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Abstract 

 

Rare diseases (RDs) are uncommon as individual diagnoses, but as a group contribute to an 

enormous  disease burden globally. However, partly due the low prevalence and high diversity 

of individual RDs, this category of diseases is understudied and under-resourced. The advent 

of large, standardised genetics databases has enabled high-throughput, comprehensive 

approaches that uncover new insights into the multi-scale aetiology of thousands of diseases. 

Here, using the Human Phenotype Ontology (9,677 annotated phenotypes) and multiple single-

cell transcriptomic atlases (77 human cell types and 38 mouse cell types), we conducted 

>688,000 enrichment tests (x100,000 bootstrap iterations each) to identify >13,888 genetically 

supported cell type-phenotype associations. Our results recapitulate well-known cell type-

phenotype relationships, and extend our understanding of these diseases by pinpointing the 

genes linking phenotypes to specific cell (sub)types. We also reveal novel cell type-phenotype 

relationships across disparate branches of clinical disease (e.g. the nervous, cardiovascular, 

and immune systems). Next, we introduce a computational pipeline to prioritise gene targets 

with high cell type-specificity to minimise off-target effects and maximise therapeutic potential. 

To broaden the impact of our study, we have released two R packages to fully replicate our 

analyses, as well as a series of interactive web apps so that stakeholders from a variety of 

backgrounds may further explore and utilise our findings. Together, we present a promising 

avenue for systematically and robustly uncovering the multi-scale aetiology of RDs at scale. 

Introduction 

In aggregate, there are over 10,000 recognised rare diseases (RDs) that affect at least 400 

million people globally 1, contributing to an enormous disease burden  (1 in 10-20 people) 2. As 

over 70% of RDs have a known genetic component 3, the increasing availability of phenotypic 

and genetic datasets presents an opportunity to apply a systematic approach to investigate 

many RDs at once. One of the most comprehensive resources for RD research is the Human 

Phenotype Ontology (HPO), which currently contains over 15,200 human phenotypic 

abnormalities and subtraits, each assigned to unique identifiers and mapped to hierarchically 

related terms both within the HPO and across other ontologies 4–6. Since 2008, the HPO has 

been continuously updated using knowledge from the medical literature, as well as by 
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integrating databases of expert validated gene-phenotype relationships, such as OMIM 7–9, 

Orphanet, and DECIPHER 10. Currently, the HPO contains gene annotations for over 9,600 

phenotypes. In tandem, the single-cell omics technologies have led to an explosion of cell type 

signature atlases 11.  

 

Here, we strategically combine and extend these resources to identify cell type-specific 

therapeutic gene targets for thousands of RD with the goal of greatly improving efficacy and 

limiting side-effects. We provide a fully reproducible framework to systematically and robustly 

identify the primary cell types associated with RDs and RD-associated phenotypes. 

Specifically, we used Expression Weighted Cell type Enrichment (EWCE) 12 to perform a series 

of bootstrapped cell types enrichment tests between the gene lists of 6,173 HPO phenotypes 

(after quality control filtering) and each of the 77 cell types derived from a single-cell RNA seq 

(scRNA-seq)  reference atlas of 15 organs across the developing human body 13. From this, we 

identified 8,379 significant cell type-phenotype associations across 2,832 unique phenotypes. 

Each of the 77 cell types were enriched for at least one phenotype. 

 

We then leveraged our cell type-phenotype results to systematically propose cell type- and 

gene-specific candidates to target in gene therapies. Specifically, we focused on candidates 

suitable for recombinant adeno-associated virus (rAAV) vectors to transduce single-stranded 

DNA into target cells 14–18, which have recently shown success in treating several rare diseases 

such as Leber's congenital amaurosis (LCA) 19,20, spinal muscular atrophy (SMA) 21, and 

amyotrophic lateral sclerosis (ALS) 22. Together, in this study we uncover the molecular 

aetiology of thousands of phenotypes and diseases at once, and provide a systematic, 

evidence-based framework for identifying novel therapeutic targets in each of these diseases. 

 

Additionally, we created two accompanying open-source R packages (HPOExplorer and 

MultiEWCE) to navigate the HPO data, search and postprocess the enrichment results from 

this study, and facilitate novel analyses of multiple gene lists in parallel. Finally, to make our 

data easily accessible we developed a series of interactive web app that allows exploration of 

all our results: (https://neurogenomics.github.io/rare_disease_celltyping_apps/home/) We hope 

that these tools will ensure reproducibility and facilitate future analyses as more phenotypic, 
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genotypic, and transcriptomic data becomes available.   

Results  

Summary 

Within the results using the Descartes cell type signature reference, 8,379 / 475,321 (1.76%) of 

bootstrapped enrichment tests across 77 cell types and 6,173 phenotypes revealed significant 

cell type-phenotype associations after multiple-testing correction. Within these results, 2,832 

phenotypes were significantly enriched for at least one cell type after multiple testing correction 

(q � 0.05) and 5,989 were nominally significant (p � 0.05). Hereafter we will only refer to the 

results that were significant after multiple testing correction. The number of enriched cell types 

per phenotype suggest reasonable specificity of the enrichment strategy (percentages are 

shown relative to all 77 cell types): min=1 (1.30%), median=2 (2.60%), mean=2.959 (3.84%), 

max=27 (35.07%). This was also true for the number of enriched phenotypes per cell type 

(percentages are shown relative to all 6,173 phenotype gene lists): min=1 (0.016%), median=90 

(1.46%), mean=108.8 (1.76%), max=338 (5.48%).  

 

With the Tabula Muris enrichment results, 5,509 / 213,028 (2.58%) tests were significant after 

multiple-testing correction (q � 0.05), and 20,221 tests were nominally significant  (p � 0.05). 

