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Abstract 12 

Previous studies found that higher species richness of predators could reduce spillover risks of 13 

rodent-borne diseases. However, the effects on bat-borne diseases remains to be investigated. To this 14 

regard, we evaluated associations between predator species richness and the spillover events of 15 

Ebolavirus and Marburgvirus, the highly pathogenic bat-borne diseases in Africa. Stacked species 16 

distribution model approach was used to estimate predator species richness and Logistic regression 17 

analyses that considered spatiotemporal autocorrelations were conducted. The results showed that the 18 

third quartile (OR = 0.02, 95% CI 0.00–0.84) and fourth quartile (0.07, 0.00–0.42) of species richness 19 

of Strigiformes and the third quartile (0.15, CI 0.01–0.73) and fourth quartile (0.53, 0.03–0.85) of 20 

Colubridae showed significantly lower risks of spillover transmission of Ebolavirus. However, no 21 

significant association was found between predator species richness and Marburgvirus spillover. The 22 

results support a possible effect of predator species diversity on spillover suppression.  23 

 24 
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Introduction 27 

Ebolavirus and Marburgvirus are non-segmented, negative-stranded RNA viruses belonging to the 28 

family Filoviridae, a subgroup of the order Mononegavirales (1). There are six virus species in the 29 

Ebolavirus genus (Ebola virus, Sudan virus, Bombali virus, Tai Forest virus, Bundibugyo virus, and 30 

Reston virus) and two species in the Marburgvirus genus (Marburg virus and Ravn virus) (2). With 31 

the exception of the Reston virus, the viruses are considered indigenous to Africa, where multiple 32 

human outbreaks have occurred (3, 4). Filovirus epidemics cause catastrophic losses of human and 33 

animal life given the high case fatality rates, which are typically 60–70% but can reach 90% (1).  34 

Significant progress in shortening the list of potential filovirus reservoir hosts has been made 35 

during the past decade. Apart from the Rousettus aegypticus fruit bat, which has repeatedly tested 36 

positive for Marburgvirus, antibodies against various Ebola species have been found in at least 14 37 

other species of bats; however, only Epomops franqueti, Hypsignathus monstrosus, and Myonycteris 38 

torquata tested positive using PCR methods (5-8). The viruses may spread to other animals, including 39 

non-human primates, duikers (antelopes), or humans, from bat species shown to be vulnerable to 40 

filoviruses. Humans might contract the virus by handling or eating so-called bushmeat, such as 41 

roosting bats close to human dwellings, or via contact with infected mammalian bodily fluids (1). 42 

Predators impact prey density, distribution, and behavior both directly and indirectly. Theoretically, 43 

such impacts might cascade to lower trophic levels and thus reduce the risk of zoonotic spillover (9, 44 

10). Generalist predators (e.g., certain snakes, cats, owls, and raptors) that are either non-specialized 45 

in terms of prey selection and can thus move among target species, or that are highly mobile and 46 

therefore wander in search of better hunting grounds, have been suggested to chronically suppress 47 

prey numbers and thus stabilize population dynamics (9, 11). Predator non-lethal effects can influence 48 

the behavioral patterns of prey and reduce prey fitness. The predatory risk cues detected by prey, 49 

including visual, auditory, or chemical signals, allow them to identify the presence of predators and 50 

consequently alter their behavior in response to the danger of predation (12, 13). Few vertebrate 51 

predators specialize in hunting bats, and bat predation appears to be mainly opportunistic in nature. 52 

