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Abstract— The integration of Electronic Health Records
(EHRs) with Machine Learning (ML) models has become
imperative in examining patient outcomes due to the vast
amounts of clinical data they provide. However, critical in-
formation regarding social and behavioral factors that affect
health, such as social isolation, stress, and mental health
complexities, is often recorded in unstructured clinical notes,
hindering its accessibility. This has resulted in an over-reliance
on clinical data in current EHR-based research, potentially
leading to disparities in health outcomes. This study aims to
evaluate the impact of incorporating patient-specific context
from unstructured EHR data on the accuracy and stability of
ML algorithms for predicting mortality, using the MIMIC III
database. Results from the study confirmed the significance
of incorporating patient-specific information into prediction
models, leading to a notable improvement in the discriminatory
power and robustness of the ML algorithms. Furthermore, the
findings underline the importance of considering non-clinical
factors related to a patient’s daily life, in addition to clinical
factors, when making predictions about patient outcomes. These
results have significant ramifications for improving ML in
clinical decision support and patient outcome predictions.

I. INTRODUCTION

Clinical factors have a limited influence on a patient’s
overall health outcome, accounting for only 10-20%. The
rest is largely shaped by social, environmental, and be-
havioral factors [1]–[3]. Despite the vast amount of health
data comprising 30% of the world’s information, healthcare
systems continue to struggle with a lack of information
and resulting disparities in access and equity. The Social
and Behavioral Determinants of Health (SBDoH), which
are largely overlooked in outcome research, play a crucial
role in enhancing the inclusiveness and quality of healthcare
systems. For example, wealthier Canadians are generally
healthier and live longer than poorer Canadians [4]. The
obesity rate is 1.5 times higher for Canadian women in lower-
income households than higher-income families (20% versus
13%), putting them at higher risks of diabetes and coronary
artery disease [5]. Canadians with the lowest incomes report
less heavy drinking but are over two times as likely to
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be hospitalized for conditions entirely caused by alcohol
[6]. This highlights the need to consider the influence of
additional factors such as inadequate nutrition, lack of social
support, or elevated stress levels in our assessments.

The widespread adoption of Electronic Health Records
(EHRs) has generated large volumes of clinical data. This
is an enabling resource for developing machine learning
(ML) models to study patient outcomes (e.g. [7]–[11]).
However, information about social determinants of health is
usually recorded in unstructured clinical notes, which ham-
pers access to this information. Thus, most current ML-based
outcome research using EHRs focuses heavily on clinical
factors and consequentially may lead to health inequalities. A
recent study highlights the impact of uncertainty on the per-
formance of EHR-based mortality prediction models among
critically ill patients and underscores the importance of a
comprehensive understanding of individual patient contexts
to evaluate the robustness and generalizability of ML-based
models [12].

The integration of social and behavioral information into
EHRs is an area of growing interest in the healthcare industry
[13]–[20]. Pantell et al. [18] investigated the correlation be-
tween social and behavioral elements and the earlier develop-
ment of hypertension and diabetes among a clinical sample.
The results of their cohort study involving 18,133 adults
without baseline hypertension and 35,788 adults without
baseline diabetes shows that cumulative social and behavioral
risk factors, such as low education level and infrequent
exercise, are significantly linked to earlier onset of both
hypertension and diabetes. In a similar study, Yu et al. [19]
compared the information obtained from Natural Language
Processing (NLP)-extracted SBDoH with structured EHRs
in a cohort of 864 patients and found that more in-depth
information about factors like smoking, education, and em-
ployment was only present in the clinical narratives. This
confirms the necessity of utilizing both clinical narratives
and structured EHRs to gain a comprehensive understanding
of a patient’s health conditions. Feller et al. [20] used NLP to
extract SBDoH that impact the prediction of HIV diagnosis.
They found that the inclusion of these factors significantly
improved the predictive performance of automated HIV risk
assessment by identifying terms in clinical text indicative of
high-risk behavior.

In the context of mental health, studies have shown that
individuals with mental health conditions, such as depression
and anxiety, are at a higher risk of death from physical health
conditions, including cardiovascular disease and cancer [21],
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[22]. Furthermore, there is a significant association between
pre-existing depression and mortality [23]. To further explore
this and to evaluate the potential usefulness of incorporating
unstructured text data from EHRs for improved personalized
patient information extraction, we utilized patient notes from
the Medical Information Mart for Intensive Care III (MIMIC
III) database [24] to extract information related to mental
health conditions, including stress, anxiety, depression, and
post-traumatic stress disorder (PTSD), and to examine the
predictive capability of these factors on patient mortality out-
comes. Our study reveals the pivotal role that patient-specific
information plays in enhancing the accuracy of our machine
learning models in predicting the mortality outcome. Our
findings not only confirm the importance of incorporating
mental health information into mortality predictions, but also
highlight the benefits of utilizing a comprehensive dataset
that incorporates both laboratory data and SBDoH in training
and evaluating the ML models.

