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Abstract  

Objective: The accurate prediction of seizure freedom after epilepsy surgery remains 

challenging. We investigated if 1) training more complex models, 2) recruiting larger sample 

sizes, or 3) using data-driven selection of clinical predictors would improve our ability to 

predict post-operative seizure outcome.  We also conducted the first external validation of a 

machine learning model trained to predict post-operative seizure outcome. 

Methods: We performed a retrospective cohort study of 797 children who had undergone 

resective or disconnective epilepsy surgery at a single tertiary center. We extracted patient 

information from medical records and trained three models – a logistic regression, a 

multilayer perceptron, and an XGBoost model – to predict one-year post-operative seizure 

outcome on our dataset. We evaluated the performance of a recently published XGBoost 

model on the same patients. We further investigated the impact of sample size on model 

performance, using learning curve analysis to estimate performance at samples up to 

N=2,000. Finally, we examined the impact of predictor selection on model performance. 

Results: Our logistic regression achieved an accuracy of 72% (95% CI=68-75%, 

AUC=0.72), while our multilayer perceptron and XGBoost both achieved accuracies of 71% 

(95% CIMLP=67-74%, AUCMLP=0.70; 95% CIXGBoost own=68-75%, AUCXGBoost own=0.70). 

There was no significant difference in performance between our three models (all P>0.4) and 

they all performed better than the external XGBoost, which achieved an accuracy of 63% 

(95% CI=59-67%, AUC=0.62; PLR=0.005, PMLP=0.01, PXGBoost own=0.01) on our data. All 

models showed improved performance with increasing sample size, with limited 

improvements above N=400. The best model performance was achieved with data-driven 

feature selection. 

Significance: We show that neither the deployment of complex machine learning models nor 

the assembly of thousands of patients alone is likely to generate significant improvements in 

our ability to predict post-operative seizure freedom. We instead propose that improved 

feature selection alongside collaboration, data standardization, and model sharing is required 

to advance the field.  
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Introduction  

Despite careful evaluation, up to one third of patients with drug-resistant epilepsy are not 

rendered seizure-free through surgery1. This underscores the need to identify which patients 

are likely to benefit from surgery before the intervention has been carried out. 

 

Surgical candidate selection is typically decided by a multidisciplinary team. This form of 

expert clinical judgement relies on experience and available evidence, and achieves a 

moderate degree of accuracy when predicting surgical success.2 To aid clinical judgement, 

some studies have reported average estimates of seizure freedom for specific types of 

epilepsy (e.g. temporal lobe epilepsy).1 Other studies have focused on identifying multiple 

predictors of post-operative seizure outcome, without taking into account how these 

predictors may interact.1 

 

In an effort to synthesize patient characteristics and provide objective predictions of seizure 

freedom, researchers have developed statistical models and calculated risk scores that can 

generate individualized predictions of outcome.3–5 These have included the Epilepsy Surgery 

Nomogram3, the modified Seizure Freedom Score4, and the Epilepsy Surgery Grading Scale.5 

These tools do not, however, perform better than clinical judgment.2,6 Researchers are 

therefore increasingly turning to machine learning in an attempt to improve prediction 

accuracy. 

 

Machine learning is being leveraged within the realm of clinical research at an exponential 

pace. The epilepsy surgery pathway generates a plethora of diverse data. As such, it would 

seem to create an ideal opportunity for the application of machine learning technology. 

Several machine learning models have indeed been developed to date to predict seizure 

outcome (Table 1). The majority of these models have, however, been trained on relatively 

small sample sizes (N < 100)7–18 and therefore have a high risk of ‘overfitting’ (a model 

overfits when it models the training dataset too closely, performing well on this dataset but 

consequently underperforming on new, ‘unseen’ datasets).19,20 Model training sets have also 

been comprised almost exclusively of temporal lobe surgery patients7,8,10–13,15,17,18,21,22, often 
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relied on post-surgical factors11,12,14,23, and frequently utilized post-processing neuroimaging 

analyses that cannot be readily replicated by others.7,9–11,13,16–18,21 As such, many existing 

models may be difficult to incorporate into routine pre-surgical evaluation. Perhaps more 

importantly still, none of these models have been externally validated. It is therefore 

unknown how well they would perform if used by another surgery center, and whether their 

adoption as a replacement for traditional statistical modelling approaches is justified. 