All 38 cell types were enriched in at least one phenotype, and 2,579 / 5,509 (46.81%) 

phenotypes were enriched in at least one cell type. The proportion of enriched cell types per 

phenotype were comparable to those observed using the Descartes dataset (percentages are 

shown relative to all 38 cell types): min=1 (2.632%), median=1 (2.632%), mean=2.136 

(5.621%), max=17 (44.737%). The number of enriched phenotypes per cell type were slightly 

greater than that the results using Descartes (percentages are shown relative to all 6,173 

phenotype gene lists): min=2 (0.032%), median=119 (1.93%), mean=145 (2.35%), max=506 

(8.20 %).  
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Enrichment tests highlight expected as well as novel cell type-phenotype 

associations 

We first sought to confirm that our enrichment analyses were able to recover well-established 

cell type-phenotype relationships. We expected the terms “Abnormality of the nervous 

system”, “Abnormality of the cardiovascular system”, and “Abnormality of the immune system” 

to be strongly associated with neural cells, heart cells, and immune cells, respectively. Indeed, 

a hypergeometric test showed that terms related to (i) the “Abnormality of the nervous system” 

showed an overrepresentation in all nervous system related cell types (21 cell types), with the 

strongest enrichment in limbic system neurons (n enrichments = 194, p = 5.74-44; Fig. 1C); (ii) 

the “Abnormality of the cardiovascular system” were overrepresented in 3/4 cardiovascular 

related cell types with cardiomyocytes being the most enriched (n enrichments = 94, p = 1.23-

53; Fig. 1C); (iii) the “Abnormality of the immune system” were overrepresented in 9/10 immune 

cell types with lymphoid cells being the most enriched (n enrichments = 111, p = 5.23-56; Fig. 

1C). Additionally, cell types that hierarchically clustered together (based on transcriptomic 

similarity) were also significantly associated with a particular term. For instance, the cluster of 

nervous system related cell types were enriched for terms related to the abnormality of the 

nervous system (n enrichments = 1768, p < 2.23-308; Fig. 1C).  

 

Somewhat unexpectedly, a significant number of phenotypes related to the “Abnormality of the 

cardiovascular system” were associated with hepatoblasts (n enrichments = 17, p = 0.027; Fig. 

1C). On closer inspection, these phenotypes were associated with damage to arteries caused 

by lipid deposition, such as cerebral artery atherosclerosis and myocardial steatosis. Given the 

prominent role that the liver plays in lipid metabolism 23, it is therefore logical that dysfunction 

of hepatoblasts would be implicated in abnormal cardiovascular phenotypes.  

 

To further demonstrate that our approach finds expected cell type-phenotype associations, we 

extracted all the HPO terms enriched within excitatory neurons, cardiomyocytes, and antigen 

presenting cells, and show that the more significantly associated terms within these cell types 

were disproportionately related to the expected parent term (Fig. 1D-F). Taking excitatory 

neurons as an example, the more significant the association between the phenotype and 
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excitatory neuron, the more likely this association was related to the abnormality of the nervous 

system (r = 0.82, p = 0.03; Fig. 1d).  

Specific phenotypes are associated with fewer cell types and genes, but 

higher cell type-specificity of gene expression 

We reasoned that lower ontology levels representing more specific phenotypes were likely to 

be associated with fewer cell types. In contrast, phenotypes with higher ontology levels would 

tend to be more broad and enriched for a wider variety of cell types. We confirmed that this is 

the case by counting the number of associated cell types with phenotypes in each ontology 

level, observing a strong positive correlation between ontology level and the number of 

associated cell types (Spearman’s rank correlation coefficient, r = 0.33, p < 2.2 x 1016; Fig. 2A). 

In addition, lower ontology levels were associated with fewer genes (Spearman’s rank 

correlation coefficient, r = 0.55, p < 2.2 x 1016; Fig. 2C) but the cell type-specificity of 

expression of the associated genes increased (Spearman’s rank correlation coefficient, r = -

0.65, p < 2.2 x 1016; Fig. 2B).  

Just as observed for the broader phenotypes (e.g. “abnormality of the immune system”), we 

expected more specific phenotypes, such as recurrent infections, to also be associated with 

their expected cell types. Extracting all children terms of recurrent infections, which includes 

72 HPO terms at ontology levels ranging from 0 to 3 (relative to each other), we predicted 

that these would be primarily enriched within immune system-related cell types. As 

predicted, significant enrichments were found in immune related cell types, but also in less 

anticipated cell types (Fig. 3). “Recurrent staphylococcal infections” were enriched within 

myeloid cells (p = 0.0098; Fig. 3B), an association that has been previously documented in 

the literature 24–27, whereas “Neisserial infections” highlighted a novel association with 

hepatoblasts (p = 0.013; Fig. 3B). To confirm this association, we repeated the analysis using 

an independent scRNA-seq dataset from mouse (Tabula Muris) 28 and found a similar 

enrichment for “Recurrent Neisserial infections” in two hepatic cell types, namely Kupffer 

cells (p = 0.0094) and hepatoblasts (p = 2.23 x 10-308). 
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Exemplar results identify known associations while revealing novel multi-

scale disease mechanisms 

Here we highlight several exemplary results that recapitulate known aspects of disease 

aetiology while revealing a more comprehensive view of the disease by connecting 

mechanisms at multiple scales: phenotype ancestors (groups), phenotypes, cell types, genes. 

One such example is the association between respiratory failure and bronchiolar cells, alveolar 

epithelial cells, ciliated epithelial cells, and skeletal muscle cells. Specifically, the two airway 

epithelial cells initiate local and systemic inflammation, which lead to alveolar hypoventilation 

and eventual respiratory failure 29. The weakening of the diaphragm, the primary respiratory 

muscle, can independently lead to life-threatening respiratory failure 30. Additional cell type 

specificity filtering and sorting identified the gene CCNO acting via ciliated epithelial cells as 

the most promising target for respiratory failure.  

