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Abstract

Rare diseases (RDs) are uncommon as individual diagnoses, but as a group contribute to an
enormous disease burden globally. However, partly due the low prevalence and high diversity
of individual RDs, this category of diseases is understudied and under-resourced. The advent
of large, standardised genetics databases has enabled high-throughput, comprehensive
approaches that uncover new insights into the multi-scale aetiology of thousands of diseases.
Here, using the Human Phenotype Ontology (9,677 annotated phenotypes) and multiple single-
cell transcriptomic atlases (77 human cell types and 38 mouse cell types), we conducted
>688,000 enrichment tests (x100,000 bootstrap iterations each) to identify >13,888 genetically
supported cell type-phenotype associations. Our results recapitulate well-known cell type-
phenotype relationships, and extend our understanding of these diseases by pinpointing the
genes linking phenotypes to specific cell (sub)types. We also reveal novel cell type-phenotype
relationships across disparate branches of clinical disease (e.g. the nervous, cardiovascular,
and immune systems). Next, we introduce a computational pipeline to prioritise gene targets
with high cell type-specificity to minimise off-target effects and maximise therapeutic potential.
To broaden the impact of our study, we have released two R packages to fully replicate our
analyses, as well as a series of interactive web apps so that stakeholders from a variety of
backgrounds may further explore and utilise our findings. Together, we present a promising

avenue for systematically and robustly uncovering the multi-scale aetiology of RDs at scale.

Introduction

In aggregate, there are over 10,000 recognised rare diseases (RDs) that affect at least 400
million people globally !, contributing to an enormous disease burden (1 in 10-20 people) 2. As
over 70% of RDs have a known genetic component 3, the increasing availability of phenotypic
and genetic datasets presents an opportunity to apply a systematic approach to investigate
many RDs at once. One of the most comprehensive resources for RD research is the Human
Phenotype Ontology (HPO), which currently contains over 15,200 human phenotypic
abnormalities and subtraits, each assigned to unique identifiers and mapped to hierarchically
related terms both within the HPO and across other ontologies “*. Since 2008, the HPO has

been continuously updated using knowledge from the medical literature, as well as by
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integrating databases of expert validated gene-phenotype relationships, such as OMIM ",
Orphanet, and DECIPHER ™. Currently, the HPO contains gene annotations for over 9,600
phenotypes. In tandem, the single-cell omics technologies have led to an explosion of cell type

signature atlases .

Here, we strategically combine and extend these resources to identify cell type-specific
therapeutic gene targets for thousands of RD with the goal of greatly improving efficacy and
limiting side-effects. We provide a fully reproducible framework to systematically and robustly
identify the primary cell types associated with RDs and RD-associated phenotypes.
Specifically, we used Expression Weighted Cell type Enrichment (EWCE) ' to perform a series
of bootstrapped cell types enrichment tests between the gene lists of 6,173 HPO phenotypes
(after quality control filtering) and each of the 77 cell types derived from a single-cell RNA seq
(scRNA-seq) reference atlas of 15 organs across the developing human body . From this, we
identified 8,379 significant cell type-phenotype associations across 2,832 unique phenotypes.

Each of the 77 cell types were enriched for at least one phenotype.

We then leveraged our cell type-phenotype results to systematically propose cell type- and
gene-specific candidates to target in gene therapies. Specifically, we focused on candidates
suitable for recombinant adeno-associated virus (rAAV) vectors to transduce single-stranded
DNA into target cells '*'8 which have recently shown success in treating several rare diseases
such as Leber's congenital amaurosis (LCA) '°2°, spinal muscular atrophy (SMA) ?', and
amyotrophic lateral sclerosis (ALS) ?2. Together, in this study we uncover the molecular
aetiology of thousands of phenotypes and diseases at once, and provide a systematic,

evidence-based framework for identifying novel therapeutic targets in each of these diseases.

Additionally, we created two accompanying open-source R packages (HPOExplorer and
MultiEWCE) to navigate the HPO data, search and postprocess the enrichment results from
this study, and facilitate novel analyses of multiple gene lists in parallel. Finally, to make our
data easily accessible we developed a series of interactive web app that allows exploration of

all our results: (https://neurogenomics.qgithub.io/rare_disease celltyping apps/home/) We hope

that these tools will ensure reproducibility and facilitate future analyses as more phenotypic,
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genotypic, and transcriptomic data becomes available.

Results

Summary

Within the results using the Descartes cell type signature reference, 8,379 / 475,321 (1.76%) of
bootstrapped enrichment tests across 77 cell types and 6,173 phenotypes revealed significant
cell type-phenotype associations after multiple-testing correction. Within these results, 2,832
phenotypes were significantly enriched for at least one cell type after multiple testing correction
(g < 0.05) and 5,989 were nominally significant (p < 0.05). Hereafter we will only refer to the
results that were significant after multiple testing correction. The number of enriched cell types
per phenotype suggest reasonable specificity of the enrichment strategy (percentages are
shown relative to all 77 cell types): min=1 (1.30%), median=2 (2.60%), mean=2.959 (3.84%),
max=27 (35.07%). This was also true for the number of enriched phenotypes per cell type
(percentages are shown relative to all 6,173 phenotype gene lists): min=1 (0.016%), median=90

(1.46%), mean=108.8 (1.76%), max=338 (5.48%).