 

To advance this field, we asked whether 1) more complex models, 2) larger sample sizes, or 

3) better selection of clinical predictors would improve our ability to predict post-operative 

seizure outcome (Fig. 1). To address the first question, we trained three different models, a 

traditional logistic regression and two machine learning models, to predict seizure outcome 

on our dataset. We also tested the performance of an external, pre-trained machine learning 

model23 on our dataset, and compared its performance to that of our models. To address the 

influence of sample size, we investigated how varying sample size – both within and 

extrapolating beyond our current cohort – impacted model performance. To address the 

influence of number and type of clinical predictors, we investigated how the inclusion of 

different predictors affected model performance. 

Materials and methods  

Patient cohort 

We retrospectively reviewed medical records for all children who underwent epilepsy surgery 

at Great Ormond Street Hospital (GOSH; London, UK) from 2000 through 2018. We 

included patients who underwent surgical resection or disconnection. We excluded palliative 

procedures (corpus callosotomy and multiple subpial transections), as well as 

neuromodulation (deep brain stimulation and vagal nerve stimulation) and thermocoagulation 

procedures. If patients had undergone multiple surgeries over the course of the study period, 

we included only their first surgery. 
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Dataset description  

We retrieved medical records and extracted the following information: patient demographics, 

epilepsy characteristics, pre-operative MRI findings, pre-operative interictal and ictal EEG 

characteristics, pre-operative antiseizure medication (ASM; including both total number of 

ASMs trialed from time of epilepsy onset to time of pre-surgical evaluation, as well as 

number of ASMs at time of pre-operative evaluation), surgery details, genetic results, and 

histopathology diagnosis. A complete list of variables extracted and information about how 

we categorized these data can be found in Supplementary Material (p. 2-6).  

 

We classified patients as either seizure-free (including no auras) or not seizure-free at one-

year post-operative follow-up. We also recorded if patients were on, weaning or off ASMs at 

this time-point. 

Statistical analysis  

We calculated the descriptive statistics for the cohort and presented these using mean with 

standard deviation, median with interquartile range, and count with proportion, as 

appropriate.  

 

We checked if continuous data were normally distributed using Shapiro-Wilk tests.24 None of 

the continuous variables were normally distributed. We therefore investigated associations 

between demographic, clinical and surgical variables using Mann-Whitney U, Kruskal-Wallis 

H, Chi-square test of independence, and Spearman’s rank correlation coefficient, as 

appropriate. All tests were two-tailed and we set the threshold for significance a priori at P < 

0.05. We corrected for multiple comparisons using the Holm method.25  

 

We performed univariable logistic regression analyses to investigate which clinical variables 

predicted seizure outcome at one-year post-operative follow-up. In the case of categorical 

variables, the group known to have the highest seizure freedom rate (according to past 

literature) was used as the reference category. All other groups were then compared to this 

reference category to determine if they were significantly less (or more) likely to achieve 
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seizure freedom through surgery. For example, ‘unilateral MRI abnormalities’ was selected 

as the reference category for the categorical variable ‘MRI bilaterality’, and we investigated 

whether those with ‘bilateral MRI abnormalities’ were significantly less (or more) likely to 

be seizure-free after surgery. We again corrected for multiple comparisons using the Holm 

method.25  

Effect of model type on model performance  

We performed a multivariable logistic regression (LR) with independent variables that 1) 

could be obtained pre-surgically and 2) were found to be predictive of seizure outcome. We 

developed a second version of this model, in which MRI diagnosis was replaced with 

histopathology diagnosis, to determine if this affected model accuracy. 

