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ABSTRACT 

Background: Clinicopathological features are used for detection of diseases. Early detection of cancer 

can be significance for understanding the behavior of disease.  

Results: We developed a tool to observe stomach adenocarcinoma in reference of blood-lipid profile. 

Background of the tool is based on the study made on RNAseq expression analysis of stomach 

adenocarcinoma. Raw data for study was collected as gene-expression profile from population of 

cancer-vs-normal. A series of studies performed including: differential gene expression analysis, plasma 

proteome mapping, extraction of gene-signature enriched with LSTM system model, AI-guided 

simulation of systems model of gene network, and AI-guided mapping with blood lipid profile to develop 

R-Shiny web-application.  

Conclusion: ‘EarlyDetect’ is freely available at https://csir-icmr.shinyapps.io/EarlyDetect/. The tool can 

be utilized for (i) virtual observation of impact of different combinations of lipid profile in cancer 

progression; (ii) early detection of cancer state for new comer patients. 
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INTRODUCTION 

Blood lipid is a clinicopathological feature which is used to observe disease status. Lipid profile is also 

useful in detection of cancer as in case of: colorectal, breast, lung, ovarian and prostate cancers etc [1]. 

Lipid analogs are also known as key regulators of tumorigenesis [2]. Such studies motivate for 

observation of cancer in relation of lipid profile [3]. Lipid profile shows mutual influence due to drug 

response. As, hormonal treatment of breast cancer reduces the oestrogen level, which further reduces 

the blood lipid level [4]. Therefore, blood profile along with percentage of dyslipidemia are observe 

before chemotherapy [5]. Research is being performed on association between blood lipid level and 

cancer specific mortalities. Such studies work on variation in blood lipid profile including ‘total 

cholesterol’, triglycerides, and HDL/LDL level [6]. Blood lipid level is observed along with blood glucose 

and extent of inflammation, as in case of ovarian cancer [7]. All these studies suggest that abnormal 

blood lipid profiles contain association with occurrence of cancer [8]. Therefore, blood lipid profile is 
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regularly estimated, if cancer patient is under endocrine therapies [9]. Other studies like phospholipid 

level & peroxidation estimation are performed to understand the malignant neoplasma as in case of 

breast & uterine cancer [10]. Drug response studies on blood profile are also available for tamoxifen, 

endoxifen and 4-hydroxyTamoxifen [11]. In totality, potential correlation exists between blood lipid and 

cancer [12]. Diagnostic values are also considerable in combination of tumor markers and blood lipid 

[13]. These studies support and prepare a ground for establishing relationship between genotype 

(tumor markers) and phenotype (blood lipid profile) for observation of import of variation in blood lipid 

and the cancer status. 

RNA expressions are used in several areas of clinical diagnosis [14], including cancer [15]. 

Categories of RNA as: miRNA [16], circRNA expression [14], long noncoding RNA expression [15], mRNA 

expression [17] are used in diagnosis. Similar to DNA & protein biomarkers, RNA biomarkers are also 

potential to discriminate diseased-vs-normal conditions [18]. Therefore, transcriptome sequencing are 

used in diagnosis of disorders [19]. Transcriptome RNA expressions are used for identification of 

targetable disease regulatory networks for disease diagnosis [20]. RNA based studies are known with 

hepatocellular carcinoma [21], colorectal cancer [22], pathway detection [23], prostate tumor [24], and 

breast cancer [16] etc. RNA expression profile/signature are also used for early diagnosis [25, 26]. Early 

diagnosis is directly linked with development of biomarker signature (i.e., gene set) with population 

discrimination capacity [27]. Such studies provide clinically relevant results for diagnosis [28]. These 

studies provide a ground for accessing RNA expressions as genotypic features for early detection of 

cancer. Genotype-to-phenotype relation is used also for linking lipid metabolism with cancer related 

genes [29]. 

