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Abstract 

SARS-CoV-2 immune-escape variants have only been observed to arise in immunosuppressed 

COVID-19 cases, during prolonged viral shedding. Through daily longitudinal RT-qPCR, 

quantitative viral culture and sequencing, we observe for the first time the evolution of 

transmissible variants harbouring mutations consistent with immune-escape in mild community 

cases within 2 weeks of infection.  
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Introduction 

Mutations have been observed to develop over the course of several weeks or months in 

chronically infected patients in hospital with haematological malignancies and iatrogenic 

immunosuppression (1) and in community cases with advanced acquired immunodeficiencies 

(2). Our current understanding of how SARS-CoV-2 immune-escape variants arise is that the 

virus is not sufficiently supressed by the immune system in profoundly immunosuppressed 

individuals, allowing the virus to develop non-synonymous mutations through ongoing viral 

evolution (3) leading to immune-escape (1,2,4,5). 

To determine whether such variants with infectious potential arise in mild community COVID-

19 cases without advanced immunosuppression, we aimed to investigate whether infectious 

variants develop during infection by sequencing and culturing of SARS-CoV-2 isolates from 

serial nose and throat samples in a community cohort. 
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The Study 

Between May 2021 and October 2021, during which the Delta variant (B.1.617.2) was the UK’s 

dominant strain, 343 community contacts of symptomatic PCR-confirmed index cases were 

recruited within five days of their index case’s symptom onset to the ATACCC study as 

previously described (6,7). 78/343 (23%) of these delta-exposed contacts were determined to be 

PCR-positive for more than one timepoint. Of these, 32 cases had their viral growth phase 

captured (6). Viral culture plaque assays and lateral flow devices (Innova, Xiamen, PRC) were 

performed on thawed viral transport media containing nasopharyngeal swabs, as previously 

described (6).  

We performed longitudinal SARS-CoV-2 whole-genome sequencing (WGS) using an amplicon-

based WGS protocol in the eleven of 32 cases (Table S1) who had at least four consecutive 

samples with over 1,000 RNA viral copies/mL on RT-qPCR. Criteria to determine the 

significance of SARS-CoV-2 mutations were: (i) detection of mutation in at least 5% of 

sequencing reads at a particular position and (ii) mutant virus proportion altered over time and 

(iii) existence of published reports identifying the mutation as a candidate immune escape 

variant.   

Of the eleven cases, nine (6 vaccinated; 3 unvaccinated) shed infectious virus for a typical 

duration (5 days [IQR 3-7]) (6) and no mutations meeting our criteria were detected, although 

one case, Case-E, developed a mutation (ORF1ab:T283I) shown to have a neutral effect (8).  

Two vaccinated cases, Case-A and B showed persistence of infectious virus until the end of the 

sampling period (13-days and 10-days of plaque assay positivity for Case-A and B respectively) 

despite concurrent negative lateral flow tests during the latter stages of infection (Fig.1). 
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Notably, both developed multiple significant mutations. The mutations detected were in ORF7a 

(two large deletions, DF54-Q62insL and DA55-C67), a gene which blocks the incorporation of 

the antiviral host protein SERINC5 in virions (6), and the S gene (two nonsynonymous 

mutations, D253G and S255F), where mutations are known to cause immune-escape (9). 

Remarkably, Case-A and B both had type II diabetes mellitus and were overweight (BMI of 27-

28), whereas none of the other 32 cases with daily RT-qPCR and viral culture had type II 

diabetes. Both Case-A and B had good glycaemic control, maintaining HbA1c levels below 48 

mmol/mL  for the 4 years pre-infection (Fig.S3). Neither case had a history of 

immunosuppression or recurrent infections. Both recovered spontaneously from mild COVID-19 

and neither required hospital care.  
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Conclusions 

The emergence of viral mutations in severely immunodeficient patients with very prolonged viral 

shedding is believed to be a significant source of highly infectious SARS-CoV-2 variants. We 

observed that community contacts can rapidly develop viable, culturable mutations with potential 

for immune escape during a normal course of infection within two weeks of disease onset. This 

demonstrates, to our knowledge for the first time that it is feasible for immune-escape mutations 

to occur in community cases without advanced immunosuppression.  