 

We used the same predictors to train two machine learning models: a multilayer perceptron 

(MLP) model and an XGBoost model. We chose an MLP due to its high predictive 

performance, allowing for non-linear interactions between input variables. We trained the 

MLP with two hidden layers and ten hidden neurons, respectively, balancing the need for 

sufficient complexity to learn feature interactions across multiple features, while limiting the 

capacity of the network to overfit to the training data. We chose an XGBoost model to ensure 

that we could compare the performance of this to the performance of the XGBoost model 

published by Yossofzai et al.23 

 

After training our own three models, we applied the XGBoost model by Yossofzai et al.23 to 

the same patient cohort. We evaluated the performance of all models using stratified 10-fold 

cross-validation. We used a stratified approach to address the outcome imbalance observed in 

our cohort. We calculated the null accuracy (the accuracy the model would achieve if it 

always predicted the more commonly occurring outcome in our cohort, i.e. seizure-free), the 

tested model accuracy, and the area under the ROC (Receiver Operating Characteristic) curve 

(AUC) for each model. We reported both the mean AUC obtained across all 10 folds as well 

as the AUC obtained from each individual fold. We compared the accuracies of the 

respective models using McNemar’s test. 
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Effect of sample size on model performance  

We investigated how sample size affected model performance by using a previously 

described learning curve analysis approach.26 First, we trained our models on ten different 

sample sizes, starting at N=70 and finishing at N=700 patients. At each sample size, we 

evaluated model performance, specifically model accuracy. This allowed us to create a 

learning curve, plotting model performance against sample size. We then chose an inverse 

power law function to model the learning curve. We used this function to predict model 

performance on expanded sample sizes of up to N=2,000. 

Effect of clinical predictors on model performance 

We explored how the number of included predictors, as well as their nature, affected model 

performance. We used the coefficients from our univariable logistic regression analyses to 

determine how informative different predictors were. We then added significant predictors 

one-by-one into our models, from the most informative to the least informative. At each 

point, we plotted model AUC and confidence intervals (obtained across the 10 folds). 

 

We performed all statistical analyses and visualizations in Python version 3.7.2 and R version 

3.6.3. Our MLP and XGBoost models were implemented using the scikit-learn library.27  

Results  

Patient cohort  

A total of 797 children were identified as having undergone first-time surgical resection or 

disconnection. Demographic information and clinical characteristics for these patients are 

displayed in Supplementary Table 1. Data relating to semiology (past seizures and seizures 

at time of pre-surgical evaluation) as well as interictal and ictal EEG characteristics are 

displayed in Supplementary Table 2. Genetic diagnoses are listed in Supplementary 

Tables 3 and 4. 
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Seizure outcome at one-year follow-up was available for 709 patients, of which 67% were 

seizure-free. Of these, 51% were on ASM, 34% were weaning ASM, and 15% were on no 

ASM. 

Relationships between variables  

Relationships between demographic, clinical and surgical variables are displayed in Fig. 2. 

Full statistics are reported in Supplementary Table 5. 

Univariable logistic regression analyses 

Univariable logistic regression analyses identified the following features as predictive of one-

year post-operative seizure freedom: handedness, educational status, genetic findings, age of 

epilepsy onset, history of infantile spasms, spasms at time of pre-operative evaluation, 

number of seizure types at time of pre-operative evaluation, total number of ASMs trialed 

(from time of epilepsy onset to time of pre-operative evaluation), MRI bilaterality (unilateral 

versus bilateral abnormalities), MRI diagnosis, type of surgery performed, lobe operated on, 

and histopathology diagnosis (Supplementary Table 6).  