However, generalist and opportunistic predators may exert substantial effects on bat ecology, 53 

eventually reducing the rate of contact between reservoir hosts and humans and thus mitigating the 54 

risk of zoonotic spillover (9, 12, 14). 55 

We hypothesized that high predator species richness will reduce the zoonotic spillover of 56 

filoviruses in Africa. We examined the associations between predator species richness and historical 57 
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spillovers of Ebolavirus and Marburgvirus based on distributional data from known predators of bats 58 

only, as well as satellite-derived environmental data. 59 

 60 

Methods 61 

Study design and study area 62 

 In this ecological study, we used stacked species distribution models and the maximum entropy 63 

method (Maxent modeling) to calculate the number of predator species. We considered potential 64 

confounding factors when conducting logistic regression analyses of the relationship between predator 65 

species richness and spillover risk. We included all African countries with at least one reported human 66 

case of Ebola or Marburg infection. We confined the study regions to areas proposed in previous 67 

studies to harbor the reservoir species E. franqueti, H. monstrosus, and M. torquata of Ebolavirus and 68 

the R. aegypticus fruit bat of Marburgvirus (5-8). The distribution ranges were constructed using the 69 

geographical database of the International Union for the Conservation of Nature (IUCN) (15). To 70 

examine the relationship between predator species richness and filovirus cases, three datasets were 71 

compiled: (i) a comprehensive list of index case locations, (ii) geographical information on the 72 

distributions of predators and reservoir hosts, and (iii) environmental factors suggested to be 73 

ecologically significant. R software (v. 4. 2. 1) (16) was used for all data processing and analyses. The 74 

“dismo” package (17) was employed to model species niches. Bayesian parameter estimations that 75 

considered spatial and spatiotemporal autocorrelations were conducted using the “CARBayes” and 76 

“CARBayesST” packages (18).  77 

Outcome definitions 78 

 We identified index cases and rebuilt zoonotic spillover cases in both space and time. We searched 79 

the formal scientific literature using PubMed and the Web of Science for data on all historical 80 

filovirus outbreaks (3-8, 19). We sought to recreate the outbreaks in detail and locate the most likely 81 

index cases, thus infected humans who had interacted with disease-causing non-human sources. Cases 82 

reported between 2000 and 2021 were included in analysis because the environmental covariates used 83 

in the present report share their temporal ranges since that time. On the map of the study regions, we 84 

generated 1˚ × 1˚ grids and classified them in terms of their intersections with the point locations of 85 

index cases.  86 
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Niche modeling and diversity maps 87 

 The suitability of habitats for natural predators of bats, i.e., the order Accipitriformes, Strigiformes, 88 

and Carnivora and family Colubridae and reservoir hosts in the order Chiroptera, was predicted using 89 

a simple species distribution modeling strategy (also termed ecological niche modeling), which 90 

integrates the reported occurrences of species with local climatic and geographic information. We 91 

used a maximum entropy approach (Maxent modeling) (20); this is one of the most widely used 92 

models when identifying species distributions. The approach employs presence-only data, which are 93 

helpful when modeling small and mobile species because it is (appropriately) challenging to establish 94 

their absence.  95 

 The occurrence data of included species within the study area (thus the African continent: 12.69 to –96 

22.42 N and 41.57 to –14.97 E) were those of the Global Biodiversity Information Facility. Species 97 

that occurred at more than 10 points were included in the models. Climatic and geographical data 98 

served as predictive variables when simulating the distributions of the species. The bioclimatic 99 

variables were derived from WorldClim ver. 2.0 (21) and the elevation data from the Shuttle Radar 100 

Topography Mission (ver. 4) (22) with a spatial resolution of 2.5 minutes (~20 km2). The variables 101 

included in the modeling process were considered ecologically crucial in terms of species distribution, 102 

and they evidenced one-to-one intercorrelations < 0.7. These variables were the mean diurnal range 103 

