
Title: The NR5A1/SF-1 variant p.Gly146Ala cannot explain the phenotype of individuals with a 1 

difference of sex development. 2 

 3 

Idoia Martinez de Lapiscina1,2,3,4,5,6, Chrysanthi Kouri1,2,7, Josu Aurrekoetxea8,9, Mirian Sanchez3, Rawda 4 

Naamneh Elzenaty1,2,7, Kay-Sara Sauter1,2, Núria Camats5,10, Gema Grau3,6,11, Itxaso Rica3,4,5,6,11, Amaia 5 

Rodriguez3,11, Amaia Vela3,4,5,6,11, Alicia Cortazar4,12, M. Concepción Alonso-Cerezo13, Pilar Bahillo14, 6 

Laura Berthod15, Isabel Esteva16, Luis Castaño3,4,5,6,9,11,*, Christa E. Flück1,2,* 7 
 8 
1Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern 9 

University Hospital, University of Bern, Bern, Switzerland. 2Department for BioMedical Research, 10 

University of Bern, Bern, Switzerland. 3Research into the genetics and control of diabetes and other 11 

endocrine disorders, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 12 

Barakaldo, Spain. 4CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto 13 

de Salud Carlos III, Madrid, Spain. 5CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos 14 

III, Madrid, Spain. 6Endo-ERN, Amsterdam, The Netherlands. 7Graduate School for Cellular and 15 

Biomedical Sciences, University of Bern, Bern, Switzerland. 8Research group of Medical Oncology, 16 

Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain. 9University 17 

of the Basque Country (UPV-EHU), Leioa, Spain. 10Growth and Development group, Vall d'Hebron 18 

Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain. 11Department of 19 

Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain. 12Endocrinology Department, 20 

Cruces University Hospital, Barakaldo, Spain. 13La Princesa University Hospital, Madrid, Spain. 21 
14Pediatric Endocrinology Unit, Department of Pediatrics, Clinic University Hospital of Valladolid, 22 

Valladolid, Spain. 15Pediatric Endocrinology Department, Marques de Valdecilla University Hospital, 23 

Santander, Spain. 16Endocrinology Section, Gender Identity Unit, Regional University Hospital of 24 

Malaga, Malaga, Spain. 25 

*Co-last authors 26 

 27 

Corresponding author: Idoia Martinez de Lapiscina, PhD; idoia.martinezdelapiscina@unibe.ch 28 

Phone Nr: +41316641475 29 

 30 

Short title: Role of NR5A1/SF-1 p.Gly146Ala in DSD 31 

 32 

  33 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.13.23285760doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.02.13.23285760


Abstract  34 

Steroidogenic factor 1 (SF-1, NR5A1) plays an important role in human sex development. Variants of 35 

NR5A1/SF-1 may cause mild to severe differences of sex development (DSD) or may be found in 36 

healthy carriers. So far, the broad DSD phenotypic variability associated NR5A1/SF-1 variants remains 37 

a conundrum. The NR5A1/SF-1 variant c.437G>C/p.Gly146Ala is common in individuals with a DSD and 38 

has been suggested to act as a susceptibility factor for adrenal disease or cryptorchidism. However, as 39 

the allele frequency in the general population is high, and as functional testing of the p.Gly146Ala 40 

variant in vitro revealed inconclusive results, the disease-causing effect of this variant has been 41 

questioned. However, a role as a disease modifier in concert with other gene variants is still possible 42 

given that oligogenic inheritance has been described in patients with NR5A1/SF-1 gene variants. 43 

Therefore, we performed next generation sequencing in DSD individuals harboring the NR5A1/SF-1 44 

p.Gly146Ala variant to search for other DSD-causing variants. Aim was to clarify the function of this 45 

variant for the phenotype of the carriers. We studied 14 pediatric DSD individuals who carried the 46 

p.Gly146Ala variant. Panel and whole-exome sequencing was performed, and data were analyzed with 47 

a specific data filtering algorithm for detecting variants in NR5A1- and DSD-related genes. The 48 

phenotype of the studied individuals ranged from scrotal hypospadias and ambiguous genitalia in 49 

46,XY DSD to typical male external genitalia and ovotestes in 46,XX DSD patients. Patients were of 50 

African, Spanish, and Asian origin. Of the 14 studied subjects, five were homozygous and nine 51 

heterozygous for the NR5A1/SF-1 p.Gly146Ala variant. In ten subjects we identified either a clearly 52 

pathogenic DSD gene variant (e.g. in AR, LHCGR) or one to four potentially deleterious variants that 53 

likely explain the observed phenotype alone (e.g. in FGFR3, CHD7, ADAMTS16). Our study shows that 54 

most individuals carrying the NR5A1/SF-1 p.Gly146Ala variant, harbor at least one other deleterious 55 

gene variant which can explain the DSD phenotype. This finding confirms that the p.Gly146Ala variant 56 

of NR5A1/SF-1 may not contribute to the pathogenesis of DSD and qualifies as a benign polymorphism. 57 