Effect of model type on model performance 

Logistic regression models 

Our multivariable LR achieved an accuracy of 72% (95% CI=68-75%) and an AUC of 0.72 

(range across the 10 folds: 0.64-0.82). When we assessed whether substituting MRI diagnosis 

with histopathology diagnosis would improve model performance, we found that this 

alternative LR achieved a similar accuracy of 73% (95% CI=69-79%; AUC=0.72; range 

across the 10 folds: 0.60-0.77). There was no significant difference in performance between 

the LR that included MRI diagnosis and the LR that included histopathology diagnosis 

(McNemar’s test, chi-square=0.1, P=0.8). This was likely due to the high degree of overlap 

between MRI and histopathology diagnosis (Supplementary Fig. 1). 
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Multilayer perceptron and XGBoost models 

Our MLP achieved an accuracy of 71% (95% CI=67-74%) and an AUC of 0.70 (range across 

the 10 folds: 0.63-0.82). Our XGBoost also achieved an accuracy of 71% (95% CI=68-75%) 

and an AUC of 0.70 (range across the 10 folds: 0.62-0.83). 

External XGBoost model 

When we applied the XGBoost model developed by Yossofzai et al.23 to our data, it achieved 

an accuracy of 63% (95% CI=59-67%) and an AUC of 0.62.  

Comparison of model performances 

The AUCs of the respective models are compared in Fig. 3A. There was no significant 

difference in performance between our LR and MLP (McNemar’s test, chi-square=0.8, 

P=0.4), our LR and XGBoost (McNemar’s test, chi-square=0.1, P=0.8), or our MLP and 

XGBoost (McNemar’s test, chi-square=0.1, P=0.8). 

All three models performed better than the external XGBoost model (McNemar’s testLR, chi-

square=8.0, P=0.005; McNemar’s testMLP, chi-square=6.4, P=0.01; McNemar’s testXGB own, 

chi-square=6.8, P=0.01). Our LR, MLP and XGBoost models also performed significantly 

better than model null accuracy (McNemar’s testLR, chi-square=8.7, P=0.003; McNemar’s 

testMLP, chi-square=5.3, P=0.02; McNemar’s testXGB own, chi-square=7.6, P=0.006), whereas 

the external XGBoost model did not (McNemar’s testXGB external, chi-square=0.6, P=0.4). 

Effect of sample size on model performance  

Increasing our sample size within the limits of our cohort improved the performances of all 

our models (Fig. 3B). This was, however, only true up until around N=400, at which point 

performance started to plateau for all models. Expanding our cohort beyond its current size, 

up to N=2,000, did not substantially improve the performances for any of our models (Fig. 

3B). 

Effect of data inclusion on model performance  

We found that adding more predictor features improved the performances of all models (Fig. 

3C and Supplementary Fig. 2 and 3). However, the greatest accuracy was achieved when 

data-driven feature selection was used to filter which clinical predictors should be included in 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.13.23285866doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.13.23285866
http://creativecommons.org/licenses/by/4.0/


  
 

  14
 

the models (i.e. when the models included only the variables that were found to be 

significantly predictive of seizure outcome in our univariable logistic regression analyses; 

Fig. 3D).  When we added variables that were not significantly predictive of seizure outcome 

in our univariable logistic regression analyses, model performance worsened (Fig. 3D).  

Discussion 

Up to one third of patients do not achieve seizure freedom through epilepsy surgery despite 

careful evaluation.1 There has been a long-standing history of trying to identify these patients 

pre-operatively, both through traditional statistical modelling approaches and more complex 

machine learning techniques (Table 1). These attempts have, however, had limited success. 

In this study, we explored if we could improve our ability to predict seizure outcome by 

training more complex models, recruiting larger training sample sizes, or incorporating more 

or different types of clinical predictors.    

