective NPIs in Arizona was offset by relatively high transmission of COVID-19.
327	Our analysis does not provide insight into why contagiousness varied across the regions of
328	interest.
329	In summary, our analysis suggests that once NPIs have brought an outbreak under
330	control, relaxation of the NPIs can be implemented but relaxation should be gradual to avoid a
331	new surge in disease incidence. A relatively low level of disease incidence is not an indicator
332	that NPIs can be safely relaxed. Moreover, a model accounting for NPIs can perhaps be used to
333	guide relaxation of NPIs in a controlled manner.
334	

335 Acknowledgments

- 336 YC, WSH, EFM, JN, and RGP acknowledge support from the National Institute of General
- 337 Medical Sciences of the National Institutes of Health (grant R01GM111510). AM acknowledges
- 338 support from the 2020 National Science Foundation Mathematical Sciences Graduate Internship
- 339 Program and the Center for Nonlinear Studies at Los Alamos National Laboratory. WSH and
- 340 YTL acknowledge support from the Laboratory Directed Research and Development Program at
- 341 Los Alamos National Laboratory (project 20220268ER). We acknowledge use of the Monsoon
- 342 computer cluster at Northern Arizona University, which is funded by Arizona's Technology and
- 343 Research Initiative Fund.

345 Author Contributions

- 346 Conceptualization: EFM, WSH, RGP
- 347 Data Curation: EFM
- 348 Formal Analysis: EFM
- 349 Funding Acquisition: WSH, RGP, YC, AM, YTL
- 350 Investigation: EFM
- 351 Methodology: EFM, JN, AM, WSH, YTL
- 352 Project Administration: WSH, RGP
- 353 Resources: RGP
- 354 Software: EFM, JN, YTL
- 355 Supervision: RGP, WSH, YC
- 356 Validation: EFM, AM
- 357 Visualization: EFM
- 358 Writing Original Draft Preparation: EFM, WSH, RGP
- 359 Writing Review & Editing: EFM, JN, YC, AM, YTL, WSH, RGP

361 **References**

362	1.	Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The	
363		species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV	
364		and naming it SARS-CoV-2. Nat Microbiol. 2020.	
365	2.	Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of	
366		2019 novel coronavirus in the United States. New England Journal of Medicine.	
367		2020;382(10):929–36.	
368	3.	The Covid Tracking Project [Internet]. Available from: https://covidtracking.com/	
369	4.	Cucinotta D, Vanelli M; CDV. Who declares COVID-19 a pandemic [Internet]. Acta bio-	
370		medica: Atenei Parmensis. U.S. National Library of Medicine. Available from:	
371		https://pubmed.ncbi.nlm.nih.gov/32191675/	
372	5.	COVID-19 Across the Navajo Nation [internet]. Available from:	
373		https://navajotimes.com/coronavirus-updates/covid-19-across-the-navajo-nation/	
374	6.	Coronavirus in the U.S.: Latest map and case count - The New York Times [Internet].	
375		Available from: https://www.nytimes.com/interactive/2021/us/covid-cases.html	
376	7.	Lin YT, Neumann J, Miller EF, Posner RG, Mallela A, Safta C, et al. Daily forecasting of	
377		regional epidemics of coronavirus disease with Bayesian uncertainty quantification,	
378		United States. Emerging Infectious Diseases. 2021;27(3):767–78.	
379	8.	Mallela A, Lin YT, Hlavacek WS. Differential contagiousness of respiratory disease	
380		across the United States [Internet]. medRxiv. Cold Spring Harbor Laboratory Press;	
381		2022. Available from: https://www.medrxiv.org/content/10.1101/2022.09.15.22279948v1	