II. METHODS

A. Data Collection and Preparation
Dataset– The present study utilized data sourced from the

Medical Information Mart for Intensive Care III (MIMIC
III) database, which is a collaborative effort between Philips
Healthcare and the Laboratory for Computational Physiology
at the Massachusetts Institute of Technology (MIT) [24].
The database comprises information from 53,423 hospital
admissions of adult patients over the age of 16 who were
admitted to critical care units between 2001 and 2012, as well
as data from 7,870 neonatal admissions between 2001 and
2008. The MIMIC III database encompasses 38,597 unique
adult patients and 49,785 hospital admissions, encompassing
various data types, including vital signs, medications, and
laboratory measurements. To reduce the impact of prior ICU
admissions on patients with multiple stays in the ICU, only
the last stay was considered in the analysis. However, to gain
a comprehensive understanding of the patient’s mental health
conditions recorded in the unstructured notes, we merged
and incorporated all of the patient’s clinical notes into the
labeling process.

Data Labeling– A sample of 1,058 patient records was
carefully selected and assigned a binary mental health label
(0 or 1) by experienced research assistants who are spe-
cialists in the fields of psychology, clinical epidemiology,
and nursing. Each record was meticulously reviewed by the
research assistants, who examined the historical clinical notes
and based their labeling on the reports provided by the
clinical care team. This label was then incorporated into the
25-variable MIMIC III dataset, which encompasses patient
demographics and first 24-hour ICU physiological and lab
variables. As mental health can affect individuals of all ages,
no age range was established as a criterion for exclusion. To
ensure a balanced representation of both death and non-death
cases, equal distribution of these cases was maintained in the
sample dataset.

In addition to manually labeling the clinical notes to
extract social and behavioral factors, we also leveraged

the ChatGPT model as a data annotation tool. We utilized
OpenAI’s GPT-3 Playground and its programmatic API to
identify the presence of mental health issues in the unstruc-
tured notes. The model annotated 900 records, and the results
were compared with the manual labeling process.

Data Preprocessing– To address the issue of missing
data, we employed the use of missingness indicators in
our models. This approach ensured the preservation of the
original distribution of features and reduced the loss of data
records. Additionally, we standardized the numerical features
by converting them into z-scores. This was accomplished by
subtracting the mean and scaling each feature to have unit
variance. Moreover, our correlation analysis revealed that
Chloride and Sodium as well as Hematocrit and Hemoglobin
have a strong correlation with each other, with a correlation
coefficient greater than 95%. To minimize the risk of over-
fitting, we chose to exclude Sodium and Hemoglobin as they
had a higher number of missing data compared to Chloride
and Hematocrit.

B. Prediction Models Development
To mitigate over-fitting and ensure accurate results with

regards to our limited dataset, we evaluated a wide range of
standard machine learning classifiers with varying architec-
tures, including Logistic Regression (LR), kernel-based Sup-
port Vector Machines (SVM), decision-tree-based Random
Forest (RF), XGBoost, ExtraTrees, and sample-based K-
Nearest Neighbors (KNN). To gauge the influence of mental
health context information extracted from clinical notes on
the performance of these models, we implemented and com-
pared the outcomes of two different settings: (1) predictions
based solely on clinical data and (2) predictions augmented
with mental health information extracted from unstructured
text data. To ensure the robustness and generalizability of our
results, we applied 5-fold cross validation in our evaluation
process. The performance of each classifier was measured
based on several key metrics, including precision, recall, F1
scores, and the Area Under the Curve (AUC). To prioritize
the classifier’s ability to detect positive cases (i.e., death
outcome), we also employed average precision (AP), which
places a higher emphasis on the precision-recall trade-off.

III. RESULTS AND DISCUSSION

Mortality Prediction– The performance of our predictive
models in predicting mortality is presented in Table I.
The models were trained using raw clinical data and data
augmented with additional context on the patient’s mental
health conditions. With the exception of the kernel-based
SVM classifier, the performance of other classifiers either
improved or remained consistent when trained on the aug-
mented dataset compared to the raw dataset. The ExtraTrees
classifier applied to the augmented dataset outperformed the
other models in our study, showing a 4% improvement in
precision, recall, F1, and average precision (AP) metrics
compared to its performance on the raw data (i.e., Precision:
81%, Recall: 81%, F1: 81%). The highest AP score of 75%
and AUC score of 89% (Figure 1) were achieved using the
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TABLE I: Comparison of the raw and augmented datasets for different predictive models. The Augmented column displays
the performance of the models that were trained and tested on the combination of clinical data and unstructured data.