 

To investigate the effect of model type on our ability to predict seizure outcome, we trained 

three different models, a logistic regression (LR) and two machine learning models – a 

multilayer perceptron (MLP) and an XGBoost – on the same cohort. We showed that our LR 

performed as well as our MLP and XGBoost models. Importantly, we also applied a recently 

published XGBoost model by Yossofzai et al.23 to our cohort, and found that this model 

performed worse than our models (AUC=0.62 versus AUC=0.70-0.72). It also performed 

worse on our cohort compared to the cohorts it was trained and tested on (AUC=0.62 versus 

AUC=0.73-0.74).  

 

To address the value of larger patient sample sizes, we investigated model performance on a 

range of sample sizes, up to N=2,000. We found that the performances of all models 

improved until around N=400, after which point they began to plateau.  

 

To address the influence of clinical predictors, we varied both the number of predictors 

included in the models as well as the nature of these predictors. We demonstrated that using 

data-driven feature selection (i.e. including only variables that were predictive of seizure 
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outcome in univariable logistic regression analyses) resulted in the best model performance, 

while including all collected predictors led to a deterioration in model performance. 

Interestingly, neither EEG nor semiology characteristics were predictive of seizure outcome 

in our univariable logistic regression analyses and therefore not included in our models. 

The illusory superiority of more complex models  

There is a growing tendency to favor machine learning technology over traditional statistical 

modelling approaches when training models to predict post-operative seizure outcome. This 

is presumably due to an assumed superiority of highly sophisticated or complex models. As a 

result, a plethora of machine learning techniques have been deployed (Table 1). It is, 

however, also increasingly recognized that the potential gains in predictive accuracy that 

have been attributed to more complex algorithms may have been inflated20,28, and that minor 

improvements observed “in the laboratory” may not translate into the real-world.20 

 

Previous studies that have used both machine learning techniques and traditional statistical 

modelling approaches to predict post-operative seizure outcome have found that logistic 

regression models perform as well as, or even better than, machine learning ones.11,15,22 To 

our knowledge, only one study by Yossofzai et al.23 has found that a machine learning model 

outperforms a logistic regression; however, this was a 0.1-0.2 difference in AUC (0.72 versus 

0.73 in the train dataset; 0.72 versus 0.74 in the test dataset). This small improvement is 

unlikely to deliver an advantage in clinical practice. At the same time, using machine learning 

models introduces complexity, which in turn complicates their interpretation, implementation 

and validation, and increases the risk of overfitting. 

Larger samples mean higher accuracy… but only up until a 

certain point 

There exists a general consensus in the machine learning community that more data, or larger 

sample sizes, equates to better model performance.29,30 However, researchers have started to 

show that this is not always the case.31 We found that expanding our cohort beyond its 

current size (N=797) nearly three-fold did not provide meaningful gains.  
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Estimating the point of diminishing returns is invaluable because – whilst there is an 

abundance of unlabeled clinical data in our era of Big Data – (human) annotated clinical data 

remains scarce. Its creation is time-consuming and requires the expertise of several clinical 

groups. Nevertheless, annotated datasets are essential in the creation of (supervised) learning 

algorithms. Generating learning curves can therefore inform researchers of the relative costs 

and benefits of adding additional annotated data to their model.32 Still, it is important to note 

that this learning curve is only an estimate and that actual model performance could exceed 

these predictions. 

In pursuit of (geographical) model generalizability 

Machine learning in clinical research is placing an increasing emphasis on model 

generalizability, where the highest level of evidence is achieved from applying models 

externally – to new centers. When we tested the model by Yossofzai et al.23 on our data, we 

found that it did not generalize well. This may at first glance seem surprising, as there is a 

striking similarity between our cohort and the cohort of Yossofzai et al.23 – not only in terms 

of sample size, but also in terms of patient characteristics and variables found to be predictive 

of outcome. However, it also highlights a common issue related to the use of machine 

learning, namely the tendency for models to overfit to local data. We therefore expect that a 

similar decrease in model performance would be demonstrated if another center were to use 

the machine learning models that we trained. 

