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Abstract

In Finland, the first wave of the COVID-19 epidemic caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) took place from March to June 2020,

with the majority of COVID-19 cases diagnosed in the extended capital region. The

magnitude and trend in the incidence of COVID-19 is one way to monitor the course of

the epidemic. The diagnosed COVID-19 cases are a subset of the infections and

therefore the COVID-19 incidence underestimates the SARS-CoV-2 incidence. The

likelihood that an individual with SARS-CoV-2 infection is diagnosed with COVID-19

depends on the clinical manifestation as well as the infection testing policy and capacity.

These factors may fluctuate over time and the underreporting of infections changes

accordingly. Quantifying the extent of underreporting allows the assessment of the true

incidence of infection. To obtain information on the incidence of SARS-CoV-2 infection

in Finland, a series of serological surveys was initiated in April 2020. We develop a

Bayesian inference approach and apply it to data from the serological surveys,

registered COVID-19 cases, and external data, to estimate the time-dependent

underreporting of SARS-Cov-2 infections during the first wave of the COVID-19
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epidemic in Finland. There were 1 to 5 (95% probability) SARS-CoV-2 infections for

every COVID-19 case during the first wave of the COVID-19 epidemic in Finland. The

underreporting was highest before April when there were 4 to 17 (95% probability)

infections for every COVID-19 case. It is likely that between 0.5%–1.0% (50%

probability) and no more than 1.5% (95% probability) of the population in the extended

capital region were infected with SARS-CoV-2 by the beginning of July 2020.

Introduction 1

When a novel virus initiates an epidemic, an important question is how fast the virus 2

spreads in the population. If the virus causes clinical disease, the rate of epidemic 3

growth can be monitored by the incidence of diagnosed disease cases. However, mild or 4

asymptomatic infections may be difficult or impossible to observe directly, and therefore 5

the true incidence of infection can not be learned solely based on the diagnosed cases. 6

Infection usually leaves a mark in the form of antibodies, i.e. immunoglobulin proteins 7

developed by the immune system and capable of identifying and neutralising the virus. 8

Consequently, the true incidence of infection can be learned through serological surveys, 9

i.e. studies of the prevalence of individuals with antibodies (seroprevalence). Comparing 10

the seroprevalence to the cumulative incidence of diagnosed cases allows one to learn 11

about the underreporting of infections, which consequently allows monitoring the true 12

spread of the virus. 13

There are challenges in estimating the underreporting. The rate of infections and 14

diagnostic practises may quickly change, and there may be different delays from 15

infection to disease onset and to developing antibodies. In this case study, we propose a 16

Bayesian approach for estimating the time-dependent underreporting of infections 17

during the beginning of an epidemic and we apply our method to data from the 2020 18

COVID-19 epidemic in Finland. In our analysis we integrate three data sources: series of 19

serological surveys, registered disease cases, and external data on antibody development. 20

In Finland, the first wave of the COVID-19 epidemic caused by the severe acute 21

respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred from March through June 22

2020. In early March, tens of weekly COVID-19 cases were diagnosed in the extended 23

capital region of Helsinki and Uusimaa (HUS area) with a population of 1.7 million, 24
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marking the beginning of the epidemic in the region, while relatively few cases were 25

diagnosed in other parts of the country. Fig 1 shows the numbers of COVID-19 cases by 26

week and municipality in the HUS area. Already by mid March, hundreds of weekly 27

cases were diagnosed. The rate of new cases started to decline in early April, most likely 28

because of a partial lockdown in the country. By mid June, the rate of weekly cases, 29

both in the HUS area and the country as a whole, reduced to the tens of cases, and the 30

first wave of the COVID-19 epidemic ended by the end of June. A total of 7286 31

COVID-19 cases were diagnosed during the first epidemic wave, of which 5347 cases 32

were diagnosed in individuals residing in the HUS area. 33

The clinical manifestations of SARS-CoV-2 infection range from asymptomatic to 34

severe and potentially fatal disease. To be diagnosed as a COVID-19 case, a 35

SARS-CoV-2 infection needs to be laboratory confirmed or, alternatively, a clinical 36

diagnosis of COVID-19 made by a medical doctor. The likelihood of a SARS-CoV-2 37

infection being detected thus depends on the clinical manifestation as well as the 38

infection testing policy and capacity at the time of infection. 39

It is likely that a relatively large proportion of infections went undetected during the 40

first wave of the epidemic in Finland. No widespread testing of asymptomatic 41

individuals was in place, making it probable that at least almost all asymptomatic 42

infections were missed. Many symptomatic infections were likely missed as well due to 43

the care instructions and testing policy in place. In Finland, the underreporting was 44

probably most prominent among the young and healthy in the beginning of the first 45

epidemic wave, when the official care instructions for healthy individuals with 46

symptoms compatible with COVID-19 were to stay at home with no contact to health 47

care [1]. These instructions were affected by the limited infection testing capacity. 48

During the epidemic peak, the daily number of infection tests in the HUS area was still 49

increasing through rapid capacity building. The daily testing capacity increased from 50

approximately 300 during March to 1000 during April to 1500 tests from May 51

onward [2]. 52

Based on a population-based seroepidemiological study in Spain in April-May 2020, 53

Polland et al. found that approximately one third of SARS-CoV-2 infections were 54

asymptomatic and that a substantial proportion of symptomatic infections also went 55

undetected [3]. Stringhini et al. analysed the prevalence of immunoglobulin G (IgG) 56
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antibodies in Geneva during spring 2020 and estimated that there were 11 SARS-Cov-2 57

infections for every COVID-19 case [4]. Erikstrup et al. analysed blood donation data 58

in April-May 2020 in Denmark and estimated that the ratio of the expected number of 59

seropositives to the number of COVID-19 cases was between 7–20 [5]. To obtain 60

information on the incidence of SARS-CoV-2 infection in Finland, a series of serological 61

surveys was initiated in April 2020 (serosurveys). 62

While there may be significant delays from SARS-CoV-2 infection until developing 63

detectable antibodies, i.e. until seroconversion, the symptoms and diagnosis of 64

COVID-19 usually occur with less delay. This means that the two sources of 65

observations are not directly comparable at any given time. One solution to this 66

problem is to compare the SARS-CoV-2 seroprevalence to the cumulative incidence of 67

COVID-19 from 2-3 weeks ago, thus accounting for the average delay in developing 68

antibodies after COVID-19 symptoms. This approach can provide an estimate of 69

underreporting, but it does not take into account the uncertainty and individual-level 70

variation in the time lag from COVID-19 symptoms to seroconversion. 71

To better address the delays in antibody responses, we utilise previously published 72

data about the time lag from COVID-19 symptom onset to seroconversion [6]. We 73

estimate the distribution of the time lag and project the SARS-CoV-2 seroprevalence 74

based on the COVID-19 incidence. We then estimate the SARS-CoV-2 seroprevalence 75

based on the observations from the series of serosurveys. Finally, we compare the 76

seroprevalence projections with the estimated seroprevalences over time and learn the 77

time-evolving underreporting of SARS-CoV-2 infections based on the ratio of the two 78

measures of seroprevalence. 79

We utilise Bayesian inference and data from the extended capital region in Finland 80

(HUS area) to carry out the analysis. The novelty of our methodology is in accounting 81

for the uncertainty in the time lag from disease symptoms to seroconversion when 82

estimating the time-evolving underreporting of infections. Our analysis shows how the 83

underreporting of SARS-CoV-2 infections evolved over time during the first epidemic 84

wave in Finland. 85
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Data sources 86