Stomach adenocarcinoma (STAD) is one of the leading reasons of deaths in the world. Lack of 

early detection is also major barrier behind this situation. Biomarker genes linked with extracellular 

matrix and platelet-derived growth factor are suggested in early detection of STAD [30]. Besides this, 

CDCA7-regulated inflammatory mechanism [31], angiogenesis-related lncRNAs [32], PLXNC1 an 

immune-related gene [33], and Ferroptosis-related gene [34] etc. are also claimed for early detection of 

STAD. Different stages of STAD are available through prognostic model of TCGA database [35]. Various 

combination of gene-signature genes is still remained to explore, which creates opportunity to reveal 

aspect for early detection of STAD. 

In present study, blood lipid profile (as phenotype) was linked with gene signature (as genotype) 

derived for stomach adenocarcinoma, to predict the relative changes/ status of cancer. This process was 

packaged in the form of R-Shiny GUI web-application named ‘EarlyDetect’. 

 

MATERIALS AND METHOD: 

‘EarlyDetect’ establishes relationship between Phenotype and Genotype defined for disease features. It 

establishes AI-guided relation between blood lipid-profile (clinicopathological phenotype) and 

expression of gene signature. ‘EarlyDetect’ works as tool for making decision for any unknown sample 

with blood lipid-profile. Workflow for tool is described as: 
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Figure 1. Workflow for Development of tool for early detection of stomach adenocarcinoma based on 

blood-lipid profile as clinicopathological feature 

 

Phenotype for EarlyDetect: 

Although cancer is seeded at molecular level, but it can be featured by clinicopathological phenotypes. 

Cancer-start-up alters gene expressions. Identification of differentially expressed genes is always a 

relevant question. Present study deals with establishment of relationship between set of gene 

expressions (gene signature) and clinicopathological phenotypic character for designing of tool. Prior 

studies indicate towards the influence of blood lipid-profile (phenotype) during the start-up of cancer. 

Considering prior studies, blood-lipid profiles featured as phenotype for the study. General blood lipid 

profile used in this study, is:  Total Cholestrol: 200-239(mg/dL); LDL Cholestrol: 130-159 (mg/dL); HDL 

Cholestrol: 40-60 (mg/dL); Triglycerides: 150-199 (mg/dL); Non-HDL-C: 130-159 (mg/dL); and TG to HDL 

ratio: 3.0-3.8 (mg/dL). 

 

Genotype for EarlyDetect: 

TCGA database provides normalized RNAseq expression for multiple cancer types. TCGA contains 408 

independent tumor samples and 211 matching normal tissue samples for Stomach adenocarcinoma 

(STAD) showing more than 29K genes. Log-fold change in gene expression, above significant threshold, 

filter outs differentially expressed genes (DEGs). Volcano plot represents DEGs graphically. Since DEGs 

also display into blood samples; therefore, to filter DEGs, plasma proteome mapped with it. Here 

mapped DEGs (pDEGs) are DEGs available in blood plasma proteome. Co-expression network analysis 

processed pDEGs for identification of gene-signature. Details of procedure can be accessed from 

doi.org/10.1038/s41598-021-87037-w [36]. Gene-wise similarity correlation matrix (scor) & dis-similarity 

correlation matrix (dcor) presented co-expression of pDEGs. Calculation of scor & dcor takes input of 

normalized gene expression of pair of genes (Gi & Gj). Here, ‘scor’ represents the positive correlation 
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matrix between the genes since the larger value indicates the stronger positive correlation between the 

pair of genes, while ‘dcor’ represents the negative correlation between a pair of genes since the larger 

value indicates the stronger negative correlation between genes, which is also called the distance of a 

pair of genes. Network analysis used both dissimilarity and similarity matrices with values ranging 

between 0 & 1. Gene network contained 39 genes. pDEGs in any of these two networks can be 

considered as co-expressed genes; and therefore, assumed to be involved in existence of system model 

representing state of disease. Here similarity matrix used for further analysis. 