 

Different epilepsy surgery centers show variation in which diagnostic and therapeutic 

procedures are available, for which patients they are requested, and with which specifications 

they are carried out.33 Local practices also influence how data are annotated. Clinical data are 

interpreted by experts who assign a wide range of labels, from MRI diagnosis to epilepsy 

syndromes. Whilst official classification systems for annotation procedures exist34
–

39, 

individual studies often choose to – or are forced to – categorize their data ad hoc, often due 

to the restraints introduced by the retrospective nature of their data. Furthermore, not all 

experts will agree on the same label, which is evidenced by a lack of agreement regarding 

interpretation of EEG40
–

42, MRI43, PET43 and histopathological data34. It is thus possible that 

while our cohort and the cohort of Yossofzai et al.23 look similar on the surface, they may 

represent patients who have been characterized in a subtly different manner.  
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Limitations of the current study 

The primary limitation of our study is that it is a retrospective study, which uses data 

originally obtained to understand patient disease and support clinical care, rather than to 

enable data analysis. These data are therefore at risk of being biased and incomplete. 

Biased data 

Presurgical evaluation is largely standardized in that all patients undergo a full clinical 

history, structural MRI, and scalp- or video-EEG, but the extent of further investigations will 

be patient dependent.44 To mitigate the occurrence of bias, we used a minimal dataset, which 

included only clinical variables typically obtained for all epilepsy surgery patients. As such, 

we did not train our model using positron emission tomography (PET), single-photon 

emission computed tomography (SPECT), magnetoencephalography (MEG), or functional 

MRI (fMRI) measures. One exception to this was the inclusion of genetic diagnosis, which 

we included despite not all patients having undergone genetic testing. The predictive value of 

genetic information in surgery candidate selection has not been systematically investigated.45 

We therefore sought to contribute to this emerging area of research and provide initial 

evidence for its importance.  

Incomplete data 

Related to the limitation of biased data is the limitation of incomplete data. Similar to past 

retrospective studies that have developed models for the prediction of seizure outcome after 

epilepsy surgery, we had a considerable amount of missing data. There are multiple ways of 

handling incomplete datasets, including deleting instances or replacing them with estimated 

values – a method known as imputation. Imputation techniques must, however, be used with 

caution, as they have limitations and can impact model performance.46 We therefore chose to 

drop instances where continuous data points were missing before including them into the 

model training datasets, and classified missing categorical data points as such, rather than 

using imputation. 

Moving forward 

Taken together, our findings suggest that 1) traditional statistical approaches such as logistic 

regression are likely to perform as well as more complex machine learning models (when 

using clinical predictors similar to those described here) and have advantages in 
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interpretability, implementation and generalizability; 2) collecting a large sample is important 

because it improves model performance and reduces overfitting, but including more than a 

thousand patients is unlikely to generate significant returns on datasets similar to ours; 3) 

model improvement is likely to come from data-driven feature selection and exploring the 

inclusion of features that have thus far been overlooked or not undergone external validation 

due to barriers in study replication (discussed below).  

 

Based on these findings, we make recommendations to advance our ability to predict seizure 

outcome after epilepsy surgery (Table 2). Surgery centers around the world must collaborate 

to produce high-quality data for research purposes. Although models trained on single center 

data are likely to produce higher model performances than multicenter datasets, they may not 

be suitable for use by other surgery centers. Critically, data must be collected and curated in a 

standardized manner, as highlighted by experts47 and similar to recent multicenter 

endeavours.22,48,49 Here, it will be important to distinguish between investigating variables 

that may be predictive of outcome and identifying variables that can (feasibly) be included as 

predictors in a clinical decision-making tool. For the purpose of developing a clinical 

decision-making tool, we suggest including only variables that are routinely collected for all 

epilepsy surgery patients at most centers, to avoid introducing bias into the model. In other 

words, researchers should carefully consider the added value of modalities such as MEG, 

PET, SPECT and fMRI. Importantly, only variables obtained prior to surgery should be 

included in the model, as the aim is to create a predictive model. This means excluding 

variables such as post-operative measurement of resection and histopathology diagnosis. 