(Bio02), temperature seasonality (Bio04), maximum temperature in the warmest month (Bio05), 104 

precipitation in the wettest quarter (Bio16), precipitation in the warmest quarter (Bio18), precipitation 105 

in the coldest quarter (Bio19), and the elevation. When fitting the models for each species, all 106 

variables were verified using the Jackknife test (20).  107 

 We used k-fold cross-validation to assess the models. Next, we converted the habitat suitability into 108 

a binary value (suitable habitat 1; unsuitable habitat 0). The threshold was the modeled prevalence 109 

closest to the observed prevalence. The numbers of species for which suitable habitat pixels in each 110 

grid exceeded 50% of the total grid areas were counted.  111 

Data acquisition and preprocessing 112 

Global climatic data from 1970 to 2000 were collected from WorldClim ver. 2.0 (21), which features 113 

a spatial resolution of 2.5 minutes (~ 20 km2) and offers monthly average precipitation and 114 

temperature data in raster format. The average annual precipitation and temperature for each grid 115 

region were computed.  116 
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 The geographical confounding factors collected included elevation land cover, agricultural land use, 117 

and forest cover data. We obtained elevation data from the Shuttle Radar Topography Mission (22), 118 

which offers 90-m-scale worldwide elevation data in raster format. The values for each grid were 119 

averaged. Data on agricultural land use during 2000–2021 were gathered in raster format (23). The 120 

dataset contains the most likely International Geosphere-Biosphere Programme class for each 121 

0.05ºpixel, and we calculated the proportion of each International Geosphere-Biosphere Programme 122 

class for all grids of interest. The Global Forest Change (GFC) (24) data yielded forest cover 123 

information. In terms of tree canopy cover, the likelihood of a tree canopy is presented in raster 124 

format and ranges from 0 to 100. We used 75 as the cutoff when determining whether a raster cell 125 

included a forest. We collected data on forest loss, defined as a change from a forest to a non-forest 126 

state, during 2000–2021. We then computed the proportion of forest coverage in each grid by 127 

subtracting the area of forest loss from that of the tree canopy cover.  128 

 The sociodemographic factors analyzed were the gross domestic product, human development index, 129 

population density, and human footprint score. Gross domestic product and human development index 130 

data from 1990–2015 were gathered, and the average values for each grid computed (25). The impact 131 

of human activity on the environment during 2000–2018 was measured using the human footprint 132 

score, which presents more significant anthropogenic pressures as higher scores (26). The values for 133 

each grid were averaged. Population density data were acquired from the WorldPop website (27). A 134 

population count dataset of the unconstrained global mosaics from 2000–2020 at a resolution of 1 km 135 

was used to calculate the population density for each grid. 136 

 Some variables did not cover the entire period from 2000 to 2021; in such cases, data from previous 137 

years were used to fill in for missing data. Detailed descriptions of each variable, including the 138 

temporal range and spatial resolution, can be found in (Supplementary Table 1). 139 

Statistical analysis 140 

 We developed logistic regression models for the study grids to determine odds ratios (ORs) with 95% 141 

confidence intervals (95% CIs) for the relationship between predator species richness and filovirus 142 

cases. We adjusted for all possible confounders except for variables with a Pearson correlation 143 

coefficient > 0.7 and variance inflation factor (VIF) > 10. To handle potential species richness 144 

overestimation, the indicators of predator species richness were entered into saturated models as 145 

categorical variables. We defined the Ebolavirus categories by quartiles and the Marburgvirus 146 
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categories by medians. The categories with the lowest number of predator species served as the base 147 

categories.  148 

 We used Bayesian spatiotemporal models to derive the spatial and temporal patterns over 100,000 149 

iterations with a burn-in of 95,000 when the model residuals were autocorrelated as revealed by the 150 

Moran I test and Durbin–Watson test. The following are the mathematical expressions of the models:  151 

Model 1: ln � �

���
�  �  �₀ 	  � 
   	   �   152 

Model 2: ln � �

���
�  �  �₀ 	  � 
   	    �   	   �          153 

Model 3: ln � �

���
�  �  �₀ 	  � 
   	    �   	   �    	     ₁�      154 

Model 4: ln � �

���
�  �  �₀ 	  � 
   	    �   	   �    	    �       155 

Model 5: ln � �

���
�  �  �₀ 	  � 
   	    �   	   �    	    �    	  φ     156 

Where p is the probability of filovirus emergence; the constant β0 is the intercept; βn is the regression 157 

coefficient; Xn is the set of predictive variables; vn is the non-spatial random component for grid n; un 158 

is the structured spatial random component for grid n; t is the temporal trend of the data with a 159 

constant term a1; ϒm is the temporal random-walk component; and the random effect φmn is the 160 

space–time interaction term. To choose the model affording the best performance in terms of the 161 