Study population 87

The target population in this study include individuals aged 18-69 years and living in 88

the HUS area with native language Finnish, Swedish, English or Russian. We utilised 89

the Finnish Population Information System (PIS) to retrieve the native languages of all 90

COVID-19 cases and the serological survey participants. We also retrieved the age 91

distribution of the study population from the same system. The PIS includes the 92

Finnish personal identity code, birth date, native language and municipality of residence 93

for all Finnish residents [7]. We present some data for the whole HUS area population, 94

but our main analysis is based on data from the study population. 95

COVID-19 cases 96

The Finnish National Infectious Diseases Register (FNIDR) collects individual-level 97

data on patients infected with SARS-CoV-2 [8]. These data consist of COVID-19 cases 98

notified as either a positive SARS-CoV-2 finding from a microbiological laboratory or a 99

clinical diagnosis by a medical doctor. Approximately 95% of the COVID-19 cases 100

during the first epidemic wave in Finland were based on a positive SARS-CoV-2 finding 101

from a polymerase chain reaction (PCR) test. The data was extracted for analysis on 102

31st November 2021. 103

The sample date of each positive PCR test and/or a doctor’s diagnosis is recorded in 104

the FNIDR along with information regarding the patient, including the Finnish 105

personal identity code. Notifications related to the same patient during a 12-month 106

period are combined as a single COVID-19 case. In our analysis, the COVID-19 107

diagnosis date is taken to be the first positive PCR sample date or the first doctor’s 108

diagnosis date, whichever occurred first. In the capital city (Helsinki), the average 109

number of days from symptom onset to COVID-19 diagnosis was close to 6 days in 110

March 2020, close to 4 days in April and close to 3 days in May (data not shown). 111
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Serological surveys 112

In April 2020, the Finnish Institute for Health and Welfare (THL) initiated a series of 113

serological surveys (serosurveys) to obtain information on how large a proportion of the 114

population had developed antibodies to SARS-CoV-2 in different regions in Finland 115

over time [9]. Each survey targeted most of the largest municipalities in Finland and 116

individuals aged 18–69. In each survey round, individuals were randomly sampled from 117

PIS and invited to participate. Successive surveys were conducted weekly or biweekly. 118

Figure 2 shows the recruitment to and participation in the surveys in the HUS area 119

during the spring 2020. Due to practical reasons, only Finnish speaking individuals were 120

recruited during the first two weeks, after which the study expanded to cover 121

individuals with native language Swedish, English or Russian. The questionnaire was 122

translated to each language. Other language groups were included in June 2020. The 123

recruitment targeted only few of the largest municipalities during the first two weeks 124

and then expanded to cover all municipalities in the HUS area. The sample size in the 125

HUS area decreased after the second week and the participation rate declined from 64% 126

to 50% during spring 2020. 127

The age distribution of the study population and the survey participants during the 128

first epidemic wave are shown in Fig S2. The median and the 25% quantile of the age of 129

the survey participants were slightly higher than in the study population, indicating 130

that the participation rate was higher in older age groups. Otherwise the age 131

distribution of the participants was similar to the study population. 132

Participation in the survey included giving a blood sample. The first and last blood 133

samples during the first epidemic wave were taken on 9th April 2020 and 3rd July 2020, 134

respectively. 135

Laboratory methods 136

Blood samples from the serosurvey participants were analysed using a two stage 137

procedure: (1) a screening test, and (2) a microneutralisation test (MNT) following a 138

positive result at stage (1). The screening test was a bead-based fluorescence 139

immunoassay that measures IgG antibodies to the SARS-CoV-2 nucleoprotein [10]. The 140

MNT is a cytopatic effect-based test, which measures the capacity of neutralising 141
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antibodies to prevent an infectious virus from causing damage in cell culture. 142

SARS-CoV-2 strains circulating in Finland in early 2020 were used in the MNT assay; 143

CoV-19/Finland/1/2020 (GISAID accession ID EPI ISL 407079) and 144

hCoV-19/Finland/FIN-25/2020 (EPI ISL 412971). MNT was used as the second test as 145

it is highly specific to SARS-CoV-2 [11], [10]. Obtaining positive results from the two 146

tests, the screening test and the MNT combined, was considered a confirmed presence 147

of antibodies due to a past or ongoing SARS-CoV-2 infection (seroconversion). In the 148

following, the combined test is referred to as the confirmation test. 149

In order to maximise accuracy, the confirmation test was calibrated utilising data 150

unrelated to the surveys [10]. The ground truth for a past or ongoing SARS-CoV-2 151

infection was based on a positive PCR test close to 30 days prior to the antibody tests. 152

The ground truth of no SARS-Cov-2 was based on blood samples from 2019. Based on 153

calibration, a sample was considered positive for the screening test if the mean 154

fluorescent intensity (MFI) value of the test was above 500. In the MNT, neutralising 155

antibodies were detected from 2-fold serially diluted serum samples starting from 156

dilution 1:4. Based on calibration, a titer of ≥ 4 was considered positive. Fig S3 157

describes the optimised test performance on the calibration data for both the screening 158

and confirmation tests. The screening test was 100% sensitive, after which the MNT 159

was both 100% specific and 100 %sensitive. Therefore the optimised performance of the 160

confirmation test was 100% sensitive and 100% specific. The sensitivity and specificity 161

of the screening test alone were 100% and 97.59%, respectively. 162

Development and detection of antibodies 163

For the screening test, we say that an individual is seropositive if the test gives a 164

positive result. If the seropositivity is due to a SARS-CoV-2 infection, we say that the 165

individual is seroconverted. An individual may be seropositive but not seroconverted, 166

because the screening test may produce a false positive result due to cross-reactive IgG 167

antibodies induced by other human coronaviruses. Neutralising antibodies measured by 168

the MNT are always due to SARS-CoV-2 and therefore and individual with a positive 169

confirmation test is always both seropositive and seroconverted. 170

The time from infection to seroconversion is subject to individual-level variation. If 171
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time from infection is short, the antibody concentration may not have reached the test 172

detection threshold. If time from infection is long, the antibodies may wane below the 173

detection threshold. The sensitivity of antibody detection (e.g. the confirmation test) is 174

therefore likely to be lower than 100% in both of these cases. When modelling the 175

time-dependent seropositivity, we take into account the slow development of antibodies 176

after infection. However, we omit waning immunity due to the relatively short study 177

period. 178

For symptomatic individuals, the symptoms usually develop sooner than detectable 179

antibodies. Tan et al. present results where symptomatic SARS-CoV-2 infected patients 180

were followed for 6 weeks starting from symptom onset and reported the IgG positive 181

proportions of patients for each week [6] . The antibody test utilised in their analysis 182

was similar to the screening test of the current study. The data are reproduced in Table 183

1. A total 312 tests were performed on 65 patients, with 3–7 days between consecutive 184

tests. At day 7 since symptom onset, only 3.4% of the patients tested positive for IgG 185

antibodies. At day 14, 50% tested positive and when 28-49 days had passed, between 186

74% and 87% tested positive. Tan et al. report that of the 67 patients included in their 187

study, 29 were classified with severe pneumonia [6]. The median age of the patients was 188

49 years and twenty-five patients had underlying diseases. 189

Table 1. Percentage of seroconverted COVID-19 patients by time since symptom onset
(Tan et al. [6]). A total 312 tests were performed on 65 patients. Day is the number of
days passed since COVID-19 symptom onset, Patients are the number of patients tested
and IgG positive are the number of patients who tested positive for SARS-CoV-2 IgG
antibodies.