With the Tabula Muris enrichment results, 5,509 / 213,028 (2.58%) tests were significant after
multiple-testing correction (q < 0.05), and 20,221 tests were nominally significant (p < 0.05).
All 38 cell types were enriched in at least one phenotype, and 2,579 / 5,509 (46.81%)
phenotypes were enriched in at least one cell type. The proportion of enriched cell types per
phenotype were comparable to those observed using the Descartes dataset (percentages are
shown relative to all 38 cell types): min=1 (2.632%), median=1 (2.632%), mean=2.136
(6.621%), max=17 (44.737%). The number of enriched phenotypes per cell type were slightly
greater than that the results using Descartes (percentages are shown relative to all 6,173
phenotype gene lists): min=2 (0.032%), median=119 (1.93%), mean=145 (2.35%), max=506
(8.20 %).
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Enrichment tests highlight expected as well as novel cell type-phenotype
associations

We first sought to confirm that our enrichment analyses were able to recover well-established
cell type-phenotype relationships. We expected the terms “Abnormality of the nervous
system”, “Abnormality of the cardiovascular system”, and “Abnormality of the immune system”
to be strongly associated with neural cells, heart cells, and immune cells, respectively. Indeed,
a hypergeometric test showed that terms related to (i) the “Abnormality of the nervous system”
showed an overrepresentation in all nervous system related cell types (21 cell types), with the
strongest enrichment in limbic system neurons (n enrichments = 194, p = 5.74*; Fig. 1C); (ii)
the “Abnormality of the cardiovascular system” were overrepresented in 3/4 cardiovascular
related cell types with cardiomyocytes being the most enriched (n enrichments = 94, p = 1.23
%3%; Fig. 1C); (i) the “Abnormality of the immune system” were overrepresented in 9/10 immune
cell types with lymphoid cells being the most enriched (n enrichments = 111, p = 5.23; Fig.
1C). Additionally, cell types that hierarchically clustered together (based on transcriptomic
similarity) were also significantly associated with a particular term. For instance, the cluster of
nervous system related cell types were enriched for terms related to the abnormality of the

nervous system (n enrichments = 1768, p < 2.233%; Fig. 1C).

Somewhat unexpectedly, a significant number of phenotypes related to the “Abnormality of the
cardiovascular system” were associated with hepatoblasts (n enrichments = 17, p = 0.027; Fig.
1C). On closer inspection, these phenotypes were associated with damage to arteries caused
by lipid deposition, such as cerebral artery atherosclerosis and myocardial steatosis. Given the
prominent role that the liver plays in lipid metabolism %, it is therefore logical that dysfunction

of hepatoblasts would be implicated in abnormal cardiovascular phenotypes.

To further demonstrate that our approach finds expected cell type-phenotype associations, we
extracted all the HPO terms enriched within excitatory neurons, cardiomyocytes, and antigen
presenting cells, and show that the more significantly associated terms within these cell types
were disproportionately related to the expected parent term (Fig. 1D-F). Taking excitatory

neurons as an example, the more significant the association between the phenotype and
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excitatory neuron, the more likely this association was related to the abnormality of the nervous

system (r = 0.82, p = 0.03; Fig. 1d).

Specific phenotypes are associated with fewer cell types and genes, but
higher cell type-specificity of gene expression

We reasoned that lower ontology levels representing more specific phenotypes were likely to
be associated with fewer cell types. In contrast, phenotypes with higher ontology levels would
tend to be more broad and enriched for a wider variety of cell types. We confirmed that this is
the case by counting the number of associated cell types with phenotypes in each ontology
level, observing a strong positive correlation between ontology level and the number of
associated cell types (Spearman’s rank correlation coefficient, r = 0.33, p < 2.2 x 10'%; Fig. 2A).
In addition, lower ontology levels were associated with fewer genes (Spearman’s rank
correlation coefficient, r = 0.55, p < 2.2 x 10%; Fig. 2C) but the cell type-specificity of
expression of the associated genes increased (Spearman’s rank correlation coefficient, r = -
0.65, p < 2.2 x 10'%; Fig. 2B).

Just as observed for the broader phenotypes (e.g. “abnormality of the immune system”), we
expected more specific phenotypes, such as recurrent infections, to also be associated with
their expected cell types. Extracting all children terms of recurrent infections, which includes
72 HPO terms at ontology levels ranging from O to 3 (relative to each other), we predicted
that these would be primarily enriched within immune system-related cell types. As
predicted, significant enrichments were found in immune related cell types, but also in less
anticipated cell types (Fig. 3). “Recurrent staphylococcal infections” were enriched within
myeloid cells (p = 0.0098; Fig. 3B), an association that has been previously documented in
the literature 227, whereas “Neisserial infections” highlighted a novel association with
hepatoblasts (p = 0.013; Fig. 3B). To confirm this association, we repeated the analysis using
an independent scRNA-seq dataset from mouse (Tabula Muris) 2 and found a similar
enrichment for “Recurrent Neisserial infections” in two hepatic cell types, namely Kupffer
cells (p = 0.0094) and hepatoblasts (p = 2.23 x 10%%),
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Exemplar results identify known associations while revealing novel muilti-
scale disease mechanisms

Here we highlight several exemplary results that recapitulate known aspects of disease
aetiology while revealing a more comprehensive view of the disease by connecting
mechanisms at multiple scales: phenotype ancestors (groups), phenotypes, cell types, genes.
One such example is the association between respiratory failure and bronchiolar cells, alveolar
epithelial cells, ciliated epithelial cells, and skeletal muscle cells. Specifically, the two airway
epithelial cells initiate local and systemic inflammation, which lead to alveolar hypoventilation
and eventual respiratory failure . The weakening of the diaphragm, the primary respiratory
muscle, can independently lead to life-threatening respiratory failure *. Additional cell type
specificity filtering and sorting identified the gene CCNO acting via ciliated epithelial cells as

the most promising target for respiratory failure.

As a second example, “Recurrent Neisserial infections” were significantly enriched for both
alpha-Fetoprotein (AFP) / Albumin (ALB) -positive cells (fold-change=11.517, p=0.00010,
g=0.00847) and hepatoblasts (fold-change=9.902, p=0.00016, q=0.0125). In both cell types,
the associations with the phenotype are mediated by the same set of complement system
genes: C7, C5, C6, C8B, CFB, CFl, and MBL2. Hepatoblasts are the precursor cells to
hepatocytes (the primary cell type of the liver). AFP/ALB-positive cells are a canonical
biomarker for liver damage or hepatocarcinoma in adults, but are also produced in normally

developing foetuses *'.