The only cases with diabetes in our cohort of mild self-resolving COVID-19 cases were the two 

in whom mutations arose and both had a longer-than-average duration of infectious viral 

shedding. Case-A developed mutations in ORF7a. Whilst the function of ORF7a and its potential 

role in immune-escape is unclear, it has recently been shown that ORF7a inhibits the 

incorporation of the antiviral host factor Serine Incorporator 5 (SERINC5) into budding virions 

(10). Deletion mutants were shown to preserve this inhibitory function (10); however, any 

further effects of these deletions on host antiviral inhibition have not been investigated. Although 

mutations within the spike protein receptor binding domain are considered to play the most 

important role in immune-escape (11), the two mutations observed in close genomic proximity in 

Case-B (D253G and S255F) occur in the Spike N-terminal domain. Mutations in this region 

impact binding of potent neutralising monoclonal antibodies against spike protein (9,12) with 

S255F detected in chronically infected cases (13) and D253G reported in a variant of interest 

(14).  

The development of these mutations whilst the patients were still infectious (determined by 

continued presence of culturable virus) demonstrates that these mutations could potentially be 

transmitted. Case-B showed increases in viral loads at around the time when the mutations were 
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first detectable, with increases in PFU on plaque assay and viral RNA load on RT-qPCR, that 

could not be accounted for by sampling variability. Viral rebound, where viral load levels 

increase from borderline positive or negative values, has been shown to correlate with the 

emergence of immune-escape (1) and this temporal correlation suggests that the development of 

immune-escape mutations was driving prolonged viral shedding, rather than the immune-escape 

variants developing because of prolonged viral shedding. 

Interestingly, our results also suggest that both cases were initially infected by several haplotypes 

of the same quasispecies. Since it is unlikely that the deletions detected early in infection had 

reverted to their ancestral state, their relative decline in frequency during the course of infection 

is better explained by an increase in frequency under immune pressures of additional original 

haplotypes lacking these deletions. This interpretation is consistent with recent estimates of 

transmission bottleneck indicating that between one and eight viruses can be transmitted (15) 

with immunocompromised recipients possibly representing the higher end of that spectrum. 

Our study has several limitations. Blood was not collected from the study participants; therefore 

plaque reduction neutralization tests (PRNT) using serial serum samples could not be carried out 

to specifically demonstrate the development of immune-escape properties with the accumulation 

of mutations. And since, for case B, we do not know if antibody responses to the Spike N-

terminal domain were present  prior to infection it is unclear if vaccination placed additional 

selection pressure on the development of the mutations.  

Whilst our cohort size was small, our finding that mild, self-resolving community cases can 

rapidly give rise to potential immune-escape variants while still shedding infectious virus 

suggests a new, community-based source for the emergence and spread of SARS-CoV-2 

variants. This may have impacted the course of the pandemic and the emergence of successive 
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highly infectious variants in ways hitherto unappreciated. Whilst these variants arose from mild 

community cases during the delta wave, there is no a priori reason to believe that this would not 

occur in other dominating variants in circulation, such as Omicron. Given the high prevalence of 

type II diabetes mellitus, future surveillance with WGS in community cases should now 

determine whether diabetes is a significant risk factor for the emergence of immune-escape 

variants. 
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Fig.1. SARS-CoV-2 viral dynamics captured through daily sampling for Case-A and Case-

B and a sequencing summary for nucleotide polymorphisms and indels in coding genes. 

Diagrams show the change in RT-qPCR viral load (VL) (yellow lines) and number of plaque 

forming units (PFU) obtained using a plaque assay over the course of infection (green lines). 

Undetectable viral load and PFU measurements are indicated by a star (*). Lateral flow results 

show the intensity of bands present on testing over the course of infection. Sequencing 

summarises results for any single nucleotide polymorphisms and indels in coding genes that met 

all three of our significance criteria (the mutation needed to be found in at least 5% of the 

sequencing reads at a particular position, the mutant virus proportion needed to increase or 

decrease over time, and, the mutation had to be within genes where its effect had been previously 

described or where mutations could play a role in immune-escape based on gene function). All 

viral mutations for Case-A and Case-B can be visualised in Supplementary Fig.S1-2, 

respectively. 
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