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Abstract 

Background B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common 

malignancy in children and adolescents. A combination of genetic predisposition, exposures 

to diverse microbiota, infections, and an immature immune system have been associated with 

BCP-ALL development. Genetic aberrations causing the progression of preleukemic cells to 

overt BCP-ALL have been identified, but drivers behind these aberrations remain largely 

unknown.  

Methods We analyzed seasonal variation in 1,380 BCP-ALLs, 385 acute myeloid leukemias 

(AML), 3,052 solid tumors and 1,945 brain tumors retrieved from the population-based 

Swedish Childhood Cancer Registry (SCCR), aged 0-18 years at diagnosis and diagnosed 

between 1995-2017. Cases were first aggregated into three types of quarters (3-month 

periods) based on the time of BCP-ALL diagnosis. Then, data was analyzed using a Bayesian 

Generalized Auto Regressive Integrated Moving Average with external variables 

(GARIMAX) model, adapted for count data via a negative binomial distribution.  

Results An informative seasonal variation in BCP-ALL with peak quarters in Jul-Sep and 

Jun-Aug was identified. Manual inspection revealed that the largest number of BCP-ALL 

cases (138 (10%)) was observed in August. No seasonal variation was detected in the 

comparison groups of childhood AML, brain tumors, or solid tumors.  

Conclusions Diagnosis of childhood BCP-ALL in Sweden displays seasonal variation with a 

peak during the summer months, in contrast to other tumor types. We present putative 

explanation models for this incidence peak that build on the hypothesis of infectious 

exposure/-s triggering the final progression to BCP-ALL diagnosis in at-risk individuals. 

Further studies using GARIMAX in larger populations with genetically confirmed BCP-ALL 

subtypes are warranted. 
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Introduction 

Acute lymphoblastic leukemia (ALL) is the most frequent cancer (25%) in children and 

adolescents below the age of 18 years. ALL is most commonly (85%) of B-cell precursor 

origin, termed BCP-ALL, a genetically heterogenous disease with subtypes defined by 

recurrent genetic aberrations, displaying highly variable prognosis, and used to guide modern 

treatment strategies (1). The most common subtypes, high hyperdiploidy (HeH)(51-67 

chromosomes) and ETV6::RUNX1 fusion, compose around 30% and 25% of cases, 

respectively, and have the most favorable prognosis. These recurrent genetic aberrations are 

considered to initiate BCP-ALL, establishing a preleukemic clone, often already in utero (2). 

 

Several studies have suggested that different prenatal environmental and lifestyle factors such 

as parental age, ethnicity, maternal diet, folate intake, exposure to irradiation, pesticides, and 

perinatal infections, may have a role in the formation of somatic genetic aberrations, that 

occur in utero as the first hit that eventually leads to childhood leukemia (3). Previous studies 

have shown that the ETV6::RUNX1 fusion is detected in cord blood in up to 1-5% of healthy 

newborns and that the preleukemic clones only give rise to clinically overt leukemia in 0.2%. 

Progression from pre-leukemic state to overt leukemia, which takes place in only a fraction of 

at-risk cases, requires secondary somatic genetic aberrations (4-6). 

 

Today, there is limited knowledge about the causes and mechanisms behind the progression 

from a preleukemic clone to overt childhood BCP-ALL. There is, however, increasing 

evidence supporting the contribution of genetic predisposition, the microbiome, infections, 

and the training of the child’s immune system to this equation. Several epidemiological and 

molecular studies suggest that infections, both passed from mother to fetus in utero and 

occurring in the child after birth, are potential triggers of BCP-ALL. Meanwhile, early 
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exposure to a diverse microbiota is protective, as indicated by lower frequencies of BCP-ALL 

in children who have been naturally born, breastfed, exposed to social contacts, and exposed 

to animals during the first year. Previous studies have also indicated heterogeneity in 

environmental exposures associated to different molecular subtypes of BCP-ALL (6-11). In 

addition, recent experimental studies have demonstrated that predisposed transgenic mouse 

models with ETV6::RUNX1 fusion or Pax5+/- heterozygosity only developed B-ALL when 

they were exposed to common infections, although with incomplete penetrance, 

highlighting the role of infections in leukemia development (12, 13).  

 

The seasonal patterns seen in the spread of many common infections, have motivated 

numerous studies of seasonal variation in ALL diagnosis. Seasonal variation has been 

detected in some studies but not supported by all, and reported peaks have been scattered 

throughout the year (Supplementary Table S5).  