 

𝑠𝑐𝑜𝑟𝑖𝑗 =  

1 + (
𝑐𝑜𝑣𝑎𝑟(𝐺𝑖 , 𝐺𝑗)

𝑣𝑎𝑟(𝐺𝑖) ∗ 𝑣𝑎𝑟(𝐺𝑗)
)

2
 

 

𝑑𝑐𝑜𝑟𝑖𝑗 =  

1 − (
𝑐𝑜𝑣𝑎𝑟(𝐺𝑖 , 𝐺𝑗)

𝑣𝑎𝑟(𝐺𝑖) ∗ 𝑣𝑎𝑟(𝐺𝑗)
)

2
 

 

 

System model, based on pDEGs based on similarity matrix, performed further enrichment of co-

expression of gene-set.  Long-Short-Term-Memory Recurrent Neural Network (LSTM-RNN) model 

(implemented in R) simulated the system model. Jacobian matrix performed evaluation of stability of 

system model. LSTM enriched gene signatures were genotypes. Tool development utilized gene-

signature.   

 

Evaluation of signature for capacity of population discrimination: Survival plot, between diseased & 

normal patients, presents discrimination capacity of gene-signature in the population. Therefore gene-

signatures processed for finding survival plot, observed through Logrank p-value < 0.05 as threshold for 

signaificant expression. 

 

Linking gene signature (genotype) with blood lipid profile (phenotype): 

To link genotype with phenotype, LSTM enriched gene signature mapped with lipid-profile of blood. 

Total 740 (370 (normal) + 370 (cancer)) data-points ranged for gene expression, mapped with lipid-

profile. Since, cancer-vs-normal gene expressions are pre-classified, therefore classified gene expression 

for gene signature made classified mapped lipid-profile dataset. Further, mapped model developed 

based on the classified genotypic & phenotypic dataset sets, and further utilized for development of 

map-model for transformation of blood profile into gene expression. Artificial Neural Network (feed-

forward backpropagation) mapped the genotype-vs-phenotype profiles. Phenotype contained 06 nodes 

of blood lipid-profile, while genotype contained 5 nodes of enriched pDEGs.  

 

Evaluation of mapped lipid profile for the capacity of population discrimination: Since genotype used 

to map phenotype, therefore lipid profile should also contain population discrimination capacity. 

Therefore, population discrimination capacity was also evaluated for mapped lipid profile. Total 740 

(370 (normal) + 370 (cancer)) data-points ranged for lipid-profile mapped in reference of gene-signature. 
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Two class perceptron classification method utilized mapped lipid-data points for evaluating population 

discrimination capacity. Area-Under-Curve (AUC) of ROC plot evaluated the classification model. 

 

Deployment of Shiny tool ‘EarlyDetect’: 

R-shiny platform used to develop a web-application, which receive 06 inputs of blood lipid profile, and 

transform phenotype into gene expression profile with 05 outputs; and further provides output in the 

form of probability of cancer. The developed application deployed at Shiny-Server. 

 

 

RESULTS AND DISCUSSION 

DEGs for stomach adenocarcinoma in plasma 

Total 62 differentially expressed genes found after processing 4644 genes under the thresholds as ‘Fold 

change (log2)’ of 1.5 and ‘Significance (-log10)’ boundary at 0.05 (Figure 2). Furthermore, plasma 

proteome database (http://www.plasmaproteomedatabase.org) mapping filtered 39 genes out from 62 

DEGs (Table 1). These 39 genes (gene symbol marked with ‘node ID’ from 1 to 39 in table-1) processed 

strategically for development of gene-signature. 

 

 

Figure 2. Volcano plot showing differentially expressed genes. Out of 4644 genes, 62 found to be 

differentially expressed. ‘Fold change (log2)’ threshold at 1.5. ‘Significance (-log10)’ boundary was 0.05. 