 

As a second example, “Recurrent Neisserial infections” were significantly enriched for both 

alpha-Fetoprotein (AFP) / Albumin (ALB) -positive cells (fold-change=11.517, p=0.00010, 

q=0.00847) and hepatoblasts (fold-change=9.902, p=0.00016, q=0.0125). In both cell types, 

the associations with the phenotype are mediated by the same set of complement system 

genes: C7, C5, C6, C8B, CFB, CFI, and MBL2. Hepatoblasts are the precursor cells to 

hepatocytes (the primary cell type of the liver). AFP/ALB-positive cells are a canonical 

biomarker for liver damage or hepatocarcinoma in adults, but are also produced in normally 

developing foetuses 31. 

 

Third, “Mental deterioration” is a phenotype characterised by “Loss of previously present 

mental abilities, generally in adults” that is associated with several forms of amyloidosis, 

leukodystrophy, and a variety of other degenerative neurological conditions 

(https://hpo.jax.org/app/browse/term/HP:0001268). As expected, “Mental deterioration” was 

strongly associated with neurons of the central nervous system (excitatory, inhibitory, limbic 

system, and Purkinje neurons). However, amacrine and ganglion cells of the retina were also 

significantly enriched, primarily mediated through the genes SNORD118, APOE, CHCHD10     

and CSTB.  
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Prioritising cell type-specific gene targets for severe disease phenotypes 

Next, we identified putative cell type-specific gene targets for several severe disease 

phenotypes. After all filtering and sorting steps, there remained 62 gene targets associated 

with 78 phenotypes across 26 cell types (Fig. 4). These prioritised targets were then visualised 

as a directed graph (Fig. 5). Grouped by higher-order ontology category, “Abnormality of the 

nervous system” had the greatest number of enriched phenotypes (26 phenotypes, 36 genes), 

followed by “Abnormality of the cardiovascular system” (17 phenotypes, 15 genes), 

“Abnormality of the musculoskeletal system” (8 phenotypes, 16 genes), “Abnormality of the 

respiratory system” (6 phenotypes, 5 genes), and ”Abnormality of the eye” (5 phenotypes, 15 

genes). 

 

Within the  “Abnormality of the nervous system” category, 11 different “Abnormality of higher 

mental function” / “Neurodevelopmental abnormality” phenotypes survived the prioritisation 

filters, including: "Coma", "Developmental regression", "Global developmental delay", 

"Intellectual disability", "Intellectual disability, mild", "Intellectual disability, moderate", 

"Intellectual disability, severe", "Mild global developmental delay", "Neurodevelopmental 

abnormality", "Neurodevelopmental delay", "Severe global developmental delay". The most 

common cell types enriched within these phenotypes were excitatory and granule neurons 

(both enriched in 6/11 phenotypes), followed by Inhibitory neurons (5/11 phenotypes). Across 

these phenotypes, the most commonly appearing genes were SOX3 (appearing in 17 cell type-

phenotype associations), SOX2 (12 associations), POU3F4 (9 associations), and FOXH1 (8 

associations), and . However, none of the “Mental deterioration” targets survived the filters due 

to the low cell type specificity (median quantile=6/40) and expression levels (median 

quantile=6/40) of the target genes. Unlike the other phenotypes in these categories, “Coma” 

was strongly enriched for islet endocrine cells (Fig. 5E). This association was mediated through 

genes critical for glucose regulation, such as INS and KCNJ11. 

 

The  “Abnormality of the nervous system” phenotypes also included non-cognitive phenotypes. 

Specifically, within the “Abnormality of movement” subcategory, the phenotype “Inability to 

walk”, which was enriched for both excitatory neurons (p<2.23 x 10-308, q<2.23 x 10-308, fold-

change=1.832, prioritised gene target=FOXG1) and Schwann cells (p=0.00071, q=0.0421, fold-
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change=1.546, prioritised gene target=NHLRC1). Second, the “Seizure” subcategory included 

the phenotype “Status epilepticus”, which was enriched for excitatory neurons (p<2.23 x 10-308, 

q<2.23 x 10-308, fold-change=2.147, prioritised gene target=FOXG1). Finally, there were 13 

phenotypes belonging to “Morphological central nervous system abnormality”, which included 

a variety of neuroanatomical features (e.g. “Cerebellar atrophy”, “Lissencephaly” and 

“Hypoplasia of the corpus callosum”) and “Stroke” (enriched for cardiomyocytes and  stellate 

cells). 

 

17 phenotypes within the “Abnormality of the cardiovascular system” category remained after 

the target prioritisation filtering. Of those, “Arrhythmia” showed strong enrichment for 

Cardiomyocytes (p<2.23 x 10-308, q<2.23 x 10-308, fold-change=2.915; Fig. 5B), with six 

prioritised target genes (NPPA, TNNC1 NKX2-5, TCAP, KCNA5). Of those genes, NKX2-5 is 

annotated within the HPO as being very frequently associated with arrhythmia (~72% of cases 

on average). NKX2-5 is a transcription factor previously demonstrated to have highly specific 

expression in heart tissue, which is in congruence with the fact that this gene belongs to the 

top quantile (40) within both our  specificity  quantile and mean expression quantile metrics.  

This gene was in fact the first known genetic risk factor for congenital heart disease, and its 

expression is necessary not only for the development of cardiomyocytes but also the 

continued functioning of heart cells into adulthood 32,33.  