Models Precision Recall F1 AP*
Raw Augmented Raw Augmented Raw Augmented Raw Augmented

Logistic Regression 74% 74% 74% 74% 74% 74% 68% 68%
KNN 74% 78% 74% 78% 74% 78% 69% 73%
Random Forest 81% 81% 80% 80% 80% 80% 73% 73%
XGBoost 76% 77% 75% 77% 75% 77% 69% 71%
SVM 73% 71% 73% 71% 73% 71% 68% 65%
ExtraTrees 78% 81% 77% 81% 77% 81% 71% 75%
*AP: Average Precision

ExtraTrees classifier on the augmented dataset. The lower
performance of SVM when trained on the augmented dataset
may be due to its sensitivity to the dimensionality of the data.
As the number of dimensions in the dataset increases, SVM
becomes less effective in finding the optimal boundary that
separates the classes.

Mental Health Contribution– Figure 2 (a,b) shows the
contribution of the top 20 features to the performance of our
best-performing model (ExtraTrees). We utilized SHapley
Additive exPlanations (SHAP) analysis [25] to assess the
contribution of each feature to individual predictions. Our
results showed that the binary mental health feature had a
significant effect on the predictions made by the augmented
model, ranking 13th among the top 20 features despite
the limited sample size, as depicted in Figure 2a. The
summary plot in Figure 2b uses red to indicate a positive
contribution of the feature to the prediction, which increases
the prediction from its baseline value, and blue to represent
a negative contribution, which decreases the prediction from
its baseline value. For instance, a high positive contribution
is seen for higher values of age, while this is the reverse
for the platelet feature. The binary nature of the augmented
mental health information is evident in the final prediction,
which is impacted by either value of this feature, highlighting
the importance of incorporating patient-specific context into
prediction models.

OpenAI and Data Labeling– In order to evaluate the
reliability and practicality of utilizing the OpenAI API for
detecting SBDoH from unstructured text, we compared the
labels generated by the AI to those provided by domain
experts. Our results revealed an agreement of 77% between
the two sources of labels. Nevertheless, only 5 out of 111
positive labels (indicating the presence of mental health)
were accurately detected by OpenAI, and the majority of
the agreements with domain experts were in the negative
category. This implies that the AI module, despite its large
language model, may require further adjustments to achieve
a higher level of accuracy for this task. Additionally, the
intricacy of detecting mental health and the varied nature of
the concepts related to this health condition could account
for the high level of discrepancy between the outputs of the
AI and domain experts in labeling positive cases.

Study Limitations– This study has several limitations that
may affect the validity of our findings. Firstly, the small
sample size of the dataset used in our research may impact
the generalizability of our results. To mitigate this, we have
taken measures to ensure high quality label extraction and a

Fig. 1: Two-class classification AUC for the dataset aug-
mented with mental health information (ExtraTrees).
balanced random selection of the dataset to reduce the impact
of small sample size and imbalanced data. Secondly, while
our study focuses solely on mental health-related SBDoH,
these factors often interact with one another and should be
considered in aggregate. To address this, a team of four do-
main experts conducted a thorough review of each patient’s
clinical notes to account for interactions among SBDoH that
may impact mental health. Despite these limitations, our re-
sults contribute to the field of outcome research and highlight
the importance of incorporating patient-specific context in
EHR-based outcome studies using machine learning.

IV. CONCLUSION

In this study, we sought to examine the impact of in-
corporating mental health information from SBDoH into
unstructured notes in EHRs on the accuracy of mortality
prediction using machine learning. We used this information
to generate and validate prediction models that can be
utilized to identify high-risk patients, taking into account
both clinical and interrelated social factors. Our findings
reveal that integrating mental health data from clinical notes
enhances the performance of mortality prediction models
compared to models relying solely on clinical data. Fur-
thermore, the augmented information extracted from the
clinical notes was found to be a key contributing factor
in predicting mortality outcomes for our best-performing
machine learning model. This underscores the significance of
incorporating SBDoH and patient-specific context into EHR-
based outcome analysis.
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(a) SHAP values per feature (Mean Value) (b) SHAP values (Summary Plot)
Fig. 2: The contribution of each feature to the prediction of mortality using the augmented dataset for the best-performing
model (ExtraTrees). The values on the x-axis show (a) the mean absolute and (b) the impact values.
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