Table 1 Plasma-expressed DEGs. Differentially expressed genes mapped along plasma proteome. 39 

genes, out of 62, found to be expressed in blood plasma. Considering the feasibility of patient sampling 

through blood, plasma proteome expressions used for identification of gene-signature. Here in table 

each gene symbol is marked with ‘node ID’ from 1 to 39. 

Node 
ID -vs-
Gene 

PPD ID  
Gene 
symbol  

Gene name  
Entrez 
gene ID 

1 HPRD_03272  AFF3 AF4/FMR2 family, member 3  3899 

2 HPRD_04087  APBB1 Amyloid beta (A4) precursor protein-binding, family 322 
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B, member 1 (Fe65)  

3 HPRD_00134  APOD  Apolipoprotein D  347 

4 HPRD_00405  C5 Complement component 5  727 

5 HPRD_03148  CHAF1A  Chromatin assembly factor 1, subunit A (p150)  10036 

6 HPRD_04592  CHRD Chordin  8646 

7 HPRD_02363  COL4A5 Collagen, type IV, alpha 5  1287 

8 HPRD_06012  DPP3  Dipeptidyl-peptidase 3  10072 

9 HPRD_00510  DPT  Dermatopontin  1805 

10 HPRD_04265  EEF1A2 Eukaryotic translation elongation factor 1 alpha 2  1917 

11 HPRD_03225  EFNA3  Ephrin-A3  1944 

12 HPRD_03957  PDK4  Pyruvate dehydrogenase kinase, isozyme 4  5166 

13 HPRD_06685  PRSS3  Protease, serine, 3  5646 

14 HPRD_00340  VCAN  Versican  1462 

15 HPRD_03642  NRP1  Neuropilin 1  8829 

16 HPRD_06714  SEC23A  Sec23 homolog A (S. Cerevisiae)  10484 

17 
HPRD_09843  SLC52A3  

Solute carrier family 52, riboflavin transporter, 
member 3  113278 

18 
HPRD_01418  SERPINE1  

Serpin peptidase inhibitor, clade E (nexin, 
plasminogen activator inhibitor type 1), member 1  5054 

19 HPRD_13296  FAM20A  Family with sequence similarity 20, member A  54757 

20 HPRD_11762  ZBTB16 Zinc finger and BTB domain containing 16  7704 

21 HPRD_01475  PTPN6  Protein tyrosine phosphatase, non-receptor type 6  5777 

22 HPRD_01087  LOX  Lysyl oxidase  4015 

23 HPRD_03123  IL1RL1 Interleukin 1 receptor-like 1  9173 

24 HPRD_09968  G0S2  G0/g1switch 2  50486 

25 HPRD_09545  NREP  Neuronal regeneration related protein  9315 

26 HPRD_00552  NT5E  5'-nucleotidase, ecto (CD73)  4907 

27 HPRD_05081  GPNMB  Glycoprotein (transmembrane) nmb  10457 

28 HPRD_01903  ITGAV  Integrin, alpha V  3685 

29 HPRD_13735  ILDR1  Immunoglobulin-like domain containing receptor 1  286676 

30 HPRD_10420  GFRA3 GDNF family receptor alpha 3  2676 

31 HPRD_03115  STC1  Stanniocalcin 1  6781 

32 HPRD_04183  IGFBP7  Insulin-like growth factor binding protein 7  3490 

33 
HPRD_16291  PPP1R14A  

Protein phosphatase 1, regulatory (inhibitor) 
subunit 14A  94274 

34 HPRD_02698  FABP4  Fatty acid binding protein 4, adipocyte  2167 

35 HPRD_01981  PCCA  Propionyl coa carboxylase, alpha polypeptide  5095 

36 HPRD_03774  PER1  Period circadian clock 1  5187 

37 HPRD_13516  ZNF662 Zinc finger protein 662  389114 

38 HPRD_06631  MAGED4B Melanoma antigen family D, 4B  81557 

39 HPRD_11750  GPX3  Glutathione peroxidase 3 (plasma)  2878 
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Gene-signature through network analysis 

Gene co-expression network analysis performed to know the gene-signature for discrimination of 

population between disease-vs-normal. Considering 39 gene expression, signatures derived by using 

above methodology. Notation for Node-vs-Gene should be picked from table above. Two major results 

found: (A) Out of 39, only 11 genes found to be involved in defining signature through similarity matrix. 