Third, “Mental deterioration” is a phenotype characterised by “Loss of previously present
mental abilities, generally in adults” that is associated with several forms of amyloidosis,
leukodystrophy, and a variety of other degenerative neurological conditions

(https://hpo.jax.org/app/browse/term/HP:0001268). As expected, “Mental deterioration” was

strongly associated with neurons of the central nervous system (excitatory, inhibitory, limbic
system, and Purkinje neurons). However, amacrine and ganglion cells of the retina were also
significantly enriched, primarily mediated through the genes SNORD118, APOE, CHCHD10
and CSTB.
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Prioritising cell type-specific gene targets for severe disease phenotypes

Next, we identified putative cell type-specific gene targets for several severe disease
phenotypes. After all filtering and sorting steps, there remained 62 gene targets associated
with 78 phenotypes across 26 cell types (Fig. 4). These prioritised targets were then visualised
as a directed graph (Fig. 5). Grouped by higher-order ontology category, “Abnormality of the
nervous system” had the greatest number of enriched phenotypes (26 phenotypes, 36 genes),
followed by “Abnormality of the cardiovascular system” (17 phenotypes, 15 genes),
“Abnormality of the musculoskeletal system” (8 phenotypes, 16 genes), “Abnormality of the
respiratory system” (6 phenotypes, 5 genes), and "Abnormality of the eye” (5 phenotypes, 15

genes).

Within the “Abnormality of the nervous system” category, 11 different “Abnormality of higher
mental function” / “Neurodevelopmental abnormality” phenotypes survived the prioritisation
filters, including: "Coma", "Developmental regression", "Global developmental delay",
"Intellectual disability", "Intellectual disability, mild", "Intellectual disability, moderate",
"Intellectual disability, severe", "Mild global developmental delay", "Neurodevelopmental
abnormality”, "Neurodevelopmental delay", "Severe global developmental delay". The most
common cell types enriched within these phenotypes were excitatory and granule neurons
(both enriched in 6/11 phenotypes), followed by Inhibitory neurons (5/11 phenotypes). Across
these phenotypes, the most commonly appearing genes were SOX3 (appearing in 17 cell type-
phenotype associations), SOX2 (12 associations), POU3F4 (9 associations), and FOXHT1 (8
associations), and . However, none of the “Mental deterioration” targets survived the filters due
to the low cell type specificity (median quantile=6/40) and expression levels (median
quantile=6/40) of the target genes. Unlike the other phenotypes in these categories, “Coma”
was strongly enriched for islet endocrine cells (Fig. 5E). This association was mediated through

genes critical for glucose regulation, such as INS and KCNJ11.

The “Abnormality of the nervous system” phenotypes also included non-cognitive phenotypes.
Specifically, within the “Abnormality of movement” subcategory, the phenotype “Inability to
walk”, which was enriched for both excitatory neurons (p<2.23 x 103%, q<2.23 x 103%, fold-

change=1.832, prioritised gene target=FOXG1) and Schwann cells (p=0.00071, g=0.0421, fold-
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change=1.546, prioritised gene target=NHLRC1). Second, the “Seizure” subcategory included
the phenotype “Status epilepticus”, which was enriched for excitatory neurons (p<2.23 x 103,
g<2.23 x 107, fold-change=2.147, prioritised gene target=FOXG7). Finally, there were 13
phenotypes belonging to “Morphological central nervous system abnormality”, which included
a variety of neuroanatomical features (e.g. “Cerebellar atrophy”, “Lissencephaly” and
“Hypoplasia of the corpus callosum”) and “Stroke” (enriched for cardiomyocytes and stellate

cells).

17 phenotypes within the “Abnormality of the cardiovascular system” category remained after
the target prioritisation filtering. Of those, “Arrhythmia” showed strong enrichment for
Cardiomyocytes (p<2.23 x 10°%, g<2.23 x 10°%, fold-change=2.915; Fig. 5B), with six
prioritised target genes (NPPA, TNNC1 NKX2-5, TCAP, KCNAS). Of those genes, NKX2-5 is
annotated within the HPO as being very frequently associated with arrhythmia (~72% of cases
on average). NKX2-5 is a transcription factor previously demonstrated to have highly specific
expression in heart tissue, which is in congruence with the fact that this gene belongs to the
top quantile (40) within both our specificity quantile and mean expression quantile metrics.
This gene was in fact the first known genetic risk factor for congenital heart disease, and its
expression is necessary not only for the development of cardiomyocytes but also the

continued functioning of heart cells into adulthood %,

Within the “Abnormality of the musculoskeletal system” there were 9 unique phenotypes that
survived the prioritisation pipeline: "Generalized hypotonia", "Spasticity", "Hypotonia", "Distal
amyotrophy", "Spastic tetraplegia", "Abnormality of upper limb joint", "Aplasia’/hypoplasia of
the extremities", "Aplasia’/hypoplasia involving bones of the extremities". As an example,

“Hypotonia” was highly enriched for a variety of neuronal and glial cell types (Fig. 5D).

Finally, for a more comprehensive list of putative targets across a wider variety of phenotypes,
we removed or relaxed many of the default arguments in our prioritisation pipeline (see
Methods for details). This yielded putative therapeutic targets for 1,307 phenotypes across 37
cell types and 246 genes. Across all phenotypes, excitatory neurons were commonly

implicated (236 phenotypes), followed by antigen presenting cells (214 phenotypes),
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cardiomyocytes (183 phenotypes), limbic system neurons (173 phenotypes), enteric nervous

system (ENS) glia (167 phenotypes), and and ganglion cells (163 phenotypes).

Both the reduced and the extended versions of the prioritised targets network, as well as all
code to reproduce them, are available as an interactive report online:

https://neurogenomics.github.io/RareDiseasePrioritisation/reports/prioritise targets

Genetic correlations reveal cross-phenotypic pleiotropy

Pairwise correlations between all phenotypes within the (reduced) prioritised targets based on
gene annotation overlap. Phenotypes were then grouped into three k-mean clusters. Based on
the phenotypes present in each cluster, cluster 1 appeared to be a mixture of different
phenotype categories and included a subcluster of vascular abnormalities across multiple
anatomical systems (e.g. “Peripheral arteriovenous fistula”, “Abnormal cerebral vascular
morphology”, “Stroke”). Clusters 2 and 3 corresponded closely to “Abnormality of the nervous
system” and “Abnormality of the cardiovascular system”, respectively. Within cluster 3 there
was a subcluster corresponding to congenital heart conditions (e.g. “Abnormal aortic valve

cusp morphology” and “Congenital malformation of the great arteries”).