 

Within the “Abnormality of the musculoskeletal system” there were 9 unique phenotypes that 

survived the prioritisation pipeline: "Generalized hypotonia", "Spasticity", "Hypotonia", "Distal 

amyotrophy", "Spastic tetraplegia", "Abnormality of upper limb joint", "Aplasia/hypoplasia of 

the extremities", "Aplasia/hypoplasia involving bones of the extremities". As an example, 

“Hypotonia” was highly enriched for a variety of neuronal and glial cell types (Fig. 5D). 

 

Finally, for a more comprehensive list of putative targets across a wider variety of phenotypes, 

we removed or relaxed many of the default arguments in our prioritisation pipeline (see 

Methods for details). This yielded putative therapeutic targets for 1,307 phenotypes across 37 

cell types and 246 genes. Across all phenotypes, excitatory neurons were commonly 

implicated (236 phenotypes), followed by antigen presenting cells (214 phenotypes), 
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cardiomyocytes (183 phenotypes), limbic system neurons (173 phenotypes), enteric nervous 

system (ENS) glia (167 phenotypes), and and ganglion cells (163 phenotypes).  

 

Both the reduced and the extended versions of the prioritised targets network, as well as all 

code to reproduce them, are available as an interactive report online: 

https://neurogenomics.github.io/RareDiseasePrioritisation/reports/prioritise_targets  

Genetic correlations reveal cross-phenotypic pleiotropy 

Pairwise correlations between all phenotypes within the (reduced) prioritised targets based on 

gene annotation overlap. Phenotypes were then grouped into three k-mean clusters. Based on 

the phenotypes present in each cluster, cluster 1 appeared to be a mixture  of different 

phenotype categories and included a subcluster of vascular abnormalities across multiple 

anatomical systems (e.g. “Peripheral arteriovenous fistula”, “Abnormal cerebral vascular 

morphology”, “Stroke”). Clusters 2 and 3 corresponded closely to “Abnormality of the nervous 

system” and “Abnormality of the cardiovascular system”, respectively. Within cluster 3 there 

was a subcluster corresponding to congenital heart conditions (e.g. “Abnormal aortic valve 

cusp morphology” and “Congenital malformation of the great arteries”). 

Discussion 

By applying our systematic approach to the HPO and the Descartes cell type atlas, we 

identified 8,379 significant cell type-phenotype associations across 2,832 unique phenotypes. 

All 77 cell types were enriched in at least one phenotype. Enriched phenotypes were 

distributed across all ontology levels within the HPO (Fig. 1B). From more general terms such 

as “Abnormality of the immune system”, down to more specialised (children) terms such as 

“Mycobacterial infections”. Enrichment tests revealed expected as well as novel cell type-

phenotype associations. Whilst terms related to the “Abnormality of the cardiovascular system” 

highlighted cardiomyocytes, a significant number of these terms were also associated with 

hepatoblasts. More specific phenotypes with lower ontology levels were associated with fewer 

cell types and genes, but higher cell type-specificity of gene expression. Taken together, this 

suggests that the lower ontology level phenotypes may provide more viable avenues for 
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therapeutics discovery. Being able to model the phenotype using a small set of prioritised 

genes and a specific cell type will not only benefit the RDs associated to the phenotype in 

question, but can also guide repurposing of the cell type-specific gene therapy for treatment of 

similar phenotypes, or even unrelated phenotypes that are underlied by genes and/or cell types 

with similar functions.  

 

We then applied our computational prioritisation pipeline eto identify putative cell type-specific 

gene targets with the greatest chance of success as therapeutics (Fig. 5). This pipeline was 

based on a variety of relevant criteria, including disease severity, cell type-specificity, and 

gene-disease association frequency (Fig. 4). These targets spanned 78 severe disease 

phenotypes from Tiers 1 and 2, as classified by Lazarin et al. 34. For the phenotype 

“Respiratory failure”, we prioritised the gene CCNO acting via ciliated epithelial cells. A review 

of the literature revealed that Primary Ciliary Dyskinesia (PCD) is known to act via cilia of the 

respiratory epithelium 35, and is especially severe in patients with mutations to the CCNO gene 

36–38. This example result demonstrates our approach is capable of identifying true positive cell 

type-phenotype relationships. However, based on a search of the literature and 

ClinicalTrials.gov (see Supplementary Information for search result links), it appears that 

therapeutics targeting CCNO have yet to be developed. 

 

As a second example, “Coma” was found to be closely associated with islet endocrine cells, 

which regulate the secretion of insulin and glucagon, hormones that play a role in blood 

glucose homeostasis 39. Our target prioritisation procedure narrowed down the results to two 

gene targets for “Coma”; the insulin gene (INS) and potassium inwardly rectifying channel 

subfamily J member 11 (KCNJ11), which encodes for K-ATP channels that trigger insulin 

release in response to circulating glucose levels. Mutations in either of these genes can cause 

permanent neonatal diabetes and induce diabetic coma 40, a condition that can occur when 

blood glucose levels become too high or too low 41–43. This result provides further evidence that 

our framework recovers valid relationships between phenotypes, cell types, and genes. 

 

For the phenotype “Mental deterioration” we report expected associations with central nervous 

system neurons, as well as less expected associations with amacrine and ganglion cells of the 
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retina. Prior studies have shown that visual impairment or blindness is prevalent in people with 

intellectual disability (>8.5-fold increased risk) 44–46 and pathological cognitive decline in older 

individuals 47. These results suggest that not only are these phenotypes correlated with one 

another, but they are causally related to the same genetic risk factors. Although “mental 

deterioration” did not survive the final target gene prioritisation filters, six other intellectual 

disability phenotypes did (Table 1). Within these five phenotypes, the most commonly 

appearing genes were SOX3 (12 times across multiple cell types), SOX2 (10 times), FOXH1 (7 

times), and POU3F4 (7 times). All four of these genes are transcription factors that play an 

important role in the development of the nervous system. The disruption of SOX3 has been 

implicated in a variety of intellectual disabilities through observations in both patients and 

experimental models 48,49. SOX2 has also been implicated in nervous system development and 

its disruption can lead to profound deficits in cognition, vision, and motor function 50. 