Day Patients IgG positive %

7 58 2 3.4
10 62 12 19.4
14 61 31 50.8
21 54 32 59.3
28 35 26 74.3
35 22 17 77.3
42 15 13 86.7
49 5 4 80.0
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Statistical models and methods 190

Let T = [0, D], D = 86, denote the study period, i.e. the time period starting on 191

9th April 2020 (the date of the first blood sample taken from the serosurvey 192

participants), until 3rd July 2020 (the date of the last blood sample taken during the 193

first epidemic wave). Let τi denote the day of SARS-CoV-2 infection in individual i, 194

i = 1, ..., N . Here N = 1000821 is the size of the study population. The infections we 195

consider may have occurred before the study period but not after (i.e. τi may be 196

negative and τi < D). 197

After the infection, on day si, the individual may develop symptoms of COVID-19. 198

Then, C days after the symptom onset, on day ri = si + C, the individual may be 199

diagnosed with COVID-19. In this case, information about the diagnosis and the 200

individual is recorded in the FNIDR as a COVID-19 case. We assume that the delay C 201

from symptom onset to diagnosis is 3.5 days and is the same for all individuals. The 202

cumulative number of COVID-19 cases by day t is R(t), where R(t) =
∑N

i 1(ri ≤ t). 203

An individual i has seroconverted by day t if t > ai > τi, where ai is the day after 204

which the SARS-CoV-2 antibodies in the individual are detectable. We define 205

Ai(t) = 1(ai < t) as an indicator function taking value 1 for individual i if 206

seroconversion has occurred by day t and 0 otherwise. For individuals with diagnosed 207

COVID-19 we assume that seroconversion occurs after the symptom onset day (i.e. 208

ai > si). In those cases, we use Ui to denote the number of days from symptom onset to 209

seroconversion. Fig 3 summarises the notation and describes the timeline from 210

SARS-CoV-2 infection to seroconversion. 211

Regardless of the infection status, an individual from the study population may be 212

randomly selected to participate in one of the serosurveys. Let y
(z)
i,t ∈ {0, 1} denote the 213

binary test result (i.e. seropositivity) for individual i who was randomly selected into 214

the survey and gave a sample for antibody testing on day t ∈ T , where 215

z ∈ {Screen,Confirmation} denotes the test used to derive the result. We denote the 216

specificity of test z as δ(z) = Pr(y
(z)
i,t = 0 | τi > t). If the test z is not fully specific, i.e. 217

δ(z) < 1, then the result may be positive (y
(z)
i,t = 1) without a SARS-COV-2 infection. 218

Figure 4 displays how SARS-CoV-2 infections may have been be observed as 219

COVID-19 cases or positive antibody test results. To compare estimates of 220

14th February 2023 9/35

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.23285941doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.15.23285941
http://creativecommons.org/licenses/by/4.0/


seroprevalence based on the two types of observation (serosurveys and COVID-19 cases), 221

we quantify the distribution of the time lag from COVID-19 symptom onset to 222

seroconversion. We then project the time-dependent seroprevalence based on the 223

diagnosed COVID-19 cases, which allows for comparison to the seroprevalence 224

estimated from the serosurveys. 225

Estimation target 226

Under two independent models, the quantity of interest is seroprevalence π(t), i.e. the 227

proportion of the population that has seroconverted by time t, where 228

π(t) = Pr(Ai(t) = 1) = E(Ai(t)), for i = 1, ..., N . We estimate π(t) using (i) 229

observations from the serosurveys and (ii) the incidence of COVID-19 cases. We denote 230

π(0)(t) to indicate the seroprevalence when based on the serosurveys and π(1)(t) when 231

based on COVID-19 cases. Our interest is in estimating the ratio of these two 232

seroprevalence parameters on each day t ∈ T during the study period: 233

∆(t) =
π(0)(t)

π(1)(t)
. (1)

We estimate π(0)(t) and the corresponding ∆(t) separately for data from the two 234

antibody tests but consider the analysis based on the confirmation test as the main 235

result. In section Models we describe an Estimation model used to estimate π(0)(t) and 236

a Projection model used to estimate π(1)(t). We expect that π(0)(t) gives a reasonably 237

unbiased estimate of the true seroprevalence π(t) but expect that the projection π(1)(t) 238

gives an underestimate of the true π(t). We therefore expect that ∆(t) > 1 and 239

interpret ∆(t) as an underreporting ratio, i.e. quantifying the extent of underreporting 240

of SARS-CoV-2 infections up until time t. 241

Models 242

In this section, we specify the Estimation and Projection model of the seroprevalence. 243

We then describe the estimation of seroprevalence and underreporting under both 244

models. We utilise a Bayesian framework for statistical inference and numerical 245

methods to derive the posterior distributions of all unknown quantities. 246
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Estimation model 247

This model relates to the lower part of Fig 4 (Sampling). The Estimation model is used 248

to estimate the time-dependent seroprevalence based on antibody test results in the 249

serosurvey participants. Due to the small numbers of daily blood samples in the 250

serosurveys, we split the study period T into 13 non-overlapping seven day periods 251

(weeks), W = [0, 7), [7, 14), ....[84, 86]. We assume that the seroprevalence is piecewise 252

constant by week and let π
(0)
w denote the seroprevalence during week w ∈W . 253

We describe the prior uncertainty in the weekly seroprevalence as follows. For the 254

first week, the logit of the seroprevalence is assumed to be normally distributed with 255

expectation µ1 and variance σ2
1 . The logit of the prevalence in any later week is 256

assumed to depend on the prevalence during the previous week with a non-decreasing 257

trend. A shared variance parameter σ2 controls the strength of the dependency on the 258

previous weeks, with σ given a gamma prior with parameters α and β. The structure of 259

the prior model thus is: 260

σ ∼ Gamma(α, β),

g(π
(0)
1 ) ∼ N(µ1, σ

2
1),

g(π(0)
w ) ∼ N(g(π

(0)
w−1) + trendw, σ

2) for w ≥ 2, where

trendw =


0,when w = 2

max{0, g(π
(0)
w−1)− g(π

(0)
w−2)},when w > 2,

(2)

where g(π) = log(π/(1− π)) is the logit function. This defines a prior distribution of 261

the parameter vector g(π(0)) = (g(π
(0)
1 ), .., g(π

(0)
13 )). We denote the prior distribution of 262

g(π(0)) as p(g(π(0)); Φ), where the vector Φ = (α, β, µ1, σ1) collects the prior parameters. 263

The seroprevalence for week w is π
(0)
w = g−1(g(π

(0)
w )), where g−1(x) = 1/(1 + exp(−x)) 264

is the inverse-logit function. 265

The observations y
(z)
i,w ∈ {0, 1} arise when nw randomly selected individuals from the 266

population give a blood sample during week w and a result is derived via antibody test 267

z. The probability that the test result is positive for individual i is 268
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Pr(y
(z)
i,w = 1) = f(π(0)

w , δ(z))

= π(0)
w + (1− π(0)

w ) · (1− δ(z)),
(3)

where 1− δ(z) is the probability that an individual without SARS-CoV-2 infection gives 269

a (false) positive test result. 270

Let y
(z)
w =

∑nw

i=1 y
(z)
i,w denote the number of positive samples during week w. We 271

assume that, conditionally on the weekly seroprevalence, the observations y
(z)
i,w are 272

independent and identically distributed. The conditional probability model of the total 273

count y
(z)
w , where w ∈W , then is 274

y(z)w | g(π(0)
w ); δ(z) ∼ Binom(nw, f(π(0)

w , δ(z))). (4)