383	9.	Mallela A, Neumann J, Miller EF, Chen Y, Posner RG, Lin YT, et al. Bayesian inference
384		of state-level COVID-19 basic reproduction numbers across the United States. Viruses.
385		2022;14(1):157.
386	10	. Dikos Ntsaaígíí-19 (COVID-19) [Internet]. Navajo Nation Department of Health.
387		Available from: https://www.ndoh.navajo-nsn.gov/COVID-19
388	11	. New York Times. COVID-19-data: An ongoing repository of data on coronavirus cases
389		and deaths in the U.S. [Internet]. GitHub. Available from:
390		https://github.com/nytimes/covid-19-data
391	12	. Impact of opening and closing decisions in the U.S Johns Hopkins [Internet]. Johns
392		Hopkins Coronavirus Resource Center. Available from:
393		https://coronavirus.jhu.edu/data/state-timeline
394	13	Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation
395		period of Coronavirus Disease 2019 (COVID-19) from publicly reported confirmed
396		cases: Estimation and application. Annals of Internal Medicine. 2020;172(9):577-82.
397	14	. Burnham KP, Anderson DR. Multimodel inference. Sociological Methods & Research.
398		2004;33(2):261–304.
399	15	. U.S. Census Bureau, 2020. Available from: <u>https://www.census.gov/en.html</u>
400	16	. Van Vinh Chau N, Lam VT, Dung NT, Yen LM, Minh NNQ, Hung LM, et al. The
401		natural history and transmission potential of asymptomatic severe acute respiratory
402		syndrome coronavirus 2 infection. Clinical infectious diseases: an official publication of
403		the Infectious Diseases Society of America. U.S. National Library of Medicine; 2020.
404		Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314145/

405	17. Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, et al.
406	Presymptomatic SARS-COV-2 infections, and transmission in a skilled nursing facility.
407	New England Journal of Medicine. 2020;382(22):2081–90.
408	18. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al.
409	Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized
410	with covid-19 in the New York City area. JAMA. 2020;323(20):2052.
411	19. Sakurai A, Sasaki T, Kato S, Hayashi M, Tsuzuki S-ichiro, Ishihara T, et al. Natural
412	history of asymptomatic SARS-COV-2 infection. New England Journal of Medicine.
413	2020;383(9):885–6.
414	20. Perez-Saez J, Lauer SA, Kaiser L, Regard S, Delaporte E, Guessous I, et al. Serology-
415	informed estimates of SARS-COV-2 infection fatality risk in Geneva, Switzerland. The
416	Lancet Infectious Diseases. 2021;21(4).
417	21. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al.
418	Virological assessment of hospitalized patients with Covid-2019. Nature.
419	2020;581(7809):465–9.
420	22. Andrieu C, Thoms J. A tutorial on adaptive MCMC. Statistics and Computing.
421	2008;18(4):343-73.
422	23. Neumann J, Lin YT, Mallela A, Miller EF, Colvin J, Duprat AT, et al. Implementation of
423	a practical Markov chain Monte Carlo sampling algorithm in PyBioNetFit.
424	Bioinformatics. 2022;38(6):1770-2.
425	
42.6	
120	

428 Tables

429

Region	ΔAICc	ΔΒΙC
Navajo Nation	-6.4	-15.7
Arizona	76.2	66.7
Colorado	108.3	99.1
New Mexico	56.6	47.4
Utah	98.1	89.0

430 Table 1: Results from our model-selection procedure used to select the number of NPI periods in

431 each region. We calculated the value of the Akaike information criterion corrected for small

432 sample size (AICc) for n = 0 and n = 1 versions of the model, as well as and value of the

433 Bayesian information criterion (BIC) for the same two versions of each model. We defined

434 $\Delta AICc = AICc^{n=0} - AICc^{n=1}$ and $\Delta BIC = BIC^{n=0} - BIC^{n=1}$. We adopted n = 1 over n = 0

435 when $\Delta AICc > 10$ and $\Delta BIC > 10$ (i.e., we reject the hypothesis that n = 0 when both $\Delta AICc$

436 and ΔBIC are greater than 10). Accordingly, n = 0 is indicated only for the Navajo Nation and

437 n > 0 is indicated for all four surrounding states.

438

439

440

441

442

443

- 445
- 446 Figures

451 Figure 1: An illustration of the mechanistic compartmental model used to analyze COVID-19 452 data (7). The model captures various subpopulations, as indicated in the legend. Transitions 453 between subpopulations marked by M, P and O subscripts represent adoption and relaxation of 454 disease-avoiding behaviors. The model accounts for susceptible persons (S), exposed persons not 455 experiencing symptoms while incubating virus (E), asymptomatic persons in the immune 456 clearance phase of infection who never develop symptoms (A), infected persons with mild 457 symptoms (I), infected persons with severe illness (H), deceased persons (D), and recovered 458 persons (R). The incubation period is divided into five stages. Red (subscript M) indicates 459 persons in the mixing population, blue (subscript P) indicates persons in the protected 460 population, green (subscript Q) indicates persons in the quarantined or self-isolated population, 461 and white indicates persons who are recovered, hospitalized, or deceased.