Interestingly, POU3F4 has primarily been implicated in the development of semicircular canals 

and inherited deafness 51–54 but has also been linked to deficits in cognition and mental health 

(including attention deficit hyperactivity and developmental language disorder) which are 

significantly comorbid with this form of deafness 55. These non-auditory deficits are more 

profound than those observed in controls with other forms of deafness, suggesting that 

POU3F4 provides a common molecular aetiology underlying aspects of both central and 

peripheral nervous system development 56,57. Confirming the relevance of these results, all 

enriched cell types within intellectual disability phenotypes were neuronal or glial cells. 

However, given the ethical implications and technical constraints of treating a genetic disorder 

during gestation, these gene targets should be considered candidates for further preclinical 

research, rather than therapeutic targets in developing human embryos.  

 

Phenotypes at both higher- and lower levels of the HPO ontology were predominantly 

associated with their expected cell types (Figs. 1C-F). This testified to the credibility of this 

approach and allowed us to explore novel findings. One such example is  the association of 

“Recurrent Neisserial infections” with hepatoblasts. Whilst unexpected, a convincing 

explanation involves the complement system, a key driver of innate immune response to 

Neisserial infections. Hepatocytes, which derive from hepatoblasts, produce the majority of 

complement proteins 58, and Kupffer cells express complement receptors 59. In addition, 
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individuals with deficits in complement are at high risk for Neisserial infections 60,61, and a 

genome-wide association study in those with a Neisserial infection identified risk variants 

within complement proteins 62. Indeed, all seven of the genes mediating this cell type-

phenotype association (C7, C5, C6, C8B, CFB, CFI, and MBL2) are part of the complement 

system. While the potential of therapeutically targeting complement in RDs (including Neisserial 

infections) has been proposed previously 63,64, performing this in a gene- and cell type-specific 

manner may help to improve efficacy and reduce toxicity (e.g. due to off-target effects). 

Importantly, there are over 56 known genes within the complement system (see 

Supplementary Information) 65, highlighting the need for a systematic, evidence-based 

approach to identify effective gene targets. 

 

Finally, we interrogated shared genetic mechanisms between our prioritised RDs and other 

phenotypes (Fig. 6). This allowed us to infer which phenotypes tend to co-occur in patients 

due to pleiotropy, in which mutations in the same gene cause multiple phenotypes. Sometimes 

the links between the phenotypes are expected due to their being highly related to one another 

within the HPO, as is the case for multiple phenotypes of abnormal corpus callosum 

morphology (a subcluster within cluster 2; Fig 6). However other phenotypic relationships are 

less immediately obvious, such as that between “Abnormality of neuronal migration” and 

“Abnormality of mouth shape”, or between “Severe global developmental delay” and “Optic 

atrophy”. These insights may help to improve diagnostic criteria for various RDs while 

simultaneously revealing the cell type-specific genetic mechanisms underlying their clinical 

comorbidity. 

Conclusions 

Across the 77 cell types and 6,173 RD-associated phenotypes investigated, more than 8,000  

significant cell type-phenotype associations were observed. The examples we have highlighted 

above align with  what is expected, already known, or at least has a plausible biological 

explanation. Furthermore, he terms “abnormality of the cardiovascular system” and “recurrent 

Neisserial infections” were both associated with liver cell types, highlighting the potential in 

investigating and treating RDs collectively. Within the >8,000 enrichments we identified, there 
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will be many previously understudied or unknown links between RD-associated phenotypes 

and specific cell types. In addition to prioritising cell type-specific gene targets, our approach 

presents an opportunity to therapeutically treat multiple phenotypes via the same target. This 

may be especially effective in patients that express more than one disease phenotype, as is 

frequently the case 66. Taken together, this reflects the utility and potential of our approach in 

advancing understanding, modelling, and treatment of RDs.  

 

For the impact of our results to be fully realised, it was essential that they could be easily 

accessed and navigated by domain experts, clinicians, and patients alike. To facilitate this, we 

developed a publicly available interactive web app 

(https://neurogenomics.github.io/rare_disease_celltyping_apps/home). Importantly, this web 

app does not require any coding expertise to search for, visualise, and download relevant 

subsets of our enrichment results. Together with the reproducible workflows available as R 

packages, we aim to make our high-throughput findings useful to a wide variety of RD 

stakeholders and facilitate the extension of these analyses as new RD data becomes available 

over time. Ultimately,  we hope that this work will help to overcome some of the difficulties that 

have hindered RD research in the past and accelerate the development of effective 

therapeutics across a wide variety of disorders. 

Methods 

Cell type-phenotype associations 

In this study, the gene by cell type specificity matrix was constructed using the Descartes 

human cell atlas of fetal gene expression, which contains 377,456 cells representing 77 distinct 

cell types 13. To independently replicate our findings, we also used the Tabula Muris murine 

whole-body dataset, made up of 100,605 cells representing 38 distinct cell types from 20 

organs and tissues 28. Genes from the Tabula Muris dataset were converted to human 

orthologs using the One2One R package, and genes without 1:1 mouse:human orthologs were 

dropped. For each cell type, the specificity metric was obtained by dividing the expression of 

each gene by the sum of the expression of that gene in all cell types. The target gene sets used 
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here are obtained from the HPO, such that each phenotype has its own associated gene set. If

a given gene set is significantly enriched in a cell type, then it is likely that the cell type plays a

role in the pathology and therefore may be a valuable target for future research.  