Discussion

By applying our systematic approach to the HPO and the Descartes cell type atlas, we
identified 8,379 significant cell type-phenotype associations across 2,832 unique phenotypes.
All 77 cell types were enriched in at least one phenotype. Enriched phenotypes were
distributed across all ontology levels within the HPO (Fig. 1B). From more general terms such
as “Abnormality of the immune system”, down to more specialised (children) terms such as
“Mycobacterial infections”. Enrichment tests revealed expected as well as novel cell type-
phenotype associations. Whilst terms related to the “Abnormality of the cardiovascular system”
highlighted cardiomyocytes, a significant humber of these terms were also associated with
hepatoblasts. More specific phenotypes with lower ontology levels were associated with fewer
cell types and genes, but higher cell type-specificity of gene expression. Taken together, this

suggests that the lower ontology level phenotypes may provide more viable avenues for
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therapeutics discovery. Being able to model the phenotype using a small set of prioritised
genes and a specific cell type will not only benefit the RDs associated to the phenotype in
question, but can also guide repurposing of the cell type-specific gene therapy for treatment of
similar phenotypes, or even unrelated phenotypes that are underlied by genes and/or cell types

with similar functions.

We then applied our computational prioritisation pipeline eto identify putative cell type-specific
gene targets with the greatest chance of success as therapeutics (Fig. 5). This pipeline was
based on a variety of relevant criteria, including disease severity, cell type-specificity, and
gene-disease association frequency (Fig. 4). These targets spanned 78 severe disease
phenotypes from Tiers 1 and 2, as classified by Lazarin et al. %. For the phenotype
“Respiratory failure”, we prioritised the gene CCNO acting via ciliated epithelial cells. A review
of the literature revealed that Primary Ciliary Dyskinesia (PCD) is known to act via cilia of the
respiratory epithelium %, and is especially severe in patients with mutations to the CCNO gene
%38 This example result demonstrates our approach is capable of identifying true positive cell
type-phenotype relationships. However, based on a search of the literature and
ClinicalTrials.gov (see Supplementary Information for search result links), it appears that

therapeutics targeting CCNO have yet to be developed.

As a second example, “Coma” was found to be closely associated with islet endocrine cells,
which regulate the secretion of insulin and glucagon, hormones that play a role in blood
glucose homeostasis *. Our target prioritisation procedure narrowed down the results to two
gene targets for “Coma”; the insulin gene (INS) and potassium inwardly rectifying channel
subfamily J member 11 (KCNJ17), which encodes for K-ATP channels that trigger insulin
release in response to circulating glucose levels. Mutations in either of these genes can cause
permanent neonatal diabetes and induce diabetic coma *°, a condition that can occur when
blood glucose levels become too high or too low “™*3. This result provides further evidence that

our framework recovers valid relationships between phenotypes, cell types, and genes.

For the phenotype “Mental deterioration” we report expected associations with central nervous

system neurons, as well as less expected associations with amacrine and ganglion cells of the
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retina. Prior studies have shown that visual impairment or blindness is prevalent in people with
intellectual disability (>8.5-fold increased risk) “¢ and pathological cognitive decline in older
individuals *’. These results suggest that not only are these phenotypes correlated with one
another, but they are causally related to the same genetic risk factors. Although “mental
deterioration” did not survive the final target gene prioritisation filters, six other intellectual
disability phenotypes did (Table 1). Within these five phenotypes, the most commonly
appearing genes were SOX3 (12 times across multiple cell types), SOX2 (10 times), FOXH1 (7
times), and POU3F4 (7 times). All four of these genes are transcription factors that play an
important role in the development of the nervous system. The disruption of SOX3 has been
implicated in a variety of intellectual disabilities through observations in both patients and
experimental models 44, SOX2 has also been implicated in nervous system development and
its disruption can lead to profound deficits in cognition, vision, and motor function .
Interestingly, POU3F4 has primarily been implicated in the development of semicircular canals
and inherited deafness '=** but has also been linked to deficits in cognition and mental health
(including attention deficit hyperactivity and developmental language disorder) which are
significantly comorbid with this form of deafness *°. These non-auditory deficits are more
profound than those observed in controls with other forms of deafness, suggesting that
POU3F4 provides a common molecular aetiology underlying aspects of both central and
peripheral nervous system development °¢°7. Confirming the relevance of these results, all
enriched cell types within intellectual disability phenotypes were neuronal or glial cells.
However, given the ethical implications and technical constraints of treating a genetic disorder
during gestation, these gene targets should be considered candidates for further preclinical

research, rather than therapeutic targets in developing human embryos.

Phenotypes at both higher- and lower levels of the HPO ontology were predominantly
associated with their expected cell types (Figs. 1C-F). This testified to the credibility of this
approach and allowed us to explore novel findings. One such example is the association of
“Recurrent Neisserial infections” with hepatoblasts. Whilst unexpected, a convincing
explanation involves the complement system, a key driver of innate immune response to
Neisserial infections. Hepatocytes, which derive from hepatoblasts, produce the majority of

complement proteins *%, and Kupffer cells express complement receptors *°. In addition,


https://doi.org/10.1101/2023.02.13.23285820
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.02.13.23285820; this version posted February 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

individuals with deficits in complement are at high risk for Neisserial infections ¢, and a
genome-wide association study in those with a Neisserial infection identified risk variants
within complement proteins . Indeed, all seven of the genes mediating this cell type-
phenotype association (C7, C5, C6, C8B, CFB, CFl, and MBL2) are part of the complement
system. While the potential of therapeutically targeting complement in RDs (including Neisserial
infections) has been proposed previously %%, performing this in a gene- and cell type-specific
manner may help to improve efficacy and reduce toxicity (e.g. due to off-target effects).
Importantly, there are over 56 known genes within the complement system (see
Supplementary Information) °, highlighting the need for a systematic, evidence-based

approach to identify effective gene targets.