Based on the vector of observations y(z) = (y
(z)
1 , ..., y

(z)
13 ), the likelihood function of 275

the logit seroprevalence g(π(0)) is 276

p(y(z) | g(π(0)); δ(z)) =
∏

w∈W
Binom(y(z)w |nw, f(π(0)

w , δ(z))). (5)

The posterior distribution of g(π(0)) is proportional to the product of the prior (2) 277

and the likelihood (5): 278

p(g(π(0)) | y(z); Φ, δ(z)) ∝ p(g(π(0)); Φ)p(y(z) | g(π(0)), δ(z)). (6)

The estimation model is described graphically in Fig 5. 279

Projection model 280

This model relates to the upper part of Fig 4 (Selection). The model is learned from 281

previously published data on antibody development after COVID-19 symptoms. We 282

first describe the model and then show how it is utilised to project the time-dependent 283
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seroprevalence based on COVID-19 cases in the FNIDR. 284

For individual j, the number of days from COVID-19 symptom onset to 285

seroconversion is described by the random variable Uj . We assume that each Uj has a 286

lognormal distribution with parameters µU and σ2
U . The probability that patient j has 287

secoconverted by day u since symptom onset is Pr(Uj ≤ u) = FU (u; θ), where 288

θ = (µU , σ
2
U ). 289

To estimate the parameters θ, we utilise data based on patients who had 290

SARS-CoV-2 antibodies tested on multiple days after COVID-19 symptoms [6]. The 291

data are shown in Table 1. We denote the test result by yqj ∈ {0, 1} for individuals 292

j = 1, ..., nq, where nq is the number of individuals tested q days after symptom onset, 293

and q ∈ QTan = {7, 10, 14, ..., 42, 49}. If the test result is positive (i.e. yqj = 1), the 294

patient is seroconverted and the seroconversion must have occurred before day q. The 295

probability model for the individual observation is 296

yqj | θ ∼ Bern(FU (q; θ)). (7)

We assume that the test results are independent given day q and the parameters θ. 297

Based on the observations yTan = {yqj , j = 1, ..., nq, q ∈ QTan}, the likelihood function 298

of the parameters θ is 299

p(yTan | θ) =
∏

q∈QTan

nq∏
j=1

Bern(yqj |FU (q; θ)). (8)

We assume an uninformative prior distribution: 300

p(θ) = p(µU , σ
2
U ) ∝ 1/σ2

U . (9)

The posterior distribution is proportional to the product of the prior (9) and the 301

likelihood (8): 302
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p(θ | yTan) ∝ p(θ)p(yTan | θ). (10)

The posterior predictive distribution of FU is 303

F̂U (u) = p(yuj | yTan) =

∫
FU (u; θ)p(θ | yTan)dθ. (11)

We utilise the posterior predictive distribution F̂U to project seroprevalence based 304

on the FNIDR COVID-19 cases. For each day t ∈ T during the study period, we first 305

predict the probability of seroconversion in each case i, for whom qi days have passed 306

since symptom onset. We assume that the symptom onset day was C = 3.5 days before 307

the diagnosis day ri, and so qi = t− (ri − C). The probabilities of seroconversion, each 308

given by F̂U (qi), are then combined as the expected number of cases seroconverted, and 309

the seroprevalence is obtained by dividing by the population size N . Formally, we 310

project the seroprevalence for day t ∈ T as 311

π(1)(t) =
1

N

R(t+C)∑
i

E[Ai(t) | yTan]

=
1

N

R(t+C)∑
i

F̂U (t− (ri − C)),

(12)

where R(t+C) is the number of COVID-19 cases with symptom onset before day t. We 312

call π(1)(t) the projected seroprevalence. The Projection model is described graphically 313

in Fig 6. 314

Estimation of seroprevalence and underreporting 315

In the Estimation model, the posterior distribution for the parameter vector g(π(0)) was 316

obtained by sampling from p(g(π(0)) | y(z); Φ, δ(z)), see Eq 6. Each sample was then 317

transformed with g−1(.) to obtain samples from the posterior distribution of each weekly 318

seroprevalence π
(0)
w . This provided samples for each day t ∈ w of the week, resulting in 319
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samples from the posterior distribution of each daily seroprevalence π(0)(t), t ∈ T . 320

In the Projection model, the posterior distribution for θ was obtained by sampling 321

from p(θ | yTan), see Eq 10. For each posterior sample and for each day t ∈ T during the 322

study period, seroprevalence was projected as described in Eq 12, resulting in samples 323

from the posterior predictive distribution of each daily seroprevalence π(1)(t), t ∈ T . 324

Identical number of samples (S = 40000) were drawn from the posterior distributions 325

of π(0)(t) and π(1)(t). For each sample from π(0)(t) and π(1)(t), a sample from ∆(t) was 326

obtained by division, repeating over each day t ∈ T during the study period. 327

We utilised the No-U-Turn Sampler algorithm for sampling, which is an efficient 328

Markov Chain Monte Carlo algorithm [12]. We used STAN and the R package Rstan to 329

carry out the sampling and monitored convergence via the Rhat statistic [13], [14], [15]. 330

The STAN model code and an R code example are available on 331

github.com/TuomoNieminen/covid19underreporting. 332

The choices for prior distribution parameters and other needed quantities to carry 333

out the estimation are shown in Table S1. We defined an informative prior distribution 334

for the Estimation model seroprevalence using parameters 335

logit(µ1) = 0.05, σ1 = 2, α = 2 and β = 40. Fig S4 shows the prior distribution for π(0). 336

In the prior distribution, each weekly seroprevalence π(0)(t) has large variance, meaning 337

that for all t there is significant probability of very low and very high seroprevalence. 338

The prior mean and variance both increase as t increases. See section Sensitivity 339

analysis for sensitivity analysis regarding the prior distribution parameter choices. 340

Results 341

SARS-CoV-2 seroprevalence and the cumulative incidence of 342

COVID-19 343

Table 2 shows the weekly numbers of blood samples and antibody test results in the 344

serosurveys during the first epidemic wave. Out of 1465 samples taken between 345

9th April 2020 and 3rd July 2020, a total 35 (2.39 %) were screening test positive and a 346

total 7 (0.48%) were confirmation test positive. Five of the confirmed positive samples 347

were taken before 4th May 2020, when the weekly numbers of samples were high, and 348

14th February 2023 15/35

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.23285941doi: medRxiv preprint 

github.com/TuomoNieminen/covid19underreporting
https://doi.org/10.1101/2023.02.15.23285941
http://creativecommons.org/licenses/by/4.0/


they correspond to weekly sample seroprevalences 0.29%, 0.43% and 1.18%. After 349

4th May 2020, the weekly number of available samples decreased significantly and only 350

two confirmed positive samples were observed. 351

Table 2. COVID-19 cases and serology survey results during spring 2020. The column COVID-19 cases (cumulative) shows
the cumulative number and cumulative incidence of COVID-19 cases by the end of each week (Period). Data are shown both
for the extended capital region of Finland (HUS) and for the target population of the current study (Study). The column
Serological surveys (weekly) shows the weekly number of blood samples from the serological survey participants (Samples),
the weekly number and proportion of positive samples using the screening test (Sreening pos. (%)) and the weekly number
and proportion of positive samples using the confirmation test (Confirmation pos. (%)).