 

We used EWCE (v1.1.0) to evaluate significant cell type-phenotype associations 12. EWCE

takes as input a gene by cell type specificity matrix, a target gene list of length n, referred to as

, and a set of background genes referred to as . Where  is the specific expression of gene  in

cell type .  is the number of , and   is an expression of  in cell  (indexed from ). As EWCE

requires  input genes per test, 6,173 HPO gene lists remained after filtering. 

 

Variable definitions 

 target gene list  

 length of target gene list  

 : background gene list 

 : gene identity 

 cell type identity 

 : cell index 

: number of cell types 

: specific expression of gene  in cell type  

: expression of gene  in cell  

 : gene by cell type specificity matrix 

: disease-associated phenotype identity 

 

 

 

Genes with very low expression were considered to be uninformative and were therefore

removed before computing the specificity matrix (mean < 0.2 across all cell types). 
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We then summed the specificity scores of the genes in  to get each gene’s total expression

specificity score in a given cell (). This is done for all cells, enabling us to quantify the level of

specific expression of gene list  (indexed by ) in each cell type (). 

 

 

 

Bootstrapping was then used to determine the probability of cell type-specific enrichment for

each cell type  in target gene list . We used 100,000 bootstrap iterations to ensure robustness

and reduce the rate of false positive associations. To do this, the same cell type-specific

expression calculation described above is then calculated for 100,000 random gene sets in

each cell type . This gives a probability distribution of cell type-specific expression for gene

sets of length  in any given . The mean and standard deviation of this distribution are

normalised (centred to 0 and 1 respectively) and then used to calculate a Z-score. We can then

determine the probability of enrichment of  in  based on the number of bootstrap gene lists that

have a higher cell type specific expression than . Gene sets with higher specific expression

than most random gene sets of the same length have a high probability of enrichment in a

given cell type. This procedure was repeated for each RD-associated phenotype . 

 

 

 

 

In total, 475,321 EWCE enrichment tests were performed using the Descartes cell type

signature reference (6,173 phenotypes x 77 cell types). An additional 213,028 tests were

performed using the Tabula Muris cell type reference for the phenotypes that had at least four

remaining genes after removing genes without 1:1 mouse:human orthologs (5,606 phenotypes

x 38 cell types). Within the results from each cell type reference, EWCE p-values were

corrected with the Benjamini-Hochberg method to produce q-values 67. To facilitate these

analyses and to make them more easily reproducible by others, we created several open-
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source R packages. MultiEWCE (https://github.com/neurogenomics/MultiEWCE) facilitates the 

analysis of multiple gene lists across many computing cores in parallel, reducing the time 

necessary to complete large-scale enrichment testing. HPOExplorer 

(https://github.com/neurogenomics/HPOExplorer) aids in managing and querying the directed 

acyclic ontology graph within the HPO. 

Interactive website 

The landing page for the website was made using HTML and CSS, and the web apps were 

created using the Shiny Web application framework for R and deployed on the ShinyApps 

server. The website can be accessed here: 

https://neurogenomics.github.io/rare_disease_celltyping_apps/home  

Gene therapy target identification 

We developed a systematic and automated strategy for identifying putative cell type-specific 

gene targets for each phenotype based on a series of filters at phenotype, cell type, and gene 

levels. The entire target prioritisation procedure can be replicated with a single function: 

MultiEWCE::prioritise_targets. This function automates all of the reference data gathering (e.g. 

phenotype metadata, cell type metadata, cell type signature reference, gene lengths, severity 

tiers) and takes a variety of arguments at each step for greater customisability. Default 

parameters for all arguments can be found in the function documentation. 

 

Descriptions of each step in the prioritisation pipeline are as follows: 

1. start: All cell type-phenotype association results. 

2. q_threshold: Keep only results that were significant after multiple-testing correction 

(q<0.05).    

3. fold_threshold: Keep only results with fold change>=1. 

4. keep_ont_levels: Keep only phenotypes at certain absolute ontology levels within the 

HPO. 

5. keep_onsets: Keep only phenotypes with postnatal age of onsets to circumvent 

technical and ethical challenges associated with antenatal gene therapeutics delivery. 

6. keep_tiers: Keep only phenotypes with high severity Tiers. 
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a. We used a combination of manual curation and automated text-based substring 

queries to assign each phenotype a severity Tier as characterised in a survey of 

healthcare professionals 34. 

b. Tier 1: Diseases that shortened life span in adolescence or earlier or resulted in 

intellectual disability. 

c. Tier 2: Diseases that shortened lifespan prematurely in adulthood, or resulted in 

impaired mobility or internal physical malformation.  

d. Tier 3: Diseases causing sensory impairments (hearing, vision, touch, pain, or 

other), immunodeficiency/cancer, mental illness, or dysmorphic features.  

e. Tier 4: Diseases that reduce fertility. Of the 49 phenotypes that were available in 

this severity ranking, we selected three that were classified as Tier 1 (the most 

severe disease category): mental deterioration, coma and respiratory failure.  

7. severity_threshold: Keep only phenotypes with mean severity score equal to or below 

the threshold. 

a. Severity scores were computed by assigning each severity modifier term found 

in the HPO annotations a numerical value. In order of increasing severity: 

b. HP:0012825 "Mild" (Severity_score=4) 

c. HP:0012827 "Borderline" (Severity_score=3) 

d. HP:0012828 "Severe" (Severity_score=2) 

e. HP:0012829 "Profound" (Severity_score=1) 

8. pheno_frequency_threshold: Keep only phenotypes with mean frequency equal to or 

above the threshold (i.e. how frequently a phenotype is associated with any diseases in 

which it occurs). 

a. Keep phenotypes with a mean frequency ≥10% or are NA by default. 