Thus, individuals, in whom the NR5A1/SF-1 p.Gly146Ala gene variant has been identified as the 58 

underlying genetic cause for their DSD in the past, should be re-evaluated with a next-generation 59 

sequencing method to reveal the real genetic diagnosis. 60 

  61 
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Introduction 62 

Typical sex development depends on the specific interactions of many genes and pathways in a 63 

defined spatiotemporal sequence. Any perturbation in this very complex biological event, which 64 

involves genetic and hormonal processes, may result in atypical sex development and leads to a broad 65 

range of differences of sex development (DSD) in humans, also known as variations of sex 66 

characteristics (VSC) (1). The NR5A1 gene, which encodes the steroidogenic factor 1 (SF-1), regulates 67 

multiple genes implicated in adrenal development, gonadal determination and differentiation, 68 

steroidogenesis, and reproduction (2). Since the identification of the first NR5A1/SF-1 variation in a 69 

46,XY patient with primary adrenal failure and complete gonadal dysgenesis (3), the gonadal and 70 

reproductive phenotype associated with NR5A1/SF-1 variants has broadened including 46,XY and 71 

46,XX cases with sex reversal to minor untypicalities such as hypospadias or even healthy carriers, 72 

whereas adrenal failure has only been found in very rare cases (4, 5).  73 

Currently, 291 different NR5A1/SF-1 variants are reported in the Human Gene Mutation Database 74 

(HGMD, October 2022). Variants include missense/nonsense, indels, small insertions/deletions, 75 

complete gene deletions or splice-site variants that are scattered throughout the whole gene without 76 

obvious hot spots. According to ACMG (American College of Medical Genetics and Genomics) 77 

classification (6), described variants may qualify as (likely) pathogenic or (likely) benign, and several 78 

are variants of unknown significance (VUS). 79 

The nonsynonymous NR5A1/SF-1 c.437G>C/p.Gly146Ala (rs1110061) variant has been first described 80 

in a group of Japanese patients presenting with a series of adrenal diseases such as Cushing’s 81 

syndrome or non-functioning adrenocortical adenoma (7). In this context, WuQiang et al. reported 82 

that the p.Gly146Ala variant slightly impairs the transactivation ability of adrenal and ovary specific 83 

gene promoters but does not affect cofactor interaction and cellular localization (7). Later, it has been 84 

proposed to act as a susceptibility factor for cryptorchidism (8), isolated micropenis (9, 10), 85 

spermatogenic failure (11, 12), primary ovarian insufficiency (POI) (13) and type 2 diabetes (14). The 86 

p.Gly146Ala variant is common among individuals with a 46,XY DSD with a prevalence varying 87 

between 6.8 and 31% (15, 16). However, the minor allele frequency (MAF) (C allele) is also high in the 88 

overall control population (23.5%, gnomAD v3.1.2). Specifically, its MAF is increased approximately by 89 

1.3-3-fold in the East Asian and the African control populations, whereas it is only present in 1% of the 90 

European control population (gnomAD v3.1.2). Moreover, in vitro studies of transcriptional activity of 91 

the NR5A1/SF-1 p.Gly146Ala variant on several target promoters in various cell models found 92 

unaltered wild-type functionality (15, 17). In fact, some patients who carry severe, pathogenic 93 

NR5A1/SF-1 variants in compound heterozygous state with the p.Gly146Ala variant, do not 94 

phenotypically differ from individuals carrying the severe variant only (5, 16-22). The DSD causing 95 
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effect of the NR5A1/SF-1 p.Gly146Ala variant is therefore in doubt. However, given that oligogenic 96 

inheritance has been suggested for explaining the broad phenotype observed in individuals and 97 

families with NR5A1/SF-1 gene variants (23-29), the p.Gly146Ala variant might play a role as co-98 

regulator or disease modifier of sexual development. 99 

The aim of this study was therefore, to elucidate the role of the NR5A1/SF-1 p.Gly146Ala variant on 100 

sexual development. We studied 14 DSD patients carrying this variant by next generation sequencing 101 

(NGS). Specifically, we searched for other DSD-causing variants and their pathogenicity in order to 102 

assess the effect of the NR5A1/SF-1 p.Gly146Ala variant on the phenotype of its carriers.  103 

 104 

Patients and Methods 105 

Patients and ethical approval 106 

We recruited 14 pediatric DSD individuals carrying the NR5A1/SF-1 p.Gly146Ala variant from a larger 107 

cohort of 125 DSD patients collected at the Biocruces Bizkaia Health Research Institute (Barakaldo, 108 