COVID-19 casesa (cumulative) Serological surveysb (weekly)
Period HUS (%) Study (%) Samples Screening pos. (%) Confirmation pos. (%)
10.02.2020 – 16.02.2020 0–10 0–10 - - -
17.02.2020 – 23.02.2020 0–10 0–10 - - -
24.02.2020 – 01.03.2020 0–10 0–10 - - -
02.03.2020 – 08.03.2020 24 (0) 20 (0) - - -
09.03.2020 – 15.03.2020 220 (0.01) 190 (0.02) - - -
16.03.2020 – 22.03.2020 611 (0.04) 505 (0.05) - - -
23.03.2020 – 29.03.2020 965 (0.06) 737 (0.07) - - -
30.03.2020 – 05.04.2020 1578 (0.09) 1030 (0.1) - - -
06.04.2020 – 12.04.2020 2212 (0.13) 1332 (0.13) 23 1 (4.35) 0 (0)
13.04.2020 – 19.04.2020 2825 (0.16) 1621 (0.16) 339 8 (2.36) 1 (0.29)
20.04.2020 – 26.04.2020 3436 (0.2) 1895 (0.19) 465 13 (2.8) 2 (0.43)
27.04.2020 – 03.05.2020 3965 (0.23) 2138 (0.21) 170 4 (2.35) 2 (1.18)
04.05.2020 – 10.05.2020 4466 (0.26) 2415 (0.24) 139 2 (1.44) 0 (0)
11.05.2020 – 17.05.2020 4804 (0.28) 2636 (0.26) 88 2 (2.27) 1 (1.14)
18.05.2020 – 24.05.2020 4987 (0.29) 2747 (0.28) 47 0 (0) 0 (0)
25.05.2020 – 31.05.2020 5118 (0.3) 2825 (0.28) 48 0 (0) 0 (0)
01.06.2020 – 07.06.2020 5200 (0.3) 2863 (0.29) 48 2 (4.17) 1 (2.08)
08.06.2020 – 14.06.2020 5240 (0.31) 2885 (0.29) 44 1 (2.27) 0 (0)
15.06.2020 – 21.06.2020 5279 (0.31) 2899 (0.29) 23 0 (0) 0 (0)
22.06.2020 – 28.06.2020 5315 (0.31) 2915 (0.29) 9 0 (0) 0 (0)
29.06.2020 – 04.07.2020 5347 (0.31) 2932 (0.29) 22 2 (9.09) 0 (0)
All weeks 5347 (0.31) 2932 (0.29) 1465 35 (2.39) 7 (0.48)
a HUS: COVID-19 cases in the extended capital region of Finland; Study: COVID-19 cases in the target
population of the current study. Populations 1.72M and 1.00M, respectively.
b Results from the serological surveys for the target population of the current study. Samples gives the
number of blood samples taken during each week. Screening pos. (%) gives the weekly number and proportion
of samples where SARS-CoV-2 IgG antibodies were detected. Confirmation pos. (%) gives the weekly number
and proportion of positive samples confirmed via a microneutralisation test.

Table 2 also shows the cumulative incidence of COVID-19 cases in the study 352

population and in all HUS area residents. Three weeks prior to the first confirmed 353

positive blood sample, the cumulative incidence of COVID-19 in the study population 354

was 0.07% (736 cases, population 1.0 million), and in three weeks it increased to 0.13% 355

(1330 cases). In all HUS area residents the cumulative incidence of COVID-19 was 356
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0.31% by the end of the first epidemic wave (5348 cases, population 1.7 million). 357

Figure 7 shows the estimates and projections of the seroprevalence, obtained under 358

the Estimation model and Projection model. Results are shown for both the screening 359

and confirmation tests. Based on the confirmation test, the posterior mean of the 360

seroprevalence remains around 0.5% until the end of the study period where it slightly 361

increases. The increase at the end is affected by the prior trend, combined with a low 362

number of available blood samples. Based on the screening test, the seroprevalence 363

behaves similarly but the posterior mean is lower and the posterior variance is greater. 364

In both cases, the posterior mean of the projected seroprevalence (based on the 365

COVID-19 cases) remains lower than the posterior mean of the estimated 366

seroprevalence. The discrepancy to the estimated seroprevalence is greater during the 367

beginning of the study period compared to the rest of the study period. 368

Table 3 shows the estimates and projections of the seroprevalence for selected dates 369

during the study period. Based on the confirmation test, the estimated seroprevalence 370

in the HUS area was 0.49 (95% CrI: 0.20–0.91) on 9th April 2020 and 0.58 (95% CrI: 371

0.23–1.16) on 28th May 2020. The corresponding seroprevalence projections based on 372

COVID-19 cases are 0.06 (95% CrI:0.05–0.06) and 0.23 (95% CrI:0.21–0.24), 373

respectively. Fig 8 shows the posterior distributions of the seroprevalence obtained 374

under the Estimation model on 28th May 2020. Based on the confirmation test, the 375

interquartile range (IQR) for the seroprevalence was 0.4%–0.67%. The seroprevalence 376

based on the screening test has more uncertainty and the posterior median is lower. 377

Underreporting 378

Figure 9 shows the posterior mean and quantiles of the underreporting ratio ∆(t) (see 379

Eq 1), based on either the confirmation or the screening tests. For both tests, the 380

posterior mean of ∆(t) first decreases, indicating higher underreporting during the 381

beginning of the epidemic, then settles at around 2-3, and finally increased slightly 382

toward the end of the first wave. 383

Table 3 shows the posterior mean and credible interval of ∆(t) for selected dates 384

during the study period. Based on the confirmation test, there had been 8.9 (95% CrI: 385

3.6-16.5) infections for every COVID-19 case up until 9th April 2020. The 386
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Table 3. Estimated and projected seroprevalence (π(0)(t) and π(1)(t)) and the underreporting ratio (∆(t), see Eq 1) of
SARS-CoV-2 infections during the study period. The seroprevalences are shown in percentage scale. Displayed are the
posterior means along with 95% credible intervals, derived from the 2.5% and 97.5% quantiles of the distributions.

COVID-19 cases Confirmation test Screening test
date π(1)(t) π(0)(t) ∆(t) π(0)(t) ∆(t)
09.04.2020 0.055 (0.050–0.061) 0.49 (0.20–0.91) 8.92 (3.64–16.53) 0.30 (0.022–0.91) 5.49 (0.40–16.53)
16.04.2020 0.080 (0.072–0.087) 0.49 (0.20–0.89) 6.14 (2.54–11.26) 0.30 (0.022–0.90) 3.79 (0.28–11.34)
23.04.2020 0.106 (0.096–0.114) 0.49 (0.21–0.89) 4.68 (1.95– 8.53) 0.30 (0.023–0.91) 2.89 (0.21– 8.58)
30.04.2020 0.132 (0.121–0.141) 0.50 (0.21–0.91) 3.81 (1.59– 6.95) 0.31 (0.023–0.92) 2.37 (0.17– 7.02)
07.05.2020 0.158 (0.145–0.168) 0.51 (0.22–0.94) 3.27 (1.37– 6.00) 0.32 (0.024–0.96) 2.05 (0.15– 6.12)
14.05.2020 0.184 (0.170–0.194) 0.53 (0.22–0.99) 2.90 (1.20– 5.43) 0.34 (0.024–1.01) 1.84 (0.13– 5.52)
21.05.2020 0.209 (0.194–0.220) 0.56 (0.23–1.06) 2.67 (1.08– 5.11) 0.36 (0.025–1.09) 1.72 (0.12– 5.24)
28.05.2020 0.230 (0.214–0.241) 0.58 (0.23–1.16) 2.54 (1.01– 5.04) 0.39 (0.027–1.21) 1.69 (0.12– 5.28)
04.06.2020 0.246 (0.231–0.257) 0.62 (0.24–1.29) 2.51 (0.96– 5.27) 0.43 (0.028–1.41) 1.73 (0.11– 5.74)
11.06.2020 0.259 (0.244–0.268) 0.66 (0.24–1.49) 2.56 (0.93– 5.75) 0.48 (0.029–1.73) 1.86 (0.11– 6.69)
18.06.2020 0.268 (0.254–0.276) 0.71 (0.25–1.76) 2.67 (0.92– 6.57) 0.56 (0.031–2.26) 2.08 (0.11– 8.50)
25.06.2020 0.274 (0.262–0.281) 0.78 (0.25–2.16) 2.86 (0.91– 7.91) 0.67 (0.032–3.14) 2.43 (0.12–11.53)
02.07.2020 0.279 (0.268–0.285) 0.88 (0.25–2.73) 3.14 (0.91– 9.80) 0.83 (0.033–4.66) 2.97 (0.12–16.71)