9. keep_celltypes: Keep only terminally differentiated cell types. 

a.  Of the 77 cell types tested in the Descartes cell type reference, the 40 terminally 

differentiated cell types were identified through a literature search. Of these, 

three (extravillous trophoblasts, syncytiotrophoblasts and trophoblast giant 

cells) were excluded as they only played a role in pregnancy 68–70, which would 

raise additional technical and ethical challenges as rAAV therapy has not yet 

been used to target foetuses in clinical trials.  
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10. keep_seqnames: Remove genes on non-standard chromosomes. 

a. Only keep chromosomes 1-22, X, and Y. 

11. gene_size: Keep only genes <4.3kb in length. 

a. Due to limitations in the length of the gene that can be carried by the rAAV 

vector, genes with a length of >4.3kb were excluded.  

12. keep_biotypes: Keep only genes belonging to certain biotypes (e.g. "protein_coding", 

"processed_transcript", "snRNA", "lincRNA", "snoRNA", "IG_C_gene"). 

a. Keep all biotypes by default. 

13. gene_frequency_threshold: Keep only genes at or above a certain mean frequency 

threshold (i.e. how frequently a gene is associated with a given phenotype when 

observed within a disease). 

a. Keep genes with a mean frequency ≥10% or are NA by default. 

14. keep_specificity_quantiles: Keep only genes in top specificity quantiles from the cell 

type dataset. 

a. To further narrow down genes, we extracted relevant metrics from the 

Descartes reference for each gene in each cell type. These included mean 

expression, specificity, and specificity quantiles (using 40 bins). Only genes with 

the most specific quantiles (39-40) were included for further analysis, as cell 

type-specific genes may be less likely to have off-target effects in other cell 

types.  

15. keep_mean_exp_quantiles: Keep only genes in top mean expression quantiles from 

the cell type dataset. 

16. top_n: Sort candidate targets by a preferred order of metrics and only return the top N 

targets per cell type-phenotype combination. 

a. Finally, results were sorted by the following columns (in order of precedence, 

where 1=ascending order and -1=descending order):  

b. "tier"=1 

c. “tier_auto"=1 

d. "Severity_score_mean"=1 

e. "q"=1 

f. "fold_change"=-1 
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g. "specificity_quantile"=-1 

h.  "mean_exp_quantile"=-1 

i. "specificity"=-1 

j. "mean_exp"=-1 

k. "pheno_freq_mean"=-1 

l. "gene_freq_mean"=-1 

m. "width"=1 

17. end: Final table of prioritised cell type- /  phenotype-specific gene targets. 

 

Finally, for more comprehensive target search, the we removed the filters for onsets 

(keep_onsets=NULL), Tier (keep_tiers=NULL), severity (severity_threshold=NULL), as well as 

relaxed the filters for phenotype frequency threshold (pheno_frequency_threshold=c(10,NA)), 

gene frequency threshold (gene_frequency_threshold = c(10,NA)), gene specificity quantiles 

(keep_specificity_quantiles = seq(20,40)), and gene expression quantiles 

(keep_mean_exp_quantiles = seq(20,40)). 

Phenotype x phenotype genetic correlations  

Lastly, we computed genetic correlations between all phenotypes that appeared within the 

reduced list of prioritised targets. For this analysis, the complete gene lists for each phenotype 

were extracted from the HPO (not just the genes present in the prioritised targets list) and 

recast into a binary gene x phenotype matrix, where 0 indicated the absence of a gene-

phenotype association and 1 indicated the presence of a gene-phenotype association. 

Pairwise Pearson correlations were then computed between all phenotypes to generate a 

phenotype x phenotype matrix. Hierarchical clustering was performed on the resulting 

correlation matrix and visualised as a heatmap using MultiEWCE::correlation_heatmap, which 

utilises the R package ComplexHeatmap 71. Cluster group assignment was determined using 

1,000 iterations of k-means where k=3. 
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Data and Code Availability 

All data and code is made freely available through preexisting databases and/or GitHub 

repositories / software associated with this publication. 

 

Human Phenotype Ontology 

https://hpo.jax.org  

Descartes scRNA-seq atlas 

https://descartes.brotmanbaty.org/bbi/human-gene-expression-during-development 

Tabula Muris scRNA-seq atlas 

https://tabula-muris.ds.czbiohub.org  

Web app 

https://neurogenomics.github.io/rare_disease_celltyping_apps/home   

HPOExplorer 

https://github.com/neurogenomics/MultiEWCE 

MultiEWCE 

https://github.com/neurogenomics/HPOExplorer 

EWCE 

https://doi.org/doi:10.18129/B9.bioc.EWCE  

Code to replicate analyses 

https://github.com/neurogenomics/rare_disease_celltyping   

Results for all enrichment tests 

https://github.com/neurogenomics/rare_disease_celltyping/tree/master/results  

Cell type-specific gene target prioritisation 

https://neurogenomics.github.io/RareDiseasePrioritisation/reports/prioritise_targets  
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Figures 

Figure 1. Abnormal nervous system, cardiovascular, and immune phenotypes show

expected cell type enrichments.  

A. Dendrogram showing the clustering of cell types from the scRNA–seq dataset used. The x-

axis is ordered by the dendrogram. B. Bar plot showing the number of significant HPO

phenotype enrichments for each cell type (p < 0.05 and fold enrichment > 1). The colour in
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each bar represents the tissue of origin of the cell type. C. Bar plot showing the number of 

phenotype enrichments related to HPO terms abnormality of the nervous system, abnormality 

of the cardiovascular system, and abnormality of the immune system. A hypergeometric test 

was used to determine which cell types had significant enrichments. ****,***,**, and *, indicate 

p<0.00001, p<0.0001, p<0.001, and p<0.05, respectively. D. Scatter plot of the percentage of 

phenotype enrichments in excitatory neurons against the enrichment significance threshold. As 

you decrease the significance threshold, the percentage of phenotype enrichments related to 

the abnormality of the nervous system increases. E. Scatter plot of the percentage of 

phenotype enrichments in cardiomyocytes against the enrichment significance threshold. As 

you decrease the significance threshold, the percentage of phenotype enrichments related to 

the abnormality of the cardiovascular system increases. F. Scatter plot of the percentage of 

phenotype enrichments in antigen presenting cells against the enrichment significance 

threshold.  As you decrease the significance threshold, the percentage of phenotype 

enrichments related to the abnormality of the immune system increases. 
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Figure 2. Ontology levels containing more specific phenotypes are associated with a 

lower number of cell types and genes, but the cell type-specificity of gene expression 

is higher.  