Bayesian framework, we compared Models 1–5 using the deviance information criterion (DIC) and 162 

the Watanabe–Akaike information criterion (WAIC).  163 

Sensitivity analysis 164 

We performed sensitivity analysis using the “R-INLA” package for Bayesian parameter estimation 165 

(28). We estimated species richness using a geographical database from the IUCN website (15). Only 166 

species categorized as ‘extant’ that overlapped the species included in Maxent modeling were used. 167 

The numbers of species, the distribution ranges of which spanned more than 50% of a specific grid, 168 

were counted after intersecting the polygons representing the range data for the species. Finally, we 169 

constructed models using the species richness variables calculated via Maxent modeling and included 170 

only species reported to prey on bats. 171 

 172 
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Results 173 

Processing datasets  174 

In total, 32 index cases of Ebolavirus and 12 of Marburgvirus were identified across the African 175 

continent. The times of disease occurrence span the last four decades, starting with the first 176 

Marburgvirus case in 1976 (Figure 1A). The locations of the outbreaks spanned from Guinea in West 177 

Africa to Uganda and Kenya in East Africa (Figure 1B). We classified study grids by their 178 

intersections with the point locations of index cases reported between 2000 and 2021 (Figure 2A, B).  179 

  180 
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 181 

Fig 1. The locations and points of occurrence of filovirus outbreaks in Africa. (A) Shows the 182 

reported outbreaks of Ebolavirus and Marburgvirus through time, with its height along the y-axis 183 

reflect the number of cases. (B) Illustrates a map of the index cases for each outbreak, categorized by 184 

genus and species of the viruses. The map data of the African continent was employed to draw base 185 

maps in the figure. (Available from: https://www.diva-gis.org/). 186 

 187 
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 189 

Fig 2.  Study area and study units. (A) Shows the study grids with and without Ebolavirus index 190 

cases. (B) Shows the study grids with and without Marburgvirus index cases. The grids with dark 191 

orange color represent that the region contains filovirus index cases. The study area is confined to 192 

countries with at least one filovirus case. We clipped the area with the reservoir species’ 193 

distribution ranges. The map data of the African continent was employed to draw base maps in the 194 

figure. (Available from: https://www.diva-gis.org/). 195 

 196 
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Descriptive analysis 198 

A total of 524 grids were used for Ebolavirus analysis and 197 for Marburgvirus analysis. Crude 199 

univariate analysis revealed certain characteristics of the study grids (Tables 1, 2). The predator 200 

species richness of the orders Accipitriformes and Strigiformes was lower in grids with Ebolavirus 201 

outbreaks than in those without (Table 1). Also, grids with Marburgvirus outbreaks evidenced lower 202 

species richness for the predator orders Accipitriformes, Strigiformes, and Carnivora and the family 203 

Colubridae (Table 2). All possible predictive variables were included in multivariate logistic models 204 

after screening variables with a Pearson correlation coefficient > 0.7 (Supplementary Fig. 1-2). The 205 

VIF values were also calculated to assess model multicollinearity. No predictive variable had a VIF > 206 

10. 207 

 208 
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Table 1. Summary of descriptive analysis for Ebolavirus index cases. 210 

Variables 
Not occurred 

(n = 504) 
Occurred 
(n = 20) 

Welch's 
t-test 

Wilcox rank 
sum test 

Avian species richness 
(order Accipitriformes) 

5.42 ± 7.68 3.90 ± 6.11 0.29 0.27 

Avian species richness 
(order Strigiformes) 

1.46 ± 2.24 0.70 ± 1.17 < 0.05 < 0.05 

Cat species richness  
(order Carnivora) 

5.01 ± 5.39 5.25 ± 7.04 0.88 0.27 

Snake species richness 
(family colubridae) 