Finally, we interrogated shared genetic mechanisms between our prioritised RDs and other
phenotypes (Fig. 6). This allowed us to infer which phenotypes tend to co-occur in patients
due to pleiotropy, in which mutations in the same gene cause multiple phenotypes. Sometimes
the links between the phenotypes are expected due to their being highly related to one another
within the HPO, as is the case for multiple phenotypes of abnormal corpus callosum
morphology (a subcluster within cluster 2; Fig 6). However other phenotypic relationships are
less immediately obvious, such as that between “Abnormality of neuronal migration” and
“Abnormality of mouth shape”, or between “Severe global developmental delay” and “Optic
atrophy”. These insights may help to improve diagnostic criteria for various RDs while
simultaneously revealing the cell type-specific genetic mechanisms underlying their clinical

comorbidity.

Conclusions

Across the 77 cell types and 6,173 RD-associated phenotypes investigated, more than 8,000
significant cell type-phenotype associations were observed. The examples we have highlighted
above align with what is expected, already known, or at least has a plausible biological
explanation. Furthermore, he terms “abnormality of the cardiovascular system” and “recurrent
Neisserial infections” were both associated with liver cell types, highlighting the potential in

investigating and treating RDs collectively. Within the >8,000 enrichments we identified, there
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will be many previously understudied or unknown links between RD-associated phenotypes
and specific cell types. In addition to prioritising cell type-specific gene targets, our approach
presents an opportunity to therapeutically treat multiple phenotypes via the same target. This
may be especially effective in patients that express more than one disease phenotype, as is
frequently the case . Taken together, this reflects the utility and potential of our approach in

advancing understanding, modelling, and treatment of RDs.

For the impact of our results to be fully realised, it was essential that they could be easily
accessed and navigated by domain experts, clinicians, and patients alike. To facilitate this, we
developed a publicly available interactive web app

(https://neurogenomics.qgithub.io/rare disease celltyping apps/home). Importantly, this web

app does not require any coding expertise to search for, visualise, and download relevant
subsets of our enrichment results. Together with the reproducible workflows available as R
packages, we aim to make our high-throughput findings useful to a wide variety of RD
stakeholders and facilitate the extension of these analyses as new RD data becomes available
over time. Ultimately, we hope that this work will help to overcome some of the difficulties that
have hindered RD research in the past and accelerate the development of effective

therapeutics across a wide variety of disorders.

Methods

Cell type-phenotype associations

In this study, the gene by cell type specificity matrix was constructed using the Descartes
human cell atlas of fetal gene expression, which contains 377,456 cells representing 77 distinct
cell types ™. To independently replicate our findings, we also used the Tabula Muris murine
whole-body dataset, made up of 100,605 cells representing 38 distinct cell types from 20
organs and tissues . Genes from the Tabula Muris dataset were converted to human
orthologs using the One20ne R package, and genes without 1:1 mouse:human orthologs were
dropped. For each cell type, the specificity metric was obtained by dividing the expression of

each gene by the sum of the expression of that gene in all cell types. The target gene sets used
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here are obtained from the HPO, such that each phenotype has its own associated gene set. If
a given gene set is significantly enriched in a cell type, then it is likely that the cell type plays a

role in the pathology and therefore may be a valuable target for future research.

We used EWCE (v1.1.0) to evaluate significant cell type-phenotype associations 2. EWCE
takes as input a gene by cell type specificity matrix, a target gene list of length n, referred to as
, and a set of background genes referred to as . Where is the specific expression of gene in
cell type . is the number of , and is an expression of in cell (indexed from ). As EWCE

requires input genes per test, 6,173 HPO gene lists remained after filtering.

Variable definitions
target gene list
length of target gene list
: background gene list
: gene identity
cell type identity
: cell index
: number of cell types
: specific expression of gene in cell type
: expression of gene in cell
: gene by cell type specificity matrix

: disease-associated phenotype identity

S, F(g, i, 0)/N,
eg,,_. =
v (8 Fg,i,r)/N,)

Genes with very low expression were considered to be uninformative and were therefore

removed before computing the specificity matrix (mean < 0.2 across all cell types).

Tg.i li =

Flg,i,c) = {0 li#e
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We then summed the specificity scores of the genes in to get each gene’s total expression
specificity score in a given cell (). This is done for all cells, enabling us to quantify the level of

specific expression of gene list (indexed by ) in each cell type ().
(X, c) = Zeﬂ"’
geX

Bootstrapping was then used to determine the probability of cell type-specific enrichment for
each cell type in target gene list . We used 100,000 bootstrap iterations to ensure robustness
and reduce the rate of false positive associations. To do this, the same cell type-specific
expression calculation described above is then calculated for 100,000 random gene sets in
each cell type . This gives a probability distribution of cell type-specific expression for gene
sets of length in any given . The mean and standard deviation of this distribution are
normalised (centred to 0 and 1 respectively) and then used to calculate a Z-score. We can then
determine the probability of enrichment of in based on the number of bootstrap gene lists that
have a higher cell type specific expression than . Gene sets with higher specific expression
than most random gene sets of the same length have a high probability of enrichment in a

given cell type. This procedure was repeated for each RD-associated phenotype .