underreporting then decreased, and up until 28th May 2020 our estimate is that there 387

had been 2.5 (95% CrI: 1.0-5.0) SARS-CoV-2 infections for every COVID-19 case. The 388

estimate of the underreporting ratio then remained at the same level until the end of 389

the first wave. 390

Figure 10 shows the posterior distribution for the underreporting ratio by 391

28th May 2020, based on either the screening or confirmation tests. Based on the 392

confirmation test, the IQR for underreporting was 1.8 – 3.0. The estimate derived from 393

the screening test data has more uncertainty and shows lower underreporting. 394

Time from COVID-19 symptom onset to seroconversion 395

Figure S5 describes the posterior distributions of µU and σU , the parameters of the 396

lognormal distribution of the time from COVID-19 symptom onset to seroconversion. 397

The posterior medians of µU and σU are 2.87 and 0.72, respectively. The figure also 398

shows the posterior predictive distribution for the time from symptom onset to 399

seroconversion. The predicted median delay from symptom onset to seroconversion is 400

close to 18 days and the 75% quantile is over 29 days. By day 60 since symptom onset, 401

the probability of seroconversion is over 95%. 402

14th February 2023 18/35

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.23285941doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.15.23285941
http://creativecommons.org/licenses/by/4.0/


Sensitivity analysis 403

Figure S6 shows the prior and posterior distributions of σ, the strength of dependency 404

in the Estimation model, learned from the screening and confirmation test data. In 405

both cases, the posterior distribution is similar to the (informative) prior distribution, 406

indicating that the data do not contain much information about σ and the analysis may 407

be sensitive to the prior distribution of σ. 408

Table S2 shows estimates of the underreporting ratio ∆(t), based on data from the 409

confirmation test, using different prior parameter values for (µ1), σ1 and β. Smaller 410

values of β correspond to a higher prior expectation and higher prior variance for σ and 411

in turn higher posterior variance for ∆(t). For example, comparing choices β = 2 to 412

β = 40 when α = 2, logit(µ1) = 0.05 and σ1 = 2, the 95% credible intervals for ∆(t) on 413

28th May 2020 are 0.4− 7.3 and 1.0− 5.0, respectively. 414

Choice of a larger logit(µ1) corresponds to a higher posterior mean for ∆(t), but 415

only marginally. For example, comparing the choice logit(µ1) = 0.005 to 416

logit(µ1) = 0.05 when σ1 = 2, β = 40, the posterior means for ∆(t) on 28th May 2020 417

are 2.4 and 2.6, respectively. A choice of smaller σ1 reduces the posterior variance of 418

∆(t) and elevates the effect of the chosen µ1, but the effects are small. 419

In all cases, the effects of the prior parameter choices are magnified towards the end 420

of the study period, when the number of available samples from the serosurveys is low. 421

Discussion 422

We estimated that with 95% probability there were 1 to 5 SARS-CoV-2 infections for 423

every COVID-19 case during the first epidemic wave in Finland. A 50% probability 424

interval for the underreporting was 1.8–3.0. The underreporting was highest before 425

April 2020 when there were 4 to 17 infections for every COVID-19 case (95% 426

probability). It is likely that the seroprevalence in the extended capital region was over 427

0.5% already by the end of May 2020 (95% CrI: 0.2–1.2), while the cumulative incidence 428

of COVID-19 cases in the region was 0.3% by the end of June. Based on the estimate of 429

underreporting and the cumulative incidence of COVID-19 cases, we estimate that 430

between 0.5%–1% (50% probability) and no more than 1.5% (95% probability) of the 431

population in the capital region were infected with SARS-CoV-2 by the end of June 432
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2020. 433

There is great uncertainty about the estimated seroprevalence and the corresponding 434

estimate of underreporting at the end of the study period, due to the small number of 435

samples available in the serosurveys. The estimates are therefore sensitive to the model 436

specification (i.e. prior parameters). Accordingly, we consider the most robust estimate 437

of underreporting during the first wave pertaining to the end of May 2020. We do not 438

expect that the magnitude of underreporting changed significantly during the rest of the 439

first wave, as there were no changes in virus testing policy or capacity. 440

Our analysis leaves a small but reasonable probability that by the end of the first 441

wave there was no underreporting at all. It seems, however, unrealistic that no 442

underreporting occurred, as in the general population the virus testing was targeted to 443

symptomatic individuals only. Findings from a population-based screening in Iceland 444

during March 2020 show that 43% of individuals who tested positive for SARS-CoV-2 445

were asymptomatic and findings from Spain indicate that one third of infections were 446

asymptomatic in April-May 2020 [16], [3]. A systematic review and meta-analysis of 95 447

published studies estimates that globally 41% (34% - 48%) of confirmed COVID-19 448

cases were asymptomatic during the pre COVID-19-vaccine era [17]. Our analysis also 449

leaves a small but reasonable probability that only 20% or less of SARS-CoV-2 450

infections were detected during the first epidemic wave. We believe that this may still 451

be plausible, as other countries show even higher underreporting [3], [5]. 452

A key assumption in our analysis was that the serosurvey participants represented 453

the population of interest. The participation rate was 50%–64% and there were several 454

factors which may have caused selection bias, as survey participation may correlate with 455

the likelihood of SARS-CoV-2 infection. First, during the first two weeks, the surveys 456

targeted only few of the largest municipalities. These had the highest numbers of 457

COVID-19 cases, which may lead to overestimating the seroprevalence and thus the 458

underreporting. However, an analysis using data only from the largest municipality 459

(Helsinki) showed similar estimates of underreporting (data not shown). Secondly, the 460

participation rate in younger age groups (18-29) was lower than in other age groups. 461

Age is likely associated with the incidence of SARS-CoV-2 infection due to differences in 462

social behaviour. In April 2020, Finns aged 18-29 had a similar frequency of daily social 463

contacts than those aged 30-59, but a higher frequency of contacts than those aged 464
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60-69 [18]. The underrepresentation of young adults in our study can lead to 465

underestimation of the seroprevalence and of underreporting. Third, in several 466

population health examination surveys, participation rates have been found lower 467

among individuals with lower education [19]. Those individuals often work in 468

professions where working remotely and social distancing may be more difficult to 469

arrange, and thus they may be more exposed to infection. If those previous findings 470

hold in this survey, this can lead to underestimation of seroprevalence and thus 471

underreporting. Fourth, historically, the participation rate in Finnish health 472

examination surveys has been lower in language groups other than Finnish and 473

Swedish [20]. The incidence of COVID-19 during the first epidemic wave was several 474

times higher in language groups other than Finnish, Swedish, English or Russian 475