Violin plots showing relationship between HPO ontology level and A. the number of associated

cell types. B. the cell type-specificity of gene expression. C. the number of associated genes

Ontology level 12 represents the most broad HPO term: “phenotypic abnormality”.  
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Figure 3. Immune-related phenotypes highlight both expected and unexpected cel

type associations. 

A. Bar plot showing the number of significant phenotype enrichments related to recurrent

infections, for each cell type. B. Bar plots showing the number of enrichments related to the

child terms of recurrent bacterial infections, for each cell type. C. Bar plots showing the

number of enrichments related to the child terms of recurrent gram negative bacteria

infections. ****,***,**, and *, indicate p<0.00001, p<0.0001, p<0.001, and p<0.05, respectively. 
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Figure 4. Prioritised target filtering steps 

This plot visualises prioritised targets using the default parameters in

MultiEWCE::prioritise_targets and is fully reproducible using the MultiEWCE::report_plot

function. Each step in the pipeline can be easily adjusted according to user preference and use

case. See Methods for descriptions and criterion of each filtering step. A. The percentage of

phenotypes belonging to each severity Tier after each filtering step (Tier 1 being the most

severe). B. The number of phenotypes, cell types, associated diseases and genes remaining

after each filtering step during the gene prioritisation pipeline. 
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Figure 5. Network of prioritised cell type-specific gene targets 

The above network illustrates phenotypes/cell types/genes identified by our target prioritisation

strategy. Tier 1/2 phenotypes are connected significantly associated cell types via mediating

genes. Each RD phenotype (purple cylinders) is connected to their respective causal cell-types

(red circles). RD phenotypes are classified by the higher-order phenotypes to which they

belong in the HPO (blue cylinders). Each cell type is in turn connected to the prioritised gene

targets (gold boxes) that are driving the cell type-phenotype association, show highly cell type-

specific RNA expression, and meet our criterion for rAAV therapeutic applications. The
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thickness of the edges connecting the nodes represent the (mean) fold-change from the 

bootstrapped enrichment tests. Edge colour indicates which phenotype it connects to (grey 

dotted lines are used for edges that do not connect directly to a phenotype). Nodes were 

spatially arranged using the Kamada-Kawai algorithm 72.  

A. A zoomed out view of the full network. Subsequent subplots are zoomed in sections of this 

full network. B. Nodes connected to the phenotype “Arrhythmia”. C. Nodes connected to the 

gene SOX3. D. Nodes connected to the phenotype “Hypotonia”. E. Nodes connected to the 

phenotype “coma”. F. Nodes connected to ciliated epithelial cells.  

An interactive version of this plot and all code to fully reproduce this plot can be further 

explored online: : 

https://neurogenomics.github.io/RareDiseasePrioritisation/reports/prioritise_targets  
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Figure 6. Genetic correlation map between prioritised phenotypes 

Heatmap of phenotype-phenotype correlations based on the presence or absence of known

associations with genes in the HPO. Rows and columns are hierarchically clusters to identify

genetically related groups of phenotypes. Metadata on the top shows the number of unique

cell types and genes associated with each phenotype on the x-axis after the prioritisation

filtering pipeline was applied. Metadata on the right side indicate the ancestral phenotype to

which each phenotype belongs (ancestor_name), and the most frequent age of onset for a

given phenotype (Onset_top). This plot was generated using MultiEWCE::correlation_heatmap. 
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Supplementary Information 

Links 

ClinicalTrials.gov search for “Primary Ciliary dyskinesia”: 

https://clinicaltrials.gov/ct2/results?cond=primary+ciliary+dyskinesia 

ClinicalTrials.gov search for “CCNO”:  

https://clinicaltrials.gov/ct2/results?cond=&term=ccno  

Complement system gene list: 

https://www.genenames.org/data/genegroup/#!/group/492  

Supplementary Tables 

Table S1. Prioritised targets 

Cell type- and gene- specific targets for each phenotype. Targets were prioritised using the 

filtering and sorting procedure implemented in the MultiEWCE::prioritise_targets function. 

An interactive version of this table (with sorting, searching, and downloading features) is 

available online: 

https://neurogenomics.github.io/RareDiseasePrioritisation/reports/prioritise_targets  

 

Table S2. Cell type groupings  

Cell type groupings for testing overrepresentation of nervous system related cell types, 

immune related cell types, and cardiovascular related cell types from the Descartes dataset in 

the HPO branches “Abnormality of the nervous system”, “Abnormality of the immune system”, 

and “Abnormality of the cardiovascular system”, respectively. 

Table S3. Cell type-branch enrichment tests  

Hypergeometric test results for overrepresentation of cell type-phenotype associations by HPO 

branch. The selected branches were children terms of “Phenotypic abnormality” and each 
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phenotype was annotated to a branch if it was a descendant of the branch e.g. recurrent 

infections was annotated to “Abnormality of the immune system”. Terms that were not 

descendants of “Phenotypic abnormality” e.g. those related to “Mode of inheritance”, were not 

included in this analysis. Hypergeometric p-values were corrected with the Benjamini-

Hochberg method 67 to produce q-values. 
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