Zlﬂﬂfﬂ) 1 '7(X: C) > 'T(-Dj: C)
=1 0 '7(X: C) < 7(-DJ': C)
100000

P(X enriched for c) =

In total, 475,321 EWCE enrichment tests were performed using the Descartes cell type
signature reference (6,173 phenotypes x 77 cell types). An additional 213,028 tests were
performed using the Tabula Muris cell type reference for the phenotypes that had at least four
remaining genes after removing genes without 1:1 mouse:human orthologs (5,606 phenotypes
x 38 cell types). Within the results from each cell type reference, EWCE p-values were
corrected with the Benjamini-Hochberg method to produce g-values . To facilitate these

analyses and to make them more easily reproducible by others, we created several open-
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source R packages. MultiEWCE (https://github.com/neurogenomics/MultiEWCE) facilitates the

analysis of multiple gene lists across many computing cores in parallel, reducing the time
necessary to complete large-scale enrichment testing. HPOEXxplorer

(https://github.com/neurogenomics/HPOExplorer) aids in managing and querying the directed

acyclic ontology graph within the HPO.
Interactive website

The landing page for the website was made using HTML and CSS, and the web apps were
created using the Shiny Web application framework for R and deployed on the ShinyApps
server. The website can be accessed here:

https://neurogenomics.qgithub.io/rare disease celltyping apps/home

Gene therapy target identification

We developed a systematic and automated strategy for identifying putative cell type-specific
gene targets for each phenotype based on a series of filters at phenotype, cell type, and gene
levels. The entire target prioritisation procedure can be replicated with a single function:
MultiEWCE::prioritise_targets. This function automates all of the reference data gathering (e.g.
phenotype metadata, cell type metadata, cell type signature reference, gene lengths, severity
tiers) and takes a variety of arguments at each step for greater customisability. Default

parameters for all arguments can be found in the function documentation.

Descriptions of each step in the prioritisation pipeline are as follows:

1. start: All cell type-phenotype association results.

2. q_threshold: Keep only results that were significant after multiple-testing correction
(9<0.05).

3. fold_threshold: Keep only results with fold change>=1.

4. keep_ont_levels: Keep only phenotypes at certain absolute ontology levels within the
HPO.

5. keep_onsets: Keep only phenotypes with postnatal age of onsets to circumvent
technical and ethical challenges associated with antenatal gene therapeutics delivery.

6. keep_tiers: Keep only phenotypes with high severity Tiers.
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a. We used a combination of manual curation and automated text-based substring
queries to assign each phenotype a severity Tier as characterised in a survey of
healthcare professionals 3.

b. Tier 1: Diseases that shortened life span in adolescence or earlier or resulted in
intellectual disability.

c. Tier 2: Diseases that shortened lifespan prematurely in adulthood, or resulted in
impaired mobility or internal physical malformation.

d. Tier 3: Diseases causing sensory impairments (hearing, vision, touch, pain, or
other), immunodeficiency/cancer, mental illness, or dysmorphic features.

e. Tier 4: Diseases that reduce fertility. Of the 49 phenotypes that were available in
this severity ranking, we selected three that were classified as Tier 1 (the most
severe disease category): mental deterioration, coma and respiratory failure.

7. severity_threshold: Keep only phenotypes with mean severity score equal to or below
the threshold.

a. Severity scores were computed by assigning each severity modifier term found
in the HPO annotations a numerical value. In order of increasing severity:

b. HP:0012825 "Mild" (Severity_score=4)

c. HP:0012827 "Borderline" (Severity_score=3)

d. HP:0012828 "Severe" (Severity_score=2)

e. HP:0012829 "Profound" (Severity_score=1)

8. pheno_frequency_threshold: Keep only phenotypes with mean frequency equal to or
above the threshold (i.e. how frequently a phenotype is associated with any diseases in

which it occurs).

a. Keep phenotypes with a mean frequency 210% or are NA by default.

9. keep_celltypes: Keep only terminally differentiated cell types.

a. Ofthe 77 cell types tested in the Descartes cell type reference, the 40 terminally
differentiated cell types were identified through a literature search. Of these,
three (extravillous trophoblasts, syncytiotrophoblasts and trophoblast giant
cells) were excluded as they only played a role in pregnancy %-"°, which would
raise additional technical and ethical challenges as rAAV therapy has not yet

been used to target foetuses in clinical trials.
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10. keep_segnames: Remove genes on non-standard chromosomes.
a. Only keep chromosomes 1-22, X, and Y.
11. gene_size: Keep only genes <4.3kb in length.
a. Due to limitations in the length of the gene that can be carried by the rAAV
vector, genes with a length of >4.3kb were excluded.
12. keep_biotypes: Keep only genes belonging to certain biotypes (e.g. "protein_coding",
"processed_transcript”, "snRNA", "lincRNA", "snoRNA", "IG_C_gene").
a. Keep all biotypes by default.
13. gene_frequency_threshold: Keep only genes at or above a certain mean frequency
threshold (i.e. how frequently a gene is associated with a given phenotype when

observed within a disease).

a. Keep genes with a mean frequency =10% or are NA by default.

14. keep_specificity_quantiles: Keep only genes in top specificity quantiles from the cell
type dataset.

a. To further narrow down genes, we extracted relevant metrics from the
Descartes reference for each gene in each cell type. These included mean
expression, specificity, and specificity quantiles (using 40 bins). Only genes with
the most specific quantiles (39-40) were included for further analysis, as cell
type-specific genes may be less likely to have off-target effects in other cell
types.

15. keep_mean_exp_quantiles: Keep only genes in top mean expression quantiles from
the cell type dataset.

16. top_n: Sort candidate targets by a preferred order of metrics and only return the top N
targets per cell type-phenotype combination.

a. Finally, results were sorted by the following columns (in order of precedence,

where 1=ascending order and -1=descending order):

b. "tier"=1

c. “tier_auto"=1

d. "Severity_score_mean"=1
e. "q"=1

f. "fold_change"=-1
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g. "specificity_quantile"=-1
"mean_exp_quantile"=-1

i. "specificity"=-1

j- "mean_exp"=-1

k. "pheno_freq_mean"=-1

I. "gene_freq_mean"=-1

m. "width"=1

17. end: Final table of prioritised cell type- / phenotype-specific gene targets.

Finally, for more comprehensive target search, the we removed the filters for onsets
(keep_onsets=NULL), Tier (keep_tiers=NULL), severity (severity_threshold=NULL), as well as
relaxed the filters for phenotype frequency threshold (pheno_frequency_threshold=c(10,NA)),
gene frequency threshold (gene_frequency_threshold = c¢(10,NA)), gene specificity quantiles
(keep_specificity_quantiles = seq(20,40)), and gene expression quantiles

(keep_mean_exp_quantiles = seq(20,40)).