Spain). Clinical data were provided by the caring clinicians (Table 1 and S2 table). The study was 109 

approved by the ethics committee for clinical research of Euskadi (CEIC-E), Spain. Written informed 110 

consent was provided by the parents of the studied children. 111 

Ten 46,XY DSD and four 46,XX DSD patients carrying the p.Gly146Ala variant in the NR5A1/SF-1 gene 112 

were analyzed using whole exome sequencing (WES) or a targeted gene panel comprised of 48 genes 113 

associated with sex determination, sex differentiation and hypogonadism (Supplementary table 1). 114 

 115 

Genetic analysis 116 

Genomic DNA from the patients was extracted from peripheral blood leukocytes using the MagPurix 117 

12S system (Zinexts Life Science Corp.). DNA purity and concentration were determined using a Qubit 118 

2.0 fluorometer (Thermo Fisher Scientific).  119 

Initial characterization for the NR5A1/SF-1 p.Gly146Ala variant was done by a DSD specific panel. 120 

Additional NGS was performed by WES (Figure 1A). For WES, libraries were prepared using the Illumina 121 

DNA/RNA Prep Tagmentation PCR reagents (Illumina) and Illumina Exome Panel (CEX) according to 122 

the manufacturer’s instructions. The resulting libraries were subjected to paired-end sequencing on a 123 

NovaSeq 6000 System (Illumina). Raw data were then converted to FastQ files for computational 124 

analysis, which included read alignment to the human genome reference sequence (GRCh38), 125 

duplicate marking, base quality score recalibration, indel realignment, and variant calling with an in-126 

house bioinformatics pipeline using BWA-MEM (30) and GATK (31) software. Variants were annotated 127 

with wANNOVAR (32) and filtration process of the exonic variants was performed using R software (R 128 

4.2.0). Variant filtration was performed following specific steps as given in Figure 1B.  129 
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These steps included the filtration of WES data by a DSD- and NR5A1-related gene list. These disease-130 

tailored lists were updated from previously reported work (DSD-gene list, N=584; NR5A1-related gene 131 

list, N=628) (22, 32) (Figure 1 Step a). Then, we kept the resulting variants with all type of predicted 132 

consequences (e.g. nonsynonymous, frameshift deletion, stop/gain), but synonymous, and with a 133 

number of reads above or equal to 20 (33) (Figure 1 steps b and c). Next, we filtered to include variants 134 

with a MAF≤0.01 according to gnomAD (v3.1.2) and depending on the origin and karyotype of the 135 

patient (Figure 1 step d). In step e, we confirmed the correct annotation, location of variants and 136 

zygosity by checking their alignment data in IGV (Integrative Genomics Viewer). Finally, we predicted 137 

the possible effect of the identified variant (see below) (Figure 1 step f). Variants were confirmed by 138 

visual examination using the IGV (Integrative Genomics Viewer) browser (34, 35). 139 

For the targeted DSD-gene panel analysis, preparation of the libraries and sequencing have been 140 

described elsewhere (24). For variant filtration after panel analysis, same steps b to f were followed 141 

(Figure 1B).  142 

 143 

In silico analyses and variant classification 144 

We predicted the possible effect of identified nonsynonymous genetic variants on the structure and 145 

function of the protein using Polyphen-2, (Polymorphism Phenotyping v2), Panther (Protein ANalysis 146 

THrough Evolutionary Relationships), SNPs and GO, CADD (Combined Annotation Dependent 147 

Depletion) and the calibrated scores given by VarSome (36) for Revel (Rare Exome Variant Ensemble 148 

Learner), SIFT (Scale-invariant feature transform), Provean (Protein Variation Effect Analyzer), 149 

Mutation taster and M-CAP (Mendelian Clinically Applicable Pathogenicity) (see Supplementary table 150 

3). Variants were classified for pathogenicity according to the standards and guidelines of the ACMG 151 

(6) using VarSome. We considered variants as candidates when classified as pathogenic, likely 152 

pathogenic or as VUS by the ACMG criteria or when classified as pathogenic or VUS by at least 7 out 153 

of 9 prediction programs. Previously reported clinical associations were searched in ClinVar and HGMD 154 

databases. In addition, the literature (e.g. PubMed) was searched for evidence of relationship with 155 

DSD, sex development and the specific clinical phenotype of each study subject. We explored the 156 

possible disease-causing variants’ combinations using ORVAL (Oligogenic Resource for Variant 157 

AnaLysis) (37). 158 

 159 

Results and Discussion 160 

In a random cohort of 125 subjects with a DSD, we identified the NR5A1/SF-1 p.Gly146Ala variant in 161 