6.73 ± 6.70 7.40 ± 8.93 0.74 0.68 

Bat species richness  
(order Chiroptera) 

10.6 ± 9.17 9.65 ± 10.70 0.71 0.15 

Human foot print score 8.15 ± 4.09 9.57 ± 5.48 0.26 0.41 
Elevation 707.00 ± 402.00 701.00 ± 333.00 0.93 0.99 
Precipitation  
(annual average) 

69.30 ± 47.60 116.00 ± 25.20 
< 

0.001 
< 0.001 

Temperature  
(annual average) 

23.70 ± 2.43 23.90 ± 1.39 0.69 0.88 

Population density  
(per km^2) 

37.10 ± 66.80 65.60 ± 89.70 0.18 0.06 

Gross Domestic Product 
(per capita) 

2784.00 ± 
3400.00 

1733.00 ± 
2134.00 

< 0.05 < 0.05 

Human Development Index 0.43 ± 0.07 0.41 ± 0.06 0.44 0.26 
Forest cover (%) 30.70 ± 47.40 57.60 ± 45.80 < 0.05 < 0.001 
Agricultural land use class 
(% of evergreen broadleaf 
forests) 

27.50 ± 39.40 55.10 ± 43.60 < 0.05 < 0.001 

Agricultural land use class 
(% of deciduous broadleaf 
forests) 

1.07 ± 4.19 0.04 ± 0.19 < 0.05 0.06 

Agricultural land use class 
(% of mixed forests) 

0.79 ± 3.50 0.19 ± 0.83 < 0.05 0.22 

Agricultural land use class 
(% of woody savannas) 

12.10 ± 21.30 13.30 ± 17.50 0.78 0.46 

Agricultural land use class 
(% of savannas) 

33.70 ± 34.30 19.70 ± 26.80 < 0.05 < 0.05 

Agricultural land use class 
(% of grasslands) 

20.50 ± 32.30 0.60 ± 1.59 
< 

0.001 
< 0.001 

Agricultural land use class 
(% of permanent wetlands) 

0.35 ± 1.36 0.52 ± 1.44 0.59 0.34 

Agricultural land use class 
(% of croplands) 

1.19 ± 4.71 0.37 ± 0.87 0.51 0.59 
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Agricultural land use class 
(% of urban and built-up 
lands) 

0.07 ± 0.39 0.20 ± 0.67 0.41 0.14 

Agricultural land use class 
(% of cropland/natural 
vegetation mosaics) 

1.58 ± 7.87 9.84 ± 16.80 < 0.05 < 0.001 

 211 

  212 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.12.23285832doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.12.23285832


 

13 

 

Table 2. Summary of descriptive analysis for Marburgvirus index cases. 213 

Variables 
Not occurred  

(n = 190) 
Occurred  
(n = 7) 

Welch's 
t-test 

Wilcox rank 
sum test 

Bat species richness 
(order Chiroptera) 

9.09 ± 9.00 4.57 ± 3.10 < 0.05 0.11 

Avian species richness 
(order Accipitriformes) 

7.39 ± 10.10 1.14 ± 1.86 < 0.05 < 0.05 

Avian species richness 
(order Strigiformes) 

2.04 ± 3.05 0.14 ± 0.38 < 0.05 < 0.05 

Cat species richness 
(order Carnivora) 

4.82 ± 6.90 2.57 ± 2.90 0.11 0.19 

Snake species richness 
(family colubridae) 

5.27 ± 7.15 3.00 ± 2.52 < 0.05 0.47 

Human foot print score 10.30 ± 4.47 13.90 ± 6.53 0.19 0.09 
Elevation 778.00 ± 459.00 1084.00 ± 453.00 0.13 0.09 
Precipitation (annual 
average) 

64.70 ± 38.80 99.80 ± 32.60 < 0.05 < 0.05 

Temperature (annual 
average) 

23.00 ± 2.48 22.00 ± 2.02 0.24 0.21 

Population density (per 
km^2) 