463

464

Figure 2: Posterior predictive distribution for new cases detected in the Navajo Nation between 21-January-2020 and 14-September-2020. The daily number of new COVID-19 cases detected in the Navajo Nation are indicated by red markers. The median percentiles of posterior samples are shown in purple. The blue curve indicates daily number of new infections and is based on MAP estimates for model parameters. The vertical black dotted line represents the time at which NPIs began in the Navajo Nation. The horizontal black dotted line indicates the duration of the initial NPI phase. It should be noted that the left and right vertical scales are different.

470

Figure 3: Posterior predictive distributions for new cases in the four US states surrounding the
Navajo Nation between 21-January-2020, and 14-September-2020: (A) Arizona, (B) Colorado,
(C) New Mexico, and (D) Utah. Recorded region-specific daily new cases of COVID-19 are
indicated by red markers in each panel. The median parameter posterior estimates are shown in
purple. The yellow bands delimited the 2.5 and 97.5 percentiles; the entire shaded region

481	indicates the 95% credible interval. In each panel, the blue curve indicates daily number of new
482	infections and is based on MAP estimates for region-specific model parameters. The start times
483	of NPI phases are indicated by vertical dotted lines. The initial NPI phase begins when $t = \sigma$,
484	the second NPI phase begins when $t = \tau_1$, and the third NPI phase begins when $t = \tau_2$. The
485	horizontal black dotted lines indicate durations of NPI phases. It should be noted that the size of
486	the first surge in Arizona, occurring in March and April 2020, is dwarfed by the size of the
487	second surge. It should be noted that the left and right vertical scales of each panel are different.
488	

490

491	Figure 4: Marginal posteriors for parameters of the setpoint function $P_{\tau}(t)$ (e.g., p ₀) for (A)
492	Navajo Nation, (B) Arizona, (C) Colorado, (D) New Mexico, and (E) Utah for the time period
493	January 21, 2020, to September 14, 2020. Recall that $P_{\tau}(t)$ denotes the fraction of the population
494	practicing disease-avoiding behaviors at time t. The value of $P_{\tau}(t)$, a step function, is determined
495	by one or more setpoint parameters, denoted p0, p1, etc. The Navajo Nation setpoint function
496	parameter has the following maximum a posteriori (MAP) value: $p_0=0.35$. The Arizona setpoint
497	function parameters have the following MAP values: $p_0=0.60$ and $p_1=0.5$. The Colorado
498	setpoint function parameters have the following MAP values: $p_0=0.47$, $p_1=0.27$, and $p_2=0.11$.
499	The New Mexico setpoint function parameters have the following MAP values: $p_0 = 0.34$, $p_1 =$
500	0.19, and $p_2 = 0.05$. The Utah setpoint function parameters have the following MAP values: $p_0 =$
501	0.43, $p_1 = 0.35$, and $p_2 = 0.21$ For each region of interest, the NPI switch times, $\tau = {\tau_1,, \tau_n}$,
502	are indicated in Figure 3.

508 setpoint parameters $\{p_0, ..., p_n\}$ for (A) Navajo Nation (B) Arizona, (C) Colorado, (D) New

509 Mexico, and (E) Utah. The period considered is 21-January-2020 to 14-September-2020.

510

1101/2023.02.15.23285971; this version posted February 16, 2023. The copyright holder for this preprint eview) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license. medRxiv preprint doi: https://doi.org/10.1 (which was not certified by peer

- 513

Figure 6: Model-derived projections for various scenarios in which the NPI parameter p_1 , which 514 515 indicates the fraction of the population practicing disease-avoiding behaviors in a second NPI 516 phase in the Navajo Nation starting 14-September-2020, was adjusted to identify the threshold 517 required to prevent a second surge in cases. The red solid line corresponds to the MAP estimate 518 for p_1 , which is approximately 0.19. The blue broken line indicates the predicted trajectory for daily cases when p_1 is fixed at 0.15. The orange broken line corresponds to a scenario wherein 519 p_1 is fixed at 0.22, the green broken line corresponds to a scenario wherein p_1 is fixed at 0.25, 520 521 the pink broken line corresponds to a scenario wherein p_1 is fixed at 0.27, and the brown broken 522 line corresponds to a scenario wherein p_1 is fixed at 0.35.

- 526 Figure 7: Timeline for mandated NPIs in the Navajo Nation and surrounding states between 01-
- 527 March-2020 and 14-September-2020. Each region is represented by a different color, as
- 528 indicated. Only mandates issued by state governors and the president of the Navajo Nation are
- 529 considered.