Similarity network-based signature included AFF3, APBB1, C5, CHRD, COL4A5, EEF1A2, ZBTB16, IL1RL1, 

GFRA3, ZNF662, and MAGED4B genes; (B) Out of 39, only 10 genes found to be involved in defining 

signature through dis-similarity matrix. Dis-similarity network-based signature included AFF3, C5, 

CHAF1A, EFNA3, SLC52A3, LOX, ILDR1, GFRA3, STC1, and ZNF662. Four genes namely AFF3, C5, GFRA3 

and ZNF662 were common in both the signatures. Both similarity & dissimilarity network signatures 

contained population discrimination capacity between normal & diseased (Figure 3). Survival & box 

plots showed gene-signatures identified (p-value < 0.05) with 11 genes extracted through network 

analysis (Figure 4). Survival plot validated the capacity of signature for significant discrimination 

between normal & diseased population. 

 
(A) Similarity matrix based signature                                                                                       

 
(B) Dis-similarity matrix based signature 

 

Figure 3. Considering 39 gene expression, signatures derived by the protocol described in above 

methodology. Signatures were extracted for discrimination between populations of diseased & non-

diseased samples. Notation for Node-vs-Gene should be picked from table above. (A) Out of 39, only 11 

genes were found to be involved in defining signature through similarity matrix. Similarity network-

based signature included AFF3, APBB1, C5, CHRD, COL4A5, EEF1A2, ZBTB16, IL1RL1, GFRA3, ZNF662, and 

MAGED4B; (B) Out of 39, only 10 genes were found to be involved in defining signature through 

similarity matrix. Dis-similarity network-based signature included AFF3, C5, CHAF1A, EFNA3, SLC52A3, 

LOX, ILDR1, GFRA3, STC1, and ZNF662. Both signatures have common involvement of AFF3, C5, GFRA3 

and ZNF662. 
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(A) 

 
(B) 

Figure 4.  (A) Survival plots in reference of identified gene-signature (p-value < 0.05). Plot derived with 

11 genes, extracted through network analysis; (B) Box plots showed the tissue-wise expression of multi-

gene signature with 11 gene identified through network analysis. 

 

AI-guided Simulation of systems model & pathway enrichment 

Similarity network (including 11 genes) became base for development of AI-guided systems models. Two 

system models developed; first for normal expression, and second for cancer (tumor) expression. AI-

guided simulation of systems model resulted in only 05 genes approaching to stabilized state. Successful 

simulation involved 05 genes namely AFF3, APBB1, C5, CHRD, and COL4A5. Combination of simulated 

genes was available in both normal and tumor cases. Expression behavior on time scale also showed 

different patterns of expression between normal & diseased state (Figure 5(A&B)). Survival & box plots 

showed in reference of gene-signature identified (p-value < 0.05) with 05 genes extracted through 

enrichment through system model (Figure 6). It also validated significant discrimination between normal 

& diseased population. AFF3 gene is known to be a putative transcription activator, that may function in 

lymphoid development and oncogenesis. APBB1 gene is a Amyloid beta precursor, it role is in response 

to DNA damage & apoptosis. C5 gene is a Pyrimidine/ purine nucleoside phosphorylase. CHRD gene is a 

key development protien, and is used during early embryonic tissue and also expression cancer 

condition. COL4A5 gene is collagen alpha, it is used as constituent of extracellular matrix. Reactome 

based pathway enrichment analysis showed that, signatures genes belongs to the ‘Extracellular Matrix 