 

In the current study, we used the population-based Swedish childhood cancer quality register 

to identify all children diagnosed with BCP-ALL, AML, brain tumors and solid tumors in 

Sweden between 1995-2018 and applied GARIMAX to study seasonal variation of cancer 

diagnosis.  

 
Material and methods 
Data sources 

Sweden has a renowned system of records for citizens in which demographic and healthcare 

data are collected continuously. All permanent residents are given personal identity numbers 

that enable linkage between the registers. The Swedish Childhood Cancer Registry (SCCR) 

and The Total Population Register (RTB) are the two sources of data used in this paper. 
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The Swedish Childhood Cancer Registry (SCCR) (https://sbcr.se/) is a National Quality 

Register containing diagnosis-based registries with information about children and 

adolescents (0-18 years of age) diagnosed with CNS-tumors, solid tumors and hematological 

malignancies. Registration of ALL and AML started in the 1970s, while CNS- and solid 

tumors in the 1980s. The registry has an overall coverage of 90%, where the lack of coverage 

is mostly due to variable criteria for registration of benign and other tumors that have not 

required oncologic treatment, i.e., coverage for malignant tumors can be considered close 

to100%. Data about ALL-cases includes information about date of diagnosis, clinical 

characteristics, treatment, outcome, immunophenotype, genetic subtype, and other clinically 

important genetic aberrations. The most abundant genetic subtypes of BCP-ALL, HeH and 

ETV6::RUNX1-fusion have been registered since 1992 and 2000, respectively, when robust 

cytogenetic methods to detect these aberrations were introduced in clinical diagnostic 

routines. The Total Population Registry (RTB) (14) holds information about date of birth, 

death, and emigration for all residents of Sweden who reside in the country for ≥12 months. 

 

Patient cohort 

We identified a cohort of 1,380 children and adolescents from the Swedish Childhood Cancer 

Registry (SCCR) diagnosed with BCP-ALL at the age of 0-18 years between January 1st,1995 

and December 31st, 2017. 444 had HeH subtype and 272 had ETV6::RUNX1 subtype. In the 

comparison group, ,  we identified 385 children with AML, 3,052 children with solid tumors, 

and 1,945 children with brain tumors. The distribution of BCP-ALL cases by genetic subtype, 

year of diagnosis, age group, and sex is presented in Table 1. The distribution of AML, solid 

tumor, and brain tumor cases by year of diagnosis, age group, and sex is presented in Table 

2. Only individuals born and diagnosed in Sweden were included.  
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Methods 

ARIMAX (autoregressive integrated moving average with external variables) models assume 

that the mean at time t depends on previous values (AR) and that additive errors are 

correlated over time (MA). Integration (I) refers to the process being an integrated one, and 

external variables (X) are independent variables introduced into the process (15). ARIMA is 

widely used for detecting seasonal variations across various fields (16-21). The Negative 

Binomial distribution generalizes ARIMAX (GARIMAX) for low case count data, 

accounting for excess variability better than the Poisson distribution in limited information 

settings (22). A Bayesian formulation makes the model less data-hungry and suitable for 

small sample inference (23). 

 

We implemented the Bayesian Generalized Autoregressive Integrated Moving Average 

model with exogenous variables (GARIMAX) for the identification of seasonal variation in 

BCP-ALL diagnosis. The key elements of this model are (i) generalization of the ARIMAX 

process to a count distribution via a negative binomial distribution, and (ii) a Bayesian 

formulation for model setup. The generalization allows searching for seasonality in sparse 

(low value count) data, whereas the Bayesian formulation is beneficial for the application of 

complex models in small sample settings. We used BIC (Bayesian information criterion) for 

lag selection. 

 

The GARIMAX analysis consisted of two steps. First, harmonic functions were applied as a 

covariate to detect periodicity, i.e., sinus or cosine waves, in all three quarter-types. In the 

second step, a quarterly seasonal matrix was applied as a covariate to detect the particular 

quarter when the wave has its peak. The seasonal matrix was constructed by factoring the 

quarters: the quarters of the year are treated as distinct categorical variables in the model. 
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This process involves creating indicator (dummy) variables for each quarter, allowing the 

model to account for seasonal effects by incorporating the specific influence of each quarter 

as separate factors. A "base quarter," the one with the lowest number of cases, was identified 

for each quarter type. Using the seasonal matrix, each base quarter was compared to the three 

remaining quarters to evaluate increases in quarterly case numbers. Statistical significance, 

termed 'informative' in the Bayesian framework, was assessed using the posterior distribution. 