56.30 ± 83.90 157.00 ± 135.00 < 0.05 < 0.05 

Gross Domestic Product 
(per capita) 

4085.00 ± 
4863.00 

1657.00 ± 
1536.00 

< 0.05 < 0.05 

Human Development 
Index 

0.47 ± 0.08 0.42 ± 0.04 < 0.05 0.19 

Forest cover (%) 27.10 ± 45.90 27.00 ± 37.00 0.92 0.75 
Agricultural land use 
class 2 (% of evergreen 
broadleaf forests) 

22.50 ± 34.80 24.40 ± 32.40 0.82 0.67 

Agricultural land use 
class 4 (% of deciduous 
broadleaf forests) 

0.38 ± 2.68 0.00 ± 0.00 < 0.05 0.23 

Agricultural land use 
class 5 (% of mixed 
forests) 

0.19 ± 1.52 0.00 ± 0.00 0.09 0.41 

Agricultural land use 
class 8 (% of woody 
savannas) 

8.71 ± 15.70 14.40 ± 19.20 0.46 0.57 

Agricultural land use 
class 9 (% of savannas) 

28.30 ± 31.50 28.40 ± 30.10 0.89 0.58 

Agricultural land use 
class 10 (% of 
grasslands) 

30.90 ± 32.10 4.50 ± 8.41 
< 

0.001 
< 0.05 
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Agricultural land use 
class 11 (% of 
permanent wetlands) 

0.26 ± 1.42 0.65 ± 0.93 0.32 0.29 

Agricultural land use 
class 12 (% of 
croplands) 

2.09 ± 6.79 3.61 ± 8.43 0.65 0.23 

Agricultural land use 
class 13 (% of urban and 
built-up lands) 

0.10 ± 0.42 0.46 ± 1.12 0.43 0.15 

Agricultural land use 
class 14 (% of 
cropland/natural 
vegetation mosaics) 

3.99 ± 9.20 23.20 ± 24.90 < 0.05 < 0.001 

 214 

Model selection and validation 215 

We constructed saturated models using all available predictive variables and evaluated those 216 

variables from an epidemiological perspective (Supplementary Fig. 3). To derive the association 217 

between predator species richness and the historical incidence of Ebolavirus and Marburgvirus in 218 

Africa from 2000 to 2021, we used the average values of the predictive variables and the total 219 

emergence counts for each grid over that period. At the grid level, the spatial dependencies of filovirus 220 

incidences were assessed using the Moran I statistic; the values for Ebolavirus and Marburgvirus 221 

were 0.06 and −0.03, respectively, when using a row-standardized neighborhood structure 222 

(Supplementary Fig. 4-5). The Moran I statistic indicated that only the Ebolavirus incidence had a 223 

statistically significant spatial or temporal dependency (Supplementary Fig. 4). The Durbin–Watson 224 

test results showed that the Ebolavirus incidence data were autocorrelated in terms of the residuals of 225 

the models, with p-values < 0.05 (Supplementary Table 2). The performances of the models in terms 226 

of spatial and spatiotemporal autocorrelations are shown (Supplementary Table 3). Smaller DIC and 227 

WAIC values indicate better performance. Based on these results, we fitted Models 1–5 to display the 228 

association between predator species richness and the historical incidence of Ebolavirus. For 229 

Marburgvirus, we fitted the model with the average values in line with the Moran I and Durbin–230 

Watson test results.  231 
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Model-estimated association of predator species richness and zoonotic 233 

spillover of filoviruses 234 

The results of the final models are shown in Figures 3 and 4. The coefficients and ORs of all 235 

covariates are listed (Supplementary Table 4-8). Of all models, Model 2 for Ebolavirus exhibited the 236 

smallest DIC and WAIC in terms of spatial autocorrelation. In this model, the fourth quartile (OR = 237 

0.04, 95% CI 0.00–0.98) of Strigiformes species richness and the third quartile (OR = 0.15, 95% CI 238 