14 individuals (11.2%). The prevalence in 46,XY DSD subjects was 10.1% (10/99), and was in line with 162 

previously reported prevalence in this population (15, 16). Prevalence was higher in 46,XX DSD (4/24, 163 
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16.7%). Of the 14 studied subjects, five were homozygous and nine heterozygous for the NR5A1/SF-1 164 

p.Gly146Ala variant. The phenotype of the individuals ranged from typical for karyotype to mild and 165 

severe atypical in 46,XY as well as opposite sex in both 46,XY and 46,XX (Figure 2). Patients were of 166 

African (8/14), Spanish (4/14) and Asian (2/14) origin. A summary of the clinical and biochemical 167 

characteristics of the patients is given in Table 1 and Supplementary table 2. An overview of the 168 

identified genes of our study subjects that likely play a role for the DSD phenotype in a concerted way 169 

is given in Figure 3. In this Figure 3 the identified variants are shown within the network of established 170 

genes of sex determination and differentiation. 171 

NGS performed in DSD individuals harboring the p.Gly146Ala variant in NR5A1/SF-1 revealed several 172 

deleterious/candidate variants that potentially explain the phenotype of the patients. Overall, we 173 

identified either a known pathogenic DSD variant or one to four potentially deleterious/candidate 174 

variants in 10 out of the 14 DSD individuals analyzed. A detailed summary of identified variants in 175 

other DSD-related genes is shown in Table 2 (further details in Supplementary tables 3 and 4). 176 

In three patients we detected variants in known DSD-causing genes with our targeted gene panel, e.g. 177 

LHCGR, WT1, and AR. In 11 patients WES was performed and variants were filtered by candidate gene 178 

lists (Figure 1). Overall, the NGS analysis identified 63 variants categorized as (likely) pathogenic or 179 

VUS in 57 different genes, however further review of evidence of correlation with DSD, sex 180 

development and phenotype of each patient with literature reduced this number to 20 potentially 181 

deleterious/candidate variants in 18 genes in 10 subjects. In nine 46,XY DSD individuals 1-4 variants 182 

were found in a total of 16 genes, while one 46,XX DSD person revealed two variants in two different 183 

genes (Table 2). All variants, identified either by gene panel or WES, but one (e.g. LHCGR), were 184 

detected in heterozygosis or hemizygosis. Details of the rejected variants are given in Supplementary 185 

table 4. 186 

In patient 1 two frameshift deletions in genes FGFR3 (c.1633_1634del; p.Cys545Hisfs*17) and INSR 187 

(c.660_661del; p.Pro220Hisfs*4) and a stop-gain variant in ADAMTS16 (c.1822_1823del; p.His608*) 188 

were found and predicted to be likely pathogenic by the ACMG criteria. FGFR3 is essential for testicular 189 

development in humans (38), while INSR and ADAMTS16 are needed in murine genitourinary 190 

development and testicular differentiation, respectively (39, 40). Variants in ADAMTS16 have also 191 

been reported in heterozygosis in two 46,XY females with complete gonadal dysgenesis and a 46,XY 192 

DSD patient with ambiguous genitalia (41). Testing for a digenic combination network with ORVAL 193 

showed no variant interaction between ADAMTS16 and FGFR3. 194 

We detected four heterozygous missense variants in four genes in patient 3. These were GLI2 195 

(c.3528G>T; p.Gln1176His), CDH7 (c.1623C>A; p.His541Gln), MYO7A (c.2882G>A; p.Gly961Asp) and 196 

VDR (c.176C>T; p.Thr59Ile). The variant in GLI2 (c.3528G>T; p.Gln1176His) was rated as pathogenic by 197 
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most of the in silico prediction tools and variants in additional genes were rated as VUS when analyzing 198 

according to pathogenicity guidelines. Variants in GLI2 have been described in syndromic DSD patients 199 

together with short stature, primary hypogonadism, heart and craniofacial anomalies and 46,XY 200 

gonadal dysgenesis (42), as well as in 46,XY non-syndromic DSD manifesting with female external 201 

genitalia or with ambiguous genitalia (23, 43, 44). Variants in CHD7 have been previously associated 202 

with a broad range of 46,XY DSD phenotypes, including males with hypospadias or micropenis and 203 

individuals with female external genitalia (27, 45). MYO7A is overexpressed in male supporting cells 204 

during gonadal development (46) and has been shown to be a SRY and SOX9 target gene (47), but, in 205 

DSD individuals it has been identified only in combination with MAMLD1 (44, 48). Finally, VDR plays a 206 

dominant role in male fertility as Vdr-/- mice show abnormal gonads in both sexes and variable 207 

reproductive phenotypes such as reduced sperm count (49). In humans, two polymorphisms in VDR 208 

were associated with female idiopathic infertility only (50). Fertility of patient 3 has not been assessed 209 

yet, and we cannot exclude a role of the VDR variant in his DSD phenotype. Network analysis by ORVAL 210 

predicts a pathogenic gene network between CHD7, MYO7A and GLI2 (Supplementary figure 1A). 211 