(Figure S1). However, as the target population of our study includes only those four 476

language groups, we do not believe that the possible underrepresentation of language 477

groups other than Finnish and Swedish is likely to bias our results. Finally, our 478

preliminary analyses from the serosurveys beyond the first wave indicate that subjects 479

with a past confirmed SARS-CoV-2 infection tend to have a lower participation rate. It 480

is possible that those with a confirmed infection were less willing to participate. This 481

can lead to underestimation of the seroprevalence and of underreporting. 482

The median age of COVID-19 cases in the HUS area showed a decreasing trend 483

during spring 2020, most likely due to the increase in testing capacity, allowing detection 484

of milder disease cases (figure S7). It is therefore probable that the underreporting 485

decreased more in younger age groups than in other age groups during the first epidemic 486

wave. Other serological studies have used regression analysis or post stratification to 487

account for differences between the age and sex distributions of survey participants and 488

the underlying population [4], [21], [3]. These methods could help reduce bias and allow 489

for the estimation of age-dependent underreporting. We decided not to use such 490

analytical methods due to the very small number of confirmed positive samples. 491

Another key assumption in our analysis was that the time-dependent probability of 492

seroconversion after COVID-19 symptoms, as estimated from the external data set from 493

Tan et al., is similar to how the antibody detection in the serological surveys would 494

perform. Otherwise, the underreporting ratio, i.e. the ratio of the estimated 495

seroprevalence (based on serosurveys) and the projected seroprevalence (based on 496
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COVID-19 cases) may not accurately describe underreporting. The patients in Tan et 497

al. were all hospitalised and several of them were classified with severe pneumonia. By 498

contrast, the majority of the FNIDR COVID-19 cases during the first epidemic wave 499

did not require hospital care. Severe cases may have higher antibody responses, and this 500

may cause us to overestimate the projected seroprevalence and hence underestimate the 501

underreporting [22]. Additionally, the SARS-COV-2 antibody detection method utilised 502

in Tan et al. differed from the methods utilised in the serosurveys. The serosurvey 503

antibody detection was calibrated to be 100% sensitive by day 30 since infection. By 504

contrast, in Tan et al., only 74% of the patients had seroconverted by day 28 since 505

symptom onset, and accordingly, our seroprevalence projection yielded approximately 506

75% probability of seroconversion by day 30 since symptom onset. This discrepancy 507

indicates that we may overestimate the time lag to developing detectable antibodies 508

after COVID-19 symptoms. This in turn indicates that we may overestimate the 509

underreporting during the beginning of the epidemic, at worst by a factor of around 510

0.75. Therefore, instead of 4–17 there were perhaps 3-13 infections for every COVID-19 511

case before April. 512

When projecting the seroprevalence, we assumed that the probability of 513

seropositivity following COVID-19 symptoms is strictly increasing over time. In reality, 514

the antibody levels eventually wane and after 8 months since SARS-CoV-2 infection, 515

the N-IgG antibodies are detectable in only 66% of individuals [22]. Our analysis covers 516

a period of four months, and there were not many infections in Finland before March 517

2020, so at worst we measured antibodies from serosurvey participants who were 518

infected four months ago. The detectability of antibodies would then be at least 66% 519

and possibly over 80%, assuming a linear decrease from the 100% detectability at one 520

month. By contrast, our seroprevalence projection gives an almost 100% probability of 521

seropositivity at four months since COVID-19 symptom onset. This worst-case 522

discrepancy would correspond to overestimating the underreporting by 20% at the end 523

of the study period. To analyse data beyond the first epidemic wave, the seroprevalence 524

projection should be modified to allow for a decrease in the probability of seropositivity 525

after appropriate time. 526

We included an analysis based on the screening test to demonstrate how our method 527

can be used with tests which are not fully specific. The estimates of seroprevalence 528
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based on the screening test were lower than those based on the confirmation test, when 529

adjusting for the expected false positive rate of the screening test. This implies that 530

either the specificity of the screening test was higher than expected, or alternatively, the 531

confirmation test was not fully specific. The confirmation test utilises a 532

microneutralisation test (MNT) as the second test to confirm the presence of 533

SARS-CoV-2 antibodies. Based on an analysis of a large number of pre-pandemic sera 534

from different age cohorts, the MNT can be considered to be fully specific [10]. It is 535

therefore extremely unlikely that any of our 7 confirmed positives samples was a false 536

positive; more likely the true specificity of the screening test was higher than we 537

assumed. In our analysis, we assumed that the specificity of the screening test was a 538

known constant, based on a 81/83 true negative finding. In reality, however, there is 539

uncertainty in the exact specificity, and the results derived from the screening test 540

therefore have more uncertainty than our analysis implies. For analysing data from a 541

test with unknown specificity, we agree with treating the specificity as an unknown 542

parameter, as recommended by Gelman and Carpenter, and as implemented by e.g. 543

Stringhini et al. [23], [4]. 544

We used a constant value 3.5 days as the delay from symptom onset to COVID-19 545

diagnosis. In reality, the exact delay is unknown and subject to variation. It is likely 546

that 3.5 days is an underestimate of the delay in the extended capital region during the 547

beginning of the epidemic, when the average delay was greater in the capital city 548

(Helsinki, data not shown). However, small variations in this delay do not affect our 549

analysis, as small changes in the COVID-19 symptom onset day would not significantly 550

alter the seroprevalence projection. 551

In summary, we presented a Bayesian approach to estimate the time-dependent 552

underreporting of SARS-CoV-2 infections during the COVID-19 epidemic. We 553

implemented the proposed approach to data from the extended capital region of Finland 554

during the first epidemic wave in 2020. Our results indicate that most SARS-CoV-2 555

infections were not detected and the underreporting was most severe during the 556

beginning of the epidemic. However, as the cumulative incidence of COVID-19 was very 557

low, it is likely that less than 1.5% of the population in the extended capital region had 558

been infected with SARS-CoV-2 by the beginning of July 2020. Assuming that the 559

underreporting was similar in other parts of the country, the first wave of the 560
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COVID-19 epidemic left a vast majority of the Finnish population unaffected, with 561

almost the entire population still unexposed and susceptible to SARS-CoV-2. 562
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Figures

Fig 1. Numbers of COVID-19 cases by week and municipality in the extended capital region of Helsinki and Uusimaa,
Finland (HUS area) during the first wave of the 2020 COVID-19 outbreak. In each map, the number of cases in each
municipality is shown if it is 5 or more. Detailed data for three weeks in June (2020-06-08 / 2020-06-15, 2020-06-15 /
2020-06-22 and 2020-06-22 / 2020-06-29), with total 147 cases, are not shown in the figure.
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Fig 2. Population sampling in the extended capital region of Helsinki and Uusimaa, Finland (HUS area) during the first 10
weeks of the serological surveys. Population sampling was carried out weekly or biweekly and each map corresponds to a single
sampling week. The first day of the week and the targeted native languages are listed for each sampling week (fi = Finnish, sv
= Swedish, ru = Russian, en = English). The number of invited individuals by municipality are shown on each map.

Fig 3. Timeline from a SARS-CoV-2 infection to seroconversion.

Day t

τi si ri ai

C

Ui
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symptoms of
COVID-19.