0.00–0.81) of Colubridae species richness exhibited significantly lower odds of Ebolavirus index 239 

cases (Figure 3B, Supplementary Table 5). This trend was maintained in Model 5, which showed the 240 

lowest DIC and WAIC of all models in terms of spatiotemporal autocorrelation. In this Model, the 241 

third quartile (OR = 0.02, 95% CI 0.00–0.84) and fourth quartile (OR = 0.07, 95% CI 0.00–0.42) of 242 

Strigiformes species richness, the third quartile (OR = 0.15, 95% CI 0.01–0.73) and fourth quartile 243 

(OR = 0.53, 95% CI 0.03–0.85) of Colubridae species richness, and the second quartile (OR = 0.23, 244 

95% CI 0.05–0.94) of Carnivora species richness evidenced significantly lower odds of Ebolavirus 245 

index cases (Figure 3E, Supplementary Table 8). However, none of the estimated parameters were 246 

significant for the other quartiles of Carnivora, Colubridae, and Strigiformes. In the models for 247 

Marburgvirus, we found no evidence of an association between predator species richness and 248 

Marburgvirus spillover (Figure 4, Supplementary Table 9). In addition, negative associations between 249 

predator species richness and Ebolavirus emergence were significant for some of the model quartiles 250 

when the “R-INLA” package was used, or when the species richness variables were calculated using 251 

the IUCN polygons (Supplementary Fig. 6, Supplementary Table 10-14; Supplementary Fig. 7, 252 

Supplementary Table 15-19). Models using the species richness variables including predator species 253 

reported to prey on bats did not support any significant association. (Supplementary Fig. 8, 254 

Supplementary Table 20-24). No significant association was revealed in the sensitivity analyses for 255 

Marburgvirus (Supplementary Fig. 9-10, Supplementary Table 25-26). 256 

 257 
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 259 

Fig 3. Estimated ORs for Ebolavirus incidence according to the degree of species richness.  (A) 260 

The result of Model 1. (B) The result of Model 2. (C) The result of Model 3. (D) The result of Model 261 

4. (E) The result of Model 5. Model 2 and Model 5 were the best-fitting models with the greatest DIC 262 

and WAIC, considering spatial and spatio-temporal autocorrelation, respectively. The dots indicate the 263 

estimated ORs, with error bars representing the corresponding 95 % Wald’s credible intervals. Red 264 

means that the error bar does not intersect 1. The y-axis is shown on a logarithmic scale. The authors 265 

generated draws of each predator. 266 

 267 
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 269 

Fig 4. Estimated ORs for Marburgvirus incidence according to the degree of species richness. 270 

The dots indicate the estimated ORs, with error bars representing the corresponding 95 % Wald’s 271 

credible intervals. The y-axis is shown on a logarithmic scale. The authors generated draws of each 272 

predator. 273 

 274 

Discussion 275 

 We evaluated the association between predator species richness and filovirus spillover in Africa. The 276 

results showed that higher species richness in the in the order Strigiformes and family Colubridae was 277 

associated with lower odds of Ebolavirus spillover compared with that in regions with lower predator 278 

species richness. Regardless of the approach taken to calculate species diversity, this association was 279 

robust. 280 

 The negative association between predator species richness and the risk of Ebolavirus spillover 281 

suggests top–down regulation of Ebolavirus reservoir hosts (i.e., bats) by predators. The crucial roles 282 

played by predators in terms of the functional diversity of ecological communities and the control of 283 
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populations of disease reservoir hosts have been reported previously (9, 10, 12). The greater the 284 

predator species richness (i.e., the numbers of predator species within an area), the greater the cascade 285 

effect on prey species. The growing body of research on bat predation is slowly improving our 286 

understanding of bat predators and the effects of predation on bat populations (12-14). Natural bat 287 

predators may include birds, snakes, and mammals. Although few vertebrate predators are known to 288 

specialize on bats, and bat predation appears to be mostly opportunistic in nature, generalist and 289 

opportunistic predators may substantially impact bat ecology (9, 12, 14) via both direct predation and 290 

non-lethal cascade effects, also termed trait-mediated indirect interactions. Thus, predators control the 291 

abundance, density, and behavior patterns of prey species, eventually reducing the rate of contact 292 

between reservoir hosts and humans and thus mitigating the risk of zoonotic spillover (9). Such 293 

suppression is relatively strong in regions wherein ecological diversity is well-maintained. 294 