Organization’, ‘immune system’, ‘DNA repair’ and ‘developmental biology’. It is shown that most 

significant impact on stomach adenocarcinoma is due to genes involved in extracellular matrix 

organization. In a prior study, STAD early detection biomarker genes were suggested from extracellular 

matrix [30]. These observations are also in compliance of prior studies on development of gastric cancer 

[37] (Figure 7). These 05 gene were further used for establishing relation with blood profile. 
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A.(Normal) 

 
B.(Tumor) 

Figure 5. In present study, above similarity network-based signature (including 11 genes) used for 

development of AI-guided systems models. Two system models developed; first for normal expression, 

and second for cancer (tumor) expression. After simulation, it was found that out of 11 gene, only 05 

genes (AFF3, APBB1, C5, CHRD, and COL4A5) were involved in successful simulation. Combination of 

these 05 gene were found in both normal and tumor cases. Above figures A&B showing the patterns of 

expression 05 gene; discrimination can be easily visualized between normal & tumor case. These 

expressions have been drawn on the time scale. 

 

 
(A) 

 
(B) 

Figure 6. (A) Survival plot in reference of gene-signature identified (p-value = 0.0046 < 0.05). Plot 

derived with 05 genes extracted through system model based enrichment of similarity network; (B) Box 

plot showed the tissue-wise expression of multi-gene signature with 05 gene identified through 

enrichment of similarity network.  
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Linking gene signature (genotype) with blood lipid profile (phenotype) 

Phenotype blood lipid profile used in this study contain:  Total Cholestrol: 200-239(mg/dL); LDL 

Cholestrol: 130-159 (mg/dL); HDL Cholestrol: 40-60 (mg/dL); Triglycerides: 150-199 (mg/dL); Non-HDL-C: 

130-159 (mg/dL); and TG to HDL ratio: 3.0-3.8 (mg/dL). Expression of gene signature further mapped 

with profile of blood. Normal-to-Cancer discrimination capacity of lipid profile was evaluated through 

multi-perceptron ANN classification model. Multiple perceptron model architecture of 6-4-2 

implemented with learning rate 0.3 and momentum of 0.2 for 500 epochs. Model established with AUC 

of 0.999 (Table 2, 3, & 4). Furthermore, Genotype-to-Phenotype mapping resulted into ANN model. ANN 

model implemented in tool developed; where model performs reverse transformation of blood-profile 

into gene-expression.  

 

Table 2. Confusion matrices showing discrimination capacity of lipid-profile performed by a two-class 

classification training model and 10-fold cross validation.  

Confusion matrix (Training)  Confusion matrix (10-fold cross validation) 

 True False   True False 

Normal 370 0  Normal 369 1 

Tumor 8 362  Tumor 3 367 

 

Table 3. Training statistics for two class-classification model for evaluation of discrimination capacity 

of lipid-profile 

  TP FP Precisio
n 

Recall F-
Measur
e 

MCC ROC 
area 

PRC 
area 

Class 

  1 0.022 0.979 1 0.989 0.979 1 1 T 

  0.978 0 1 0.978 0.989 0.979 1 1 N 

Weighted Avg. 0.989 0.011 0.989 0.989 0.989 0.979 1 1   

Correctly Classified Instances         732               98.9189 % 
Incorrectly Classified Instances         8                1.0811 % 
Kappa statistic                          0.9784 
Mean absolute error                      0.0116 
Root mean squared error                  0.0933 
Relative absolute error                  2.323 % 
Root relative squared error             18.6595 % 
Total Number of Instances              740   

 

 

Table 4. Ten-fold cross-validation statistics for evaluation of two-class classification model showing 

discrimination capacity of lipid-profile 

  TP FP Precisio
n 

Recall F-
Measur
e 

MCC ROC 
area 

PRC 
area 

Class 

  0.997 0.008 0.992 0.997 0.995 0.989 1 1 T 
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  0.992 0.003 0.997 0.992 0.995 0.989 1 1 N 