A heterozygous missense c.182C>A; p.Pro61Gln variant in Neuropilin 1 (NRP1) gene was found in 212 

patient 6. NRP1 interacts with Sema3A which is essential for the development of the GnRH neuron 213 

system (51). Loss of Sema3a (Semaphorin 3A) signaling in mice results in reduced gonadal size and 214 

recapitulates the features of Kallmann syndrome (52). In humans, variants in NRP1 have been 215 

identified in a 46,XY DSD subject with female external genitalia (45) and a 46,XY male presenting with 216 

penoscrotal hypospadias, in whom other genetic variants were identified, among them a variant in 217 

MAMLD1, a known DSD-related gene (48).  218 

In 46,XY patient 8 with a phenotype of opposite sex a homozygous, inactivating variant in LHCGR 219 

(c.757T>C; p.Ser253Pro) was found. This variant has been previously reported to severely reduce the 220 

signal transduction activity of the LH receptor and therefore leads to the complete form of Leydig cell 221 

hypoplasia (LCH) as seen in patient 8 (53).  222 

A novel, likely pathogenic p.Met255Lys (c.764T>A) missense variant in exon 2 of WT1 was found in 223 

patient 9, who had precocious puberty and presented with a pituitary adenoma and hearing loss. WT1 224 

is associated with 46,XY gonadal dysgenesis in syndromes including Denys-Drash or Frasier (54), but 225 

more recently WT1 variants have also been detected in individuals with isolated DSD, such as 226 

ambiguous genitalia (45, 55, 56) or gonadal dysgenesis. WT1 acts as a transcriptional repressor or 227 

activator on many target genes, such as LHB (Luteinizing Hormone Subunit Beta), which encodes the 228 

beta subunit of LH (luteinizing hormone), responsible for testosterone production in males during 229 

puberty. Variants of WT1 may therefore affect the transcription of LHβ and thereby lead to altered 230 

puberty timing as observed in patient 9. In fact, in mouse cell models, WT1 regulates LHB transcription 231 
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and two splice variants (-KTS/+KTS) were already shown to have positive and negative roles in this 232 

regulation (57).  233 

A missense variant in COL27A1 (c.3715C>T; p.Arg1239Trp) and a frameshift insertion in TYRO3 234 

(c.666_667insCACTGCCTGCAGCCCCCTTCAACATCACC; p.Ala223HisfsTer21) were found in patient 10. 235 

Both variants were categorized as VUS and were detected in heterozygosis. In mice, Col27a1 is highly 236 

expressed in XY somatic supporter cells compared to XX during the earliest stages of gonad 237 

development (58). Col27a1 has been identified as a SRY target gene in the embryonic mouse gonads 238 

at E11.5 by ChIP-Chip experiments (47). Similarly, Tyro3 is overexpressed in male somatic cells (59), 239 

and is regulated by SOX9 (47). Protein truncating variants of TYRO3 were found in individuals with 240 

idiopathic hypogonadotropic hypogonadism establishing a role of this gene in reproductive 241 

development (60). Taken together, the data suggest that both COL27A1 and TYRO3 genes are part of 242 

the genetic network underlying the early stages of mammalian fetal gonadal development, and thus 243 

genetic changes are likely causing the ovotesticular DSD phenotype in patient 10. However, a gene 244 

interaction between COL27A1 and TYRO3 was not predicted by ORVAL.  245 

In 46,XY patient 11 with a distal hypospadias, one missense variant in the SOX8 (c.676A>C; 246 

p.Thr226Pro) gene was detected. It was identified in heterozygosis and was classified as VUS. SOX8 is 247 

involved in early testis determination (61). SOX8 gene variants are associated with a range of 248 

phenotypes including 46,XY DSD and human reproductive anomalies in males and females (62). Single-249 

nucleotide variants (SNV) associated with 46,XY gonadal dysgenesis are mostly located in the HMG-250 

box of SOX8 (43), while those reported in infertile patients flank the HMG-box or localize to one of the 251 

transactivation domains (TA) (62). However, more recently, a missense variant in the TA2 region of 252 

SOX8 was identified in a 46,XY patient with gonadal dysgenesis (43). The novel c.676A>C; p.Thr226Pro 253 

variant is located in the first TA of the protein. In vitro studies have shown impaired cellular localization 254 

in some mutant proteins located in this functional domain of SOX8. Therefore, this missense variant 255 

likely explains the genital phenotype observed in patient 11. Biochemical assessment (age range 11-256 

15) of the HPG axis was normal and pubertal development was ongoing (Tanner 3-4). 257 

Four heterozygous VUS or likely pathogenic variants were identified in patient 12 with a severe 46,XY 258 

DSD phenotype. These were POR (c.1679C>T; p.Thr560Met), PKD1 (c.2624C>T; p.Pro875Leu), SRCAP 259 