• Diagnosis

• On day ri, C days after
the symptom onset, the
individual may be
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Fig 4. SARS-CoV-2 infections are observed as diagnosed COVID-19 disease cases or by antibody testing in the participants
of the serological surveys. Here, Ii(t) indicates SARS-CoV-2 infection in individual i by day t; Si(t) indicates symptom onset
in individual i by day t; ri is the diagnosis day of a COVID-19 case, with a total R(t) cases by day t; Ai(t) indicates
seroconversion in individual i by day t, possibly observed as a positive antibody test yi,t = 1 among nt blood samples taken
on day t; π(t) indicates the proportion of seroconverted individuals in the population of size N (seroprevalence).

t ∈ {1st January 2020, ... , 4th July 2020}

Ii(t) Si(t)
Ai(t)

π(t)Infections, symptoms and sero-
conversion in the population

i = 1, .., N Selection ri

COVID-19 cases

i = 1, .., R(t)

Sampling yi,t

Antibody test results

i = 1, .., nt

(t ≥ 9th April 2020)

Fig 5. The model for seroprevalence π(0)(t) (Estimation model). The study period T is split into weeks W . On day t during

the study period, where t belongs to week w, the antibody test result y
(z)
i,t for individual i, i = 1, ..., ntt∈w, depends on the

seroprevalence π
(0)
w during week w and the specificity δ(z) of the antibody test z, where z ∈ {Screen,Confirmation}. In the

prior distribution, the seroprevalence during the first week π
(0)
1 is distributed according to parameters µ1 and σ2

1 , and the
seroprevalence during week w depends on the two previous weeks. The strength of the dependency is controlled by σ, with a
prior distribution depending on parameters α and β.

π
(0)
1

... π
(0)
w−2 π

(0)
w−1 π

(0)
w π

(0)
w+1

...
σ1, µ1

σα, β

Antibody test results
y
(p)
i,t i = {1, .., nt}t∈w

δ(z)

t ∈ T,w ∈ W
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Fig 6. The model for seroprevalence π(1)(t) (Projection model). Left plate: The duration from symptoms to seroconversion
was modelled based on external data. Individuals j, j = 1, .., N (Tan), experienced COVID-19 symptoms on day sj = 0 and
were tested for antibodies q days later, where q varied from 7 to 49 days. Individuals were tested on multiple days. Here,

Aj(u) denotes whether individual j had seroconverted by day u, and (y
(q)
j ) indicates the result of an antibody test taken on

the q:th day. The duration from symptoms to seroconversion was modelled as a lognormal distribution with parameters
(µU , σU ). Right plate: The posterior distribution of (µU , σU ) is utilised to project the seroconversion status Ai(t) for each
individual i = 1, ..., R(t+ C) with COVID-19 symptom onset before day t ∈ T during the study period. The symptoms are
assumed to have occurred on day ŝi = ri −C, where C is the lag from symptom onset to the COVID-19 diagnosis day ri. The
individual projections are used to derive the population level projection for the seroprevalence on day t, π(1)(t).

j = 1, ..., N (Tan)

u ∈ [0,∞) sj = 0 Aj(u) µU , σU

prior

y
(q)
j

Seroconversion by day q

q ∈ {7, 10, 14, 21, ..., 42, 49}

Ai(t)

ŝi = ri − C

COVID-19 cases
i = 1, .., R(t+C)

π(1)(t)

N

i = 1, ..., N

t ∈ T

Fig 7. Seroprevalence in the extended capital region of Finland during the first wave of the COVID-19 epidemic. Both
images show the posterior means and 95% credible intervals of seroprevalence π(0)(t) and projected seroprevalence π(1)(t),
using the serology survey observations and COVID-19 cases (FNIDR projection), respectively. Solid lines are posterior means
and the shaded areas correspond to 95% credible intervals derived from the pointwise 2.5% and 97.5% quantiles. The dashed
lines show the projected seroprevalence and the shaded areas correspond to 95% credible intervals, however, the intervals for
projected seroprevalence are very narrow and not visible. The image on the left shows results for the screening test and the
image on the right shows results for the confirmation test.

(a) Posterior means and 95%
credible intervals of seropreva-
lence π(0)(t) (Screening test) and
projected seroprevalence π(1)(t).

(b) Posterior means and 95%
credible intervals of seroprevalence
π(0)(t) (Confirmation test) and
projected seroprevalence π(1)(t).
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Fig 8. Posterior distributions of seroprevalence π(0)(t), where t corresponds to 8th May 2020, learned from the screening (left
image) and confirmation (right image) test data. The seroprevalence is shown in percentage scale.

(a) Posterior density of
π(0)(t), where t corresponds to
8th May 2020 (Screening test).

(b) Posterior density of
π(0)(t), where t corresponds to
8th May 2020 (Confirmation test).

Fig 9. Extent of underreporting in the extended capital region of Finland during the first wave of the COVID-19 epidemic.
Both figures show estimates for the underreporting ratio ∆(t). Solid lines are posterior means and the shaded areas
correspond to 95% credible intervals derived from the pointwise 2.5% and 97.5% quantiles. The image on the left shows
results for the screening test and the image on the right shows results for the confirmation test.

(a) Posterior means and 95% cred-
ible intervals of ∆(t) (Screening
test).

(b) Posterior means and 95% cred-
ible intervals of ∆(t) (Confirmation
test).

Fig 10. Posterior distributions of underreporting ratio ∆(t), where t corresponds to 8th May 2020, learned from the
screening test (left image) and confirmation test (right image) data.

(a) Posterior density of
∆(t), where t corresponds to
8th May 2020 (Screening test).

(b) Posterior density ∆(t), where t
corresponds to 8th May 2020 (Con-
firmation test).
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Supporting information captions

Table S1. Parameters of the prior distribution in the Estimation model, and the
specificities of the screening and confirmation tests. .

Table S2. Influence of choices of prior parameters on the estimation of underreporting
ratio ∆(t). Shown are posterior means and 95% credible intervals for ∆(t), based on the
confirmation test data, for 9th April 2020 (t = 0), 28th May 2020 (t = 49) and
2nd July 2020 (t = 84), using different values for the parameters µ1, σ1, and β. The
value used for the parameter α was 2.

Fig S1. Incidence of COVID-19 cases in the HUS area by age group and language
during the first wave of the epidemic in 2020, for Finnish (fi), Swedish (sv), English
(en), Russian (ru) and other language groups.

Fig S2. Age distributions of: population in the extended capital region of Finland at
the end of 2021 (HUS); COVID-19 cases for the HUS population during the first wave
of the COVID-19 epidemic in 2020; the study population, i.e. the target population of
the current study (HUS (incl.)); COVID-19 cases from the study population during the
first wave of the COVID-19 epidemic in 2020 (FNIDR (incl.)); serological survey
participants from the study population during the first wave (Serosurveys).

Fig S3. The antibody tests and their performances on the calibration data. The
screening test is the result of the IgG antibody test, which may give false positive
results. The confirmation test is a combination of the IgG and microneutralization tests
(MNT), where the IgG positive samples are tested again with the MNT. After
optimizing performance on the calibration data, which includes samples from PCR
positive and negative individuals, the sensitivity and specificity of the screening test are
33/33 (100%) and 81/83 (97.59%), respectively, while the sensitivity and specificity of
the confirmation test are 33/33 (100%) and 83/83 (100%), respectively.

Fig S4. Prior mean, and 2.5% and 97.5% quantiles for each weekly seroprevalence π
(0)
w

in the Estimation model. The estimates were computed based on 40000 samples
generated from the prior distribution of π

.

Fig S5. The three images show, starting from the the left: the posterior distribution
for µU , the posterior distribution for σU , and the posterior predictive distribution for U ,
the time from COVID-19 symptom onset to seroconversion. The distribution for U was
obtained by sampling from the lognormal distribution, using samples from the joint
posterior distribution for (µU , σU ).
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Fig S6. Prior and posterior distributions for the parameter σ. Image on the left shows
the prior distribution, the middle image shows the posterior distribution based on
confirmation test data, and the image on the right shows the posterior distribution
based on the screening test data.

Fig S7. Age distribution of COVID-19 cases in the extended capital region of Finland
during the first wave of the COVID-19 epidemic in 2020.
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