Phenotype x phenotype genetic correlations

Lastly, we computed genetic correlations between all phenotypes that appeared within the
reduced list of prioritised targets. For this analysis, the complete gene lists for each phenotype
were extracted from the HPO (not just the genes present in the prioritised targets list) and
recast into a binary gene x phenotype matrix, where O indicated the absence of a gene-
phenotype association and 1 indicated the presence of a gene-phenotype association.
Pairwise Pearson correlations were then computed between all phenotypes to generate a
phenotype x phenotype matrix. Hierarchical clustering was performed on the resulting
correlation matrix and visualised as a heatmap using MultiEWCE::correlation_heatmap, which
utilises the R package ComplexHeatmap "'. Cluster group assignment was determined using

1,000 iterations of k-means where k=3.


https://doi.org/10.1101/2023.02.13.23285820
http://creativecommons.org/licenses/by-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2023.02.13.23285820; this version posted February 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

Data and Code Availability

All data and code is made freely available through preexisting databases and/or GitHub

repositories / software associated with this publication.

Human Phenotype Ontology

https://hpo.jax.org

Descartes scRNA-seq atlas

https://descartes.brotmanbaty.org/bbi/human-gene-expression-during-development

Tabula Muris scRNA-seq atlas

https://tabula-muris.ds.czbiohub.org

Web app
https://neurogenomics.qgithub.io/rare disease celltyping apps/home
HPOExplorer

https://github.com/neurogenomics/MultiEWCE
MultiEWCE

https://github.com/neurogenomics/HPOEXxplorer
EWCE
https://doi.org/doi:10.18129/B9.bioc.EWCE

Code to replicate analyses

https://github.com/neurogenomics/rare disease celltyping

Results for all enrichment tests

https://github.com/neurogenomics/rare disease celltyping/tree/master/results

Cell type-specific gene target prioritisation

https://neurogenomics.qithub.io/RareDiseasePrioritisation/reports/prioritise targets
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Figure 1. Abnormal nervous system, cardiovascular, and immune phenotypes show
expected cell type enrichments.
A. Dendrogram showing the clustering of cell types from the scRNA-seq dataset used. The x-

axis is ordered by the dendrogram. B. Bar plot showing the number of significant HPO

phenotype enrichments for each cell type (p < 0.05 and fold enrichment > 1). The colour in
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each bar represents the tissue of origin of the cell type. C. Bar plot showing the number of
phenotype enrichments related to HPO terms abnormality of the nervous system, abnormality
of the cardiovascular system, and abnormality of the immune system. A hypergeometric test
was used to determine which cell types had significant enrichments. ******** and *, indicate
p<0.00001, p<0.0001, p<0.001, and p<0.05, respectively. D. Scatter plot of the percentage of
phenotype enrichments in excitatory neurons against the enrichment significance threshold. As
you decrease the significance threshold, the percentage of phenotype enrichments related to
the abnormality of the nervous system increases. E. Scatter plot of the percentage of
phenotype enrichments in cardiomyocytes against the enrichment significance threshold. As
you decrease the significance threshold, the percentage of phenotype enrichments related to
the abnormality of the cardiovascular system increases. F. Scatter plot of the percentage of
phenotype enrichments in antigen presenting cells against the enrichment significance
threshold. As you decrease the significance threshold, the percentage of phenotype

enrichments related to the abnormality of the immune system increases.
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Figure 2. Ontology levels containing more specific phenotypes are associated with a
lower number of cell types and genes, but the cell type-specificity of gene expression
is higher.

Violin plots showing relationship between HPO ontology level and A. the number of associated

cell types. B. the cell type-specificity of gene expression. C. the number of associated genes.

Ontology level 12 represents the most broad HPO term: “phenotypic abnormality”.
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Figure 3. Immune-related phenotypes highlight both expected and unexpected cell

type associations.

A. Bar plot showing the number of significant phenotype enrichments related to recurrent
infections, for each cell type. B. Bar plots showing the number of enrichments related to the
child terms of recurrent bacterial infections, for each cell type. C. Bar plots showing the
number of enrichments related to the child terms of recurrent gram negative bacterial

infections. **,** ** and *, indicate p<0.00001, p<0.0001, p<0.001, and p<0.05, respectively.
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Figure 4. Prioritised target filtering steps

This  plot visualises prioritised targets using the default parameters in
MultiEWCE::prioritise_targets and is fully reproducible using the MultiEWCE::report_plot
function. Each step in the pipeline can be easily adjusted according to user preference and use
case. See Methods for descriptions and criterion of each filtering step. A. The percentage of
phenotypes belonging to each severity Tier after each filtering step (Tier 1 being the most
severe). B. The number of phenotypes, cell types, associated diseases and genes remaining

after each filtering step during the gene prioritisation pipeline.
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Figure 5. Network of prioritised cell type-specific gene targets

The above network illustrates phenotypes/cell types/genes identified by our target prioritisation
strategy. Tier 1/2 phenotypes are connected significantly associated cell types via mediating
genes. Each RD phenotype (purple cylinders) is connected to their respective causal cell-types
(red circles). RD phenotypes are classified by the higher-order phenotypes to which they
belong in the HPO (blue cylinders). Each cell type is in turn connected to the prioritised gene
targets (gold boxes) that are driving the cell type-phenotype association, show highly cell type-

specific RNA expression, and meet our criterion for rAAV therapeutic applications. The
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thickness of the edges connecting the nodes represent the (mean) fold-change from the
bootstrapped enrichment tests. Edge colour indicates which phenotype it connects to (grey
dotted lines are used for edges that do not connect directly to a phenotype). Nodes were
spatially arranged using the Kamada-Kawai algorithm 2.

A. A zoomed out view of the full network. Subsequent subplots are zoomed in sections of this
full network. B. Nodes connected to the phenotype “Arrhythmia”. C. Nodes connected to the
gene SOX3. D. Nodes connected to the phenotype “Hypotonia”. E. Nodes connected to the
phenotype “coma”. F. Nodes connected to ciliated epithelial cells.