Weighted Avg. 0.995 0.005 0.995 0.995 0.995 0.989 1 1   

Correctly Classified Instances         736               99.4595 % 
Incorrectly Classified Instances         4                0.5405 % 
Kappa statistic                          0.9892 
Mean absolute error                      0.0091 
Root mean squared error                  0.0631 
Relative absolute error                  1.8151 % 
Root relative squared error             12.6272 % 
Total Number of Instances              740 

 

 

Development of Shiny tool ‘EarlyDetect’  

The whole study resulted into ‘EarlyDetect’, which is a R-Shiny web-application. The tool is able to 

receive any combination of 06 parameters, as inputs of blood lipid profile, and can provide output in the 

form of probability of status of normal & cancer. It also provides information about the respective 

variation in gene-expression values in reference of lipid profile. Results can also be seen in tabulated 

format, including all the parameters & gene expressions.  ‘EarlyDetect’ web application, process blood 

lipid profile through an ANN model to transform into gene-expression of signature. Further, featured 

gene expressions is used to calculate classified probability of class weightage of cancer-vs-normal. 

EarlyDetect predicts probability for both the classes (Figure 7).  

 

 
Figure 7. EarlyDetect tool description 
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Utilization of ‘EarlyDetect’ for observation of parameter combinations on status of disease 

The ‘EarlyDetect’ proved itself to be highly useful to observe the impact of various combinations of 

blood lipid profile in probability of cancer. Any combination of lipid profile parameters can be used, from 

patient, for analysis. Some examples are performed here as:  (i) which parameter, at its lowest values, 

has maximum impact on inducing cancer?  To observe this situation, each parameter (one-by-one) was 

set up at lowest value, taking other parameters to default. It was observed that LDL has maximum 

impact (about 18%) on creating cancer condition. While probability of cancer further increases with 

increase in ‘TG to HDL ration’ parameter up to 20% (Figure 8). (ii) What may be the impact of total 

cholesterol on probability of cancer? To observe this situation ‘total cholesterol value was started from 

lowest value of 200 mg/dL and increased step by step to maximum value of 239 mg/dL. At each step, 

probability of cancer was calculated. It was observed that probability of cancer decreases with increases 

of total cholesterol concentration. This observation was validated through a previous study [38] (Figure 

9).  It was found that with increase of ‘total cholestrol’, expression of AFF3, APBB1, C5 and CHRD 

increased, while expression of COL4A5 get decreased. (iii) What is biological relevance of decrease in 

expression of COL4A5 during increase of total cholestrol? Decrease in expression of COL4A5 showed 

reduction in collagen. This observation was validated through a prior study [39] (Figure 10). 

 

 

  

 

Figure 8.Behavior at the lowest value of each parameter 
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Figure 9. Cancer probability with increase of total cholesterol (mg/dL). Considering result of lipid 

parameters at their normal state 

 

 

 

Figure 10. Expression of COL4A5 decreases with increase of total cholesterol (mg/dL). Considering result 

of lipid parameters at their normal state 
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Conclusions 

Present study successfully established the relationship between phenotype & genotype, as ‘blood 

profile’ & ‘gene signature’ respectively. This relationship was utilized for development of a tool for early 

detection of stomach adenocarcinoma on the basis of a clinicopathological feature blood-lipid profile. 

Few identified conclusions based on EarlyDetect tool are as: (i) Low-Density-Lipoprotein cholesterol 

showed potential impact on creating cancer; (ii) Probability of cancer decreases with increase in total 

cholesterol; (iii) Collagen decreases with increase in total cholesterol. More conclusions can be drawn 

through combination studies through ‘EarlyDetect’. Tool is freely accessible at ‘https://csir-

icmr.shinyapps.io/EarlyDetect/’. 
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