(c.7142G>A; p.Arg2381His) and SOX9 (c.710dup; p.Pro238Thrfs*14). The involvement of POR and 260 

SOX9 in sexual development is well known and several sequence variants have been described in 46,XY 261 

DSD patients (27, 47, 63). Pkd1 is critical for epididymal epithelium development and for maintaining 262 

mice male reproductive tract (64). PKD1 variants have not been related to DSD yet, but they cause 263 

autosomal dominant polycystic kidney disease (ADPKD), which involves reproductive tract 264 

abnormalities and infertility in males (65). Therefore, a role of PKD1 variants in DSD seems possible. 265 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.13.23285760doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.13.23285760


Likewise, the role of SRCAP in sex differentiation and development is unknown. However, this is the 266 

second 46,XY DSD patient in whom a gene variant is identified (42). According to ORVAL analysis, 267 

oligogenic pathogenicity is predicted by combination of variants in a gene network including POR, 268 

PKD1 and SRCAP (Supplementary figure 1B). 269 

In patient 13, we identified an AR variant (c.2323C>T; p.Arg775Cys) previously reported in a patient 270 

with Complete Androgen Insensitivity Syndrome (CAIS) (66). Because the patient presented with a 271 

typical CAIS phenotype, it seems plausible that this hemizygous AR variant is fully responsible for the 272 

DSD.  273 

Patient 14, with a severe 46,XY phenotype, harbored two heterozygous missense variants in MYO7A 274 

and SOX8 genes. Both were categorized as VUS by the ACMG. As in patient 11, the SOX8 variant 275 

(c.694A>C; p.Lys232Gln) was also located in the TA1 domain of the protein. However, the phenotype 276 

of patient 14 was more severe, either caused by the SOX8 variant alone or due to the digenic effect 277 

together with MYO7A. Importantly, the combination of variants in SOX8 and MYO7A is predicted as 278 

disease-causing by ORVAL (Supplementary figure 1C). The combination of variants in MYO7A and SOX8 279 

in DSD was reported previously (44, 48), and suggests that the broad phenotype observed in DSD 280 

individuals might be explained by oligogenic origin (67). 281 

 282 

In four patients carrying the heterozygous p.Gly146Ala NR5A1 variant, the WES and specific data 283 

analysis revealed no other candidate genes explaining their DSD phenotype. Of these patients 2, 4 and 284 

5 had a 46,XX karyotype and an opposite genital phenotype, and were assigned as males at birth, 285 

whereas patient 7 presented with a severe 46,XY DSD. None had other organ anomalies. Although 286 

NGS has facilitated the identification of the underlying genetic defects of DSD, about 50% of 287 

individuals with a 46,XY DSD remain without a molecular diagnosis with currently used methods (27). 288 

We used WES in our study, while other genetic studies also search for variants in noncoding, regulatory 289 

or intronic regions by whole genome sequencing (WGS). But even when using WGS, a considerable 290 

number of patients are reportedly unsolved (68). Thus, other factors such as environmental factors or 291 

epigenetic regulators have been suggested playing a role (68, 69). In addition, oligogenic or even 292 

polygenic inheritance might be considered for explaining the broad phenotypes seen in some 293 

individuals with a DSD (23-29, 48, 67, 70-73). In early days of genetic workup of DSD, patients were 294 

studied by candidate Sanger sequencing. In 46,XY DSD subjects typical candidates were the AR, 295 

SRD5A2 and NR5A1/SF-1; and once a genetic variant was found, additional genes were not tested. 296 

Thus, some DSD patients that have been tested by the candidate approach may not have a correct 297 

diagnosis and need to be retested by NGS.  298 
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In conclusion, NGS genetic analysis of DSD individuals carrying the p.Gly146Ala variant of the 299 

NR5A1/SF-1 gene revealed variants in other genes (likely) explaining their phenotype. These gene 300 

variants were either found in established DSD genes, were previously described or novel, and were 301 

(likely) disease-causing either in a monogenic or in a suggested oligogenic fashion. Although we were 302 

not able to find causal genetic variants in four out of 14 DSD individuals carrying the NR5A1/SF-1 303 

p.Gly146Ala, our study supports the claim that this NR5A1/SF-1 variant is a benign polymorphism that 304 

does not play a role in the pathogenesis of DSD. Therefore, we strongly recommend reanalyzing DSD 305 

patients of whom phenotype has been thought to be explained by this variant in order to find the real 306 

underlying genetic cause.  307 
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S1 Figure. Potential oligogenic interaction networks of DSD- and NR5A1-related genes identified in 333 

specific DSD individuals harbouring the NR5A1/SF-1 p.Gly146Ala variant. Networks were identified for 334 

patients 3, 12 and 14 respectively. To search for potential oligogenic disease networks, the Oligogenic 335 

Resource for Variant AnaLysis (ORVAL, https://orval.ibsquare.be/) was used. Nodes represent genes 336 

and edges connect two genes only, if between them there is at least one candidate disease-causing 337 

variant combination predicted by VarCoPP. The colour of the edge represents the pathogenicity score 338 

for that pair of genes. This score is represented in a colour range from brown (higher pathogenicity 339 

score) to yellow (lower pathogenicity score). 340 
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Table 1. Phenotype of the DSD patients harbouring the NR5A1/SF-1 p.Gly146Ala variant. Further details including biochemical data are given in 
Supplementary table 2.  