The predator species richness of the order Strigiformes was significantly and negatively associated 295 

with the risk of Ebolavirus spillover. This is consistent with previous studies suggesting that owls are 296 

primary predators of bats (13, 14). Snakes are also supposed to prey on bats, via two strategies: 297 

positioning themselves near bat passage routes (i.e., near the entrances to bat roosts) and entering the 298 

refuges (12). Most such behaviors have been reported in tropical regions (29), perhaps because 299 

tropical bats roost by hiding among leaves or in open canopies that are accessible to most vertebrate 300 

predators. Bat predation is poorly understood; bats fly at night and hide by day. However, it appears 301 

that predation of bats by snakes in our study area is more significant than previously thought. More 302 

ecological research is required.  303 

Predator species richness was not significantly associated with Ebolavirus cases in models that 304 

considered only the species reported to prey on bats. This may be attributable to a lack of information 305 

on all bat predators. Although the number of known predators is increasing, such research is limited 306 

by the ecological characteristics of bats, which render observations of predation difficult (12). Also, 307 

Marburgvirus occurrences were not consistently associated with predator species richness. The 308 

composition of bat species in the Marburgvirus regions may explain these results. Given the high bat 309 

diversity in the study region, R. aegypticus, the primary reservoir host of Marburgvirus, would not be 310 

the dominant bat species there. Therefore, the extent of predator richness may not have had any 311 

discernible effect on bat activities (30). Further studies of bat ecology, diversity, and abundance, 312 

especially of R. aegypticus, are needed. 313 

Despite the strengths of this ecological study, several limitations should be noted. First, we estimated 314 

the diversity of predator species using stacked (aggregated) species distribution models. These models 315 
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may systematically overestimate site-level species richness (31). Therefore, we adjusted for bias using 316 

categorical values of predator species richness. Second, we did not include the temporal variations in 317 

species numbers from 2000 to 2021. However, such temporal changes can be ignored because most 318 

species considered are classified as IUCN “Least concern” (i.e., low risk of extinction). Third, when 319 

measuring species diversity, we simply calculated the numbers of species; we excluded the relative 320 

abundances of the predator species. Future research should employ other indicators of diversity such 321 

as the Simpson diversity index. Fourth, we considered only three bat species (E. franqueti, H. 322 

monstrosus, and M. torquate) that tested positive by PCR as primary reservoir hosts of Ebolavirus. 323 

Other probable reservoirs (bat species positive using serological methods) should be included in 324 

future studies. Finally, our study units were 1˚ × 1˚ grids; the use of a different scale (such as 0.5˚ × 325 

0.5˚) could have affected the results. This is the well-known modifiable area unit problem. 326 

 The world is still struggling to exit the unprecedented COVID-19 pandemic. It is predicted that the 327 

probability of pandemics caused by spillovers may increase in the coming decades, given the tectonic 328 

shifts in climate change and anthropogenic environmental degradation. However, although 329 

environmental and biodiversity changes may affect the spread of zoonotic diseases via various 330 

mechanisms, prevention of outbreaks still depends on containment, i.e., human disease surveillance, 331 

vaccines, and therapeutics. Here, we suggest that predator species richness may play a crucial role in 332 

mitigating the risk of filovirus spillover. Therefore, attempts to reduce the impacts of zoonotic 333 

diseases on public health should incorporate the concept of conservation epidemiology when deriving 334 

sustainable solutions that both maintain biodiversity and prevent zoonotic spillover, benefiting both 335 

humans and the environment. 336 

 337 

 338 
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