An interactive version of this plot and all code to fully reproduce this plot can be further
explored online:

https://neurogenomics.qgithub.io/RareDiseasePrioritisation/reports/prioritise targets
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Figure 6. Genetic correlation map between prioritised phenotypes

Heatmap of phenotype-phenotype correlations based on the presence or absence of known
associations with genes in the HPO. Rows and columns are hierarchically clusters to identify
genetically related groups of phenotypes. Metadata on the top shows the number of unique
cell types and genes associated with each phenotype on the x-axis after the prioritisation
filtering pipeline was applied. Metadata on the right side indicate the ancestral phenotype to
which each phenotype belongs (ancestor_name), and the most frequent age of onset for a

given phenotype (Onset_top). This plot was generated using MultiEWCE::correlation_heatmap.
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Supplementary Information

Links

ClinicalTrials.gov search for “Primary Ciliary dyskinesia”:

https://clinicaltrials.gov/ct2/results?cond=primary+ciliary+dyskinesia

ClinicalTrials.gov search for “CCNO”:

https://clinicaltrials.gov/ct2/results?cond=&term=ccno

Complement system gene list:

https://www.genenames.org/data/genegroup/#!/group/492

Supplementary Tables

Table S1. Prioritised targets

Cell type- and gene- specific targets for each phenotype. Targets were prioritised using the
filtering and sorting procedure implemented in the MultiEWCE::prioritise_targets function.

An interactive version of this table (with sorting, searching, and downloading features) is
available online:

https://neurogenomics.qithub.io/RareDiseasePrioritisation/reports/prioritise targets

Table S2. Cell type groupings

Cell type groupings for testing overrepresentation of nervous system related cell types,
immune related cell types, and cardiovascular related cell types from the Descartes dataset in
the HPO branches “Abnormality of the nervous system”, “Abnormality of the immune system”,

and “Abnormality of the cardiovascular system”, respectively.

Table S3. Cell type-branch enrichment tests

Hypergeometric test results for overrepresentation of cell type-phenotype associations by HPO

branch. The selected branches were children terms of “Phenotypic abnormality” and each
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phenotype was annotated to a branch if it was a descendant of the branch e.g. recurrent
infections was annotated to “Abnormality of the immune system”. Terms that were not
descendants of “Phenotypic abnormality” e.g. those related to “Mode of inheritance”, were not
included in this analysis. Hypergeometric p-values were corrected with the Benjamini-

Hochberg method ¢ to produce g-values.
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Vascular endothelial cells
Stromal cells -

Lymphoid cells -

Microglia {

Myeloid cells 1

Acinar cells -

Ductal cells -

Intestinal epithelial cells -
Ureteric bud cells -
Astrocytes

Horizontal cells -

Chromatffin cells

Epicardial fat cells
Mesothelial cells

Lymphatic endothelial cells -
Endocardial cells -

STC2 TLX1 positive cells
Megakaryocytes -
Adrenocortical cells 1
Hepatoblasts -

Squamous epithelial cells -
MUC13 DMBT1 positive cells -
Goblet cells

Bronchiolar and alveolar epithelial cells 1
Ciliated epithelial cells
Neuroendocrine cells 4

PAEP MECOM positive cells -
Thymic epithelial cells -
PDE1C ACSM3 positive cells 1
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AFP ALB positive cells -
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Antigen presenting cells 4
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Thymocytes
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I Abnormal pulmonary Interstitial morphology
Abnormal pulmonary vein morphology
Abnormality of the pulmonary veins
Developmental regression
Status epilepticus
Spastic etratple ia
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Cerebellar af

Inability to walk .

Abnormality of the upper respiratory tract
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Inflammation of the large intestine

Sepsis
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Slowly progressive
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Late onset )

Arteriovenous malformation
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Peripheral arteriovenous fistula
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roke
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Abnormal left ventricle morphology
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Mild global devélopmental delay

I Abnormality of the inner ear

Glucose infolerance

ngopla&a of the corpus callosum
Abnormal corpus callosum morphology
Aﬁ_la5|a/HypopIaS|a of the corpus callosum
Thin corpus callosum

Generalized hypotonia
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Global developmental delay
Neurodevelopmental delay
Intellectual disabili .
Neuradevelopmental abnormality
Aplasia/Hypoplasia of the cerebéllum .
Aplasia/Hypoplasia of the cerebellar vermis
Cerebellar malformation
Lissencephaly. X
Abnormal cortical gyration .
I Abnormality of neuronal migration
Abnormality of mouth shape
Intellectualdisability, mild
- Intellectual disability, moderate
Intellectual disability, severe
Abnormality of the Optic disc
Optic at
Severe |
Spastici i
Abnormal aortic valve cusp morphology
Abnormal aortic valve morpholo
N Abnormal heart valve physiology
Abnormal atrioventricular valve morphology
B Abnormal heart valve morpholo
Abnormality of the pulmonary vaSculature
I Abnormal ventriculoarterial connection
Conotruncal defect
Abnormal mor|i)holog of the great vessels
Congenital malformation of the great arteries
Abnormality of the calvaria
Abnormality of the outer ear
Abnormality of the pinna
Abnormality of upper limb joint
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Abnormal finger phalanx morphology
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Abnormal’cardiac ventricle morphology
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Aplasia/hypoplasia invoIvir%g bones of the extremities

Genetic correlation
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ancestor_name

B Abnormality of head or neck

B Abnormality of limbs
Abnormality of metabolism/homeostasis
Abnormality of the cardiovascular system
Abnormality of the digestive system

B Abnormality of the ear

B Abnormality of the eye

B Abnormality of the genitourinary system

B Abnormality of the immune system
Abnormality of the musculoskeletal system
Abnormality of the nervous system

I Abnormality of the respiratory system

B Clinical course

B Growth abnormality

ontLvl

7

8

9
Onset_top
Il Adult onset

Il Childhood onset
B Congenital onset
B Infantile onset
Juvenile onset
Late onset
Young adult onset
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