Patient/ 
Origina 

Karyotype/Sex 
assignmentb Zygosityc 

Age range 
at 

diagnosis 

External genital 
phenotyped Internal phenotype Gonadal/reproductive function Other organ 

anomalies 

11 46,XY/M Het 0-5y Mild Laparoscopy: absence of female organs and gonadal tissue. 
Histology: undifferentiated tissue.  

0-5y, abnormal (no T response to 
hCG) No 

22 46,XX/M Het 6-10y Opposite sex 
US: no Müllerian ducts. Histology: infantile ovary with 

follicular cysts, fallopian tube, atrophic uterus, mesonefric 
remnant. 

hCG test with hyperandrogenic 
reaction for typical male  No 

32 46,XY/M Het 6-10y Severe US: inguinal testes (right 0.5cc; left 0.6cc). 6-10y, normal hCG test No 

42 46,XX/M Hom 6-10y Opposite sex 
Laparoscopy: bilateral gonads in inguinal canal and iliac 

area, atrophic uterus. No Müllerian ducts. Histology: 
bilateral ovotestes. 

hCG test with hyperandrogenic 
reaction for typical male  No 

52 46,XX/M Hom 0-5y Opposite sex 
US: inguinal bilateral gonads (1ml), no Müllerian ducts. 

Histology: ovarian tissue (left), testicular and ovarian tissue 
(right). 

hCG test with hyperandrogenic 
reaction for typical male No 

62 46,XY/M Het 0-5y Mild MRI: absence of uterus and ovaries. 0-5y, normal baseline and hCG 
test 

Anal agenesis, iron 
deficiency 

72 46,XY/M Hom 6-10y Severe US: scrotal right testis (15x9mm), inguinal left testis 
(13x6mm). 

6-10y, normal baseline and hCG 
test No 

82 46,XY/F Het 6-10y Opposite sex US: vaginal opening, no uterus. Histology: normal testis 
tissue at age ranges 6-10y and 21-25y. 

31-35y, abnormal (high 
gonadotropins and low T) No 

93 46,XY/M Hom 6-10y Typical ND 6-10y, high T at baseline Pituitary adenoma, 
hearing loss 

102 46,XX/M Hom 0-5y Opposite sex US: prepubertal uterus. Histology: ovarian tissue (left), 
testicular and ovarian tissue (right). Prepubertal No 

111 46,XY/M Het 0-5y Mild US: normal size intrascrotal testes. 11-15y, normal (normal T and 
gonadotropins) No 

123 46,XY/M Het 0-5y Severe ND ND Left renal agenesis, 
lipomeningocele 

131 46,XY/F Het 11-15y Opposite sex Infantile uterus and ovaries by ultrasound. ND Abdominal obesity 

141 46,XY/M Het 0-5y Severe US: normal uterus, absence of gonads.  Abnormal (high gonadotropins 
and normal T) No 

F, female; hCG, human chorionic gonadotropin; M, male; MRI, magnetic resonance imaging; ND, not determined; T, testosterone; US, ultrasound; y, years. aOrigin of the patients: 1Spanish; 
2African;3Asian. bNone of the patients was sex re-assigned. cZygosity of the NR5A1/SF-1 p.Gly146Ala variant identified by targeted gene panel. dSeverity of the atypical phenotype of the 
external genitalia was classified according to (74). 
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Table 2. Additional gene variants identified in the DSD patients harbouring the NR5A1/SF-1 p.Gly146Ala variant. 

Patient Chromosome 
position Gene (Name) Variant Type dbSNP Zygosity Previously 

reporteda 

1 

4:1807384 FGFR3 (Fibroblast Growth Factor 
Receptor 3)  c.1633_1634del; p.Cys545Hisfs*17 frameshift deletion ND het  

5:5232601 ADAMTS16 (ADAM Metallopeptidase 
with Thrombospondin Type 1 Motif 16) c.1822_1823del; p.His608* stopgain ND het  

19:7184641 INSR (Insulin Receptor) c.660_661del; p.Pro220Hisfs*4 frameshift deletion ND het  

3 

2:120989442 GLI2 (GLI Family Zinc Finger 2) c.3528G>T; p.Gln1176His nonsynonymous SNV rs139686081 het  