Reassuringly, we have shown that MRI diagnosis provides similar information to 

histopathology diagnosis. We also echo past recommendations45 in that we suggest avoiding 

variables that have repeatedly failed to predict outcome, as these have been shown to worsen 

model performance.  

 

It is unlikely that clinical information alone will procedure high model performance, as 

demonstrated both here and by previous studies (Table 1). Instead, better data must also 

entail new data. The inclusion of additional predictors to improve model performance may 

involve extracting quantitative features from pre-operative MRI or EEG (as several studies 

detailed in Table 1 have done), characterizing the epileptogenic network through 
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computational modelling50, measuring lesion overlap with eloquent cortex51, or adopting a 

network analysis approach.52  

 

It is important that all model software is made available – either as ready-to-use tools or 

openly shared code on platforms such as GitHub. Past studies have reported models capable 

of achieving accuracies as high as 90-100% using features extracted from MRI and EEG 

(Table 1); however, none of these findings can be reproduced, nor can any of these models 

be adopted by other centers, as there is insufficient information about how they were 

generated. Yossofzai et al.23 are to be commended for sharing their model in a way that 

allowed for it to be externally tested by ourselves and others.  

Conclusions 

Accurate prediction of seizure outcome after epilepsy surgery remains difficult. We highlight 

the importance of comparing traditional statistical modelling to complex machine learning 

techniques, as we show that these two approaches may perform equally well. We also 

demonstrate the importance of performing external validation of machine learning models, as 

we show that algorithms may underperform on other centers’ data. Based on our findings, we 

present recommendations for future research, including the need for epilepsy services to 

collaborate in the creation of standardized datasets, the value of carefully choosing predictor 

variables for modelling, and the benefit of sharing models and code openly. 
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Figure legends 

Figure 1 Study overview. We investigated the impact of model type, sample size, and 

feature selection on our ability to accurately predict post-operative seizure outcome.  

 

Figure 2 Relationships between demographic, clinical and surgical variables. 

Relationships are shown both before and after correction for multiple comparison using the 

Holm method. We have highlighted relationships with seizure outcome using a yellow box. 

 

Figure 3 Impact of model type, sample size, and selection of clinical variables on model 

performance. (A) Receiver operating characteristic (ROC) curves showing model 

performances. There was no significant difference in performance between our LR (purple), 

MLP (turquoise), and XGBoost (blue) models. All of our models performed significantly 

better than the XGBoost model recently developed by Yossofzai et al.23 (pink). (B) Effect of 

sample size on model performance (accuracy). There was an improvement in model 

performance with increasing sample size for our LR, MPL and XGBoost models, up until 

around N=400. After this point, the model showed only marginal gains in performance. 

Extrapolating performance for sample sizes up to N=2,000 did not predict substantial 

improvement in model performance for any of our models. (C) Receiver operating 

characteristic (ROC) curves showing model performance for our LR models containing 1) 

only MRI diagnosis (red), 2) all predictors (orange), and 3) predictors identified through data-

driven feature selection (green). Data-driven selection involved including only predictors that 

were significantly predictive of one-year seizure outcome as identified in univariable logistic 

regression analyses. Corresponding ROC curves showing model performances for our MLP 

and XGBoost models are displayed in Supplementary Fig. 2 and 3. (D) Effect of data-driven 

feature selection on model performance (AUC). Variables found to be significantly predictive 

of seizure outcome from univariable logistic regression analyses were added one-by-one to 

the LR, from most information to least informative according to their coefficients. Model 

performance increased in line with the predictors being added. Adding the remaining 

predictors collected for the study, i.e. those that were not significantly predictive of seizure 

outcome, worsened model performance (far right). Points circled in black represent mean 
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AUC obtained across all 10 folds. Non-circled points represent the AUCs obtained from each 

of the individual 10 folds.  
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