8:60743055 CHD7 (Chromodomain Helicase DNA 
Binding Protein 7) c.1623C>A; p.His541Gln nonsynonymous SNV ND het  

11:77181567 MYO7A (Myosin VIIA) c.2882G>A; p.Gly961Asp nonsynonymous SNV rs199575418 het  
12:47865148 VDR (Vitamin D Receptor) c.176C>T; p.Thr59Ile nonsynonymous SNV rs145002466 het  

6 10:33330774 NRP1 (Neuropilin 1) c.182C>A; p.Pro61Gln nonsynonymous SNV ND het  

8 2:48698724 
LHCGR (Luteinizing 

Hormone/Choriogonadotropin 
Receptor) 

c.757T>C; p.Ser253Pro nonsynonymous SNV ND hom  

9 11:32428517 WT1 (WT1 Transcription Factor) c.764T>A; p.Met255Lys nonsynonymous SNV rs377573993 het  

10 
9:114275766 COL27A1 (Collagen Type XXVII Alpha 1 

Chain) c.3715C>T; p.Arg1239Trp nonsynonymous SNV rs143724625 het  

15:41564270 TYRO3 (TYRO3 Protein Tyrosine Kinase) c.666_667insCACTGCCTGCAGCCC 
CCTTCAACATCACC; p.Ala223Hisfs*21 frameshift insertion ND het  

11 16:984721 SOX8 (SRY-Box Transcription Factor 8) c.676A>C; p.Thr226Pro nonsynonymous SNV ND het  

12 

7:75985941 POR (Cytochrome P450 
Oxidoreductase) c.1679C>T; p.Thr560Met nonsynonymous SNV rs574694698 het  

16:2114399 PKD1 (Polycystin 1, Transient Receptor 
Potential Channel Interacting) c.2624C>T; p.Pro875Leu nonsynonymous SNV ND het  

16:30737182 SRCAP (Snf2 Related CREBBP Activator 
Protein)  c.7142G>A; p.Arg2381His nonsynonymous SNV rs765139685 het  

17:72123563 SOX9 (SRY-Box Transcription Factor 9) c.710dup; p.Pro238Thrfs*14 frameshift insertion ND het Campomelic 
dysplasia (75) 

13 X:67721837 AR (Androgen Receptor) c.2323C>T; p.Arg775Cys nonsynonymous SNV rs137852562 hemi AIS (66) 

14 
11:77194460 MYO7A (Myosin VIIA) c.4259G>A; p.Arg1420His nonsynonymous SNV rs568337942 het  

16:984739 SOX8 (SRY-Box Transcription Factor 8) c.694A>C; p.Lys232Gln nonsynonymous SNV rs1596200787 het  
AIS, androgen insensitivity syndrome; Hemi, hemizygous; Het, heterozygous; Hom, homozygous; ND, not determined; POI, primary ovarian insufficiency.  
Variants classified as pathogenic, likely pathogenic or as of unknown significance according to the ACMG (American College of Medical Genetics) are highlighted in bold. 
aPreviously associated disease to the specific variant identified in this work. 
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Figure 1. Algorithm of genetic workup. A. Mode of genetic analysis, e.g. panel and whole exome 
sequencing (WES). Three patients were identified with pathogenic variants in LHCGR, WT1 and AR by 
panel analysis and were not further analyzed by whole-exome sequencing (WES). B. Filtering 
algorithm of genetic data. Steps used for variant filtering after WES of eleven DSD patients harboring 
the NR5A1/SF-1 p.Gly146Ala variant are depicted (letters a to f). Final candidates and their possible 
impact are listed and characterized in Table 2 and Supplementary Table 3. 
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Figure 2. External genital phenotype of the 14 DSD patients harboring the NR5A1/SF-1 p.Gly146Ala 
variant shown with respect to their karyotype. 
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Figure 3. Genetic variants identified in 14 DSD patients harboring the NR5A1/SF-1 p.Gly146Ala 
variant illustrated with respect to the known pathways of male and female sex determination and 
differentiation. The scheme shows an overview of involved genes and their currently assumed 
relationship to sexual development. Genes with variants identified by whole exome sequencing in 
the patients have specific colors. In dark blue: candidate genes in patient 1; in brown: candidate 
genes in patient 3; in green: candidate genes in patient 6; in yellow: candidate genes in patient 8; in 
dark red: candidate genes in patient 9; in red: candidate genes in patient 10; in pink: candidate 
genes in patient 11; in light blue: candidate genes in patient 12; in purple: candidate genes in patient 
13; in orange: candidate genes in patient 14; in dark grey: known genes involved in sexual 
development. Interrogation mark (?): function/timing/location is not clear; arrows: activation; 
inhibitors: inhibition; lines: interaction/partnership; dashed lines/arrows: hormone production. 
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