If the credibility interval contains only positive or only negative values, then 95% of the 

posterior does not include 0, indicating it is unlikely that the covariate has no effect on the 

response variable. To confirm the presence of seasonality in the time series, both informative 

periodicity in the quarter type and an informative peak quarter were required. A more 

detailed method section is available in Supplementary information. 

 

Based on month of diagnosis, the analysis was first performed for the entire cohort, including 

BCP-ALL (1,380 cases), AML (385 cases), solid tumors (3,052 cases), and brain tumors 

(1,945 cases). The analysis was subsequently performed for each of the two large BCP-ALL 

subgroups: the HeH subtype (444 cases) and the ETV6::RUNX1 subtype (272 cases). Three 

quarter types, each consisting of four quarters, were defined in a total of 12 different quarters 

distributed over a year. 1st quarter type: Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec. 2nd quarter type 

Feb-Apr, May-Jul, Aug-Oct, Nov-Jan. 3rd quarter type: Mar-May, Jun-Aug, Sep-Nov, Dec-

Feb (Figure 1). This generated a total of 92 individual quarters from January 1st, 1995 and 

December 31st, 2017.  

 

Results 

In total, 1,380 BCP-ALL cases, 385 AML cases, 3,052 solid tumor cases, and 1,945 brain 

tumor cases that fulfilled inclusion criteria were identified in SCCR and included in the study 
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(Figure 2). For each of the two large BCP-ALL subgroups 444 cases were identified with the 

HeH subtype, and 272 cases with the ETV6::RUNX1 subtype. The distribution of age at 

diagnosis in the entire BCP-ALL cohort (Figure 3) displayed a well-known pattern with peak 

incidence at ages 2-6 years (6).  

 

Initially, the order of autoregression was identified for all groups (BCP-ALL, AML, Solid 

tumors, and Brain tumors) using Bayesian Information Criterion (BIC) score. BIC scores of 

all tested models of GARIMA are presented in supplementary Table S1. The best 

GARIMAX (p, d, q) specifications for each quarterly series are summarized in supplementary 

Table S2. By applying harmonic functions as a covariate to the GARIMAX model, 

informative waves were identified in the 1st and 3rd quarter types in the entire BCP-ALL 

cohort. The 95% credibility interval of the posterior distribution for the coefficients of the 

seasonal harmonic functions did not include 0, indicating informative (non-random) 

periodicity in these two quarter types. The 2nd quarter type did not show any informative 

periodicity in the BCP-ALL cohort (Table 3, Supplementary Figure S1). 

 

Applying a quarterly seasonal matrix as a covariate to GARIMAX, two informative peak 

quarters were detected in the BCP-ALL cohort: Jul-Sep (1st quarter type) and Jun-Aug (3rd 

quarter type). The 2nd quarter type had no informative peak quarter. (Table 4 and 

Supplementary Figure S2). Both of the above steps of GARIMAX analysis are required to 

identify seasonal variation in the cohort and define an informative peak quarter (season). In 

our analysis, the data show an informative seasonal wave in the diagnosis of BCP-ALL in the 

1st and 3rd quarter type, with informative peak quarters in Jul-Sep and Jun-Aug, respectively.  
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The four months encompassed by these two peak quarters were June, July, August, and 

September. July and August were included in both peak quarters. When manually examining 

the absolute numbers of BCP-ALL cases diagnosed in these respective months, August 

indeed had the highest number of cases (138) compared to all other 11 months. The number 

of cases in July (110) was below average (115) and the 5th lowest of all months. June had the 

2nd largest number of cases (126) and September the 3rd largest (125) together with April 

(125). The total range of case numbers per month was 91 (Dec) to 138 (Aug). (Table 5)  

 

Subgroup analysis using GARIMAX was performed on two subgroups of the BCP-ALL 

cohort; cases with HeH and ETV6::RUNX1, respectively. We did not detect any informative 

periodicity (first test) in any of the three-quarter types analyzed in either subgroup. (Table 3, 

Supplementary Figures S3, S5) Informative peak quarters (second test) were identified in 

both HeH (Jul-Sep, 1st quarter type, Jun-Aug, 3rd quarter type) and ETV6::RUNX1 (Oct-Dec, 

1st quarter type and Aug-Oct, 2nd quarter type) subgroups. (Table 4, Supplementary Figures 

S4, S6) However, since informative periodicity was lacking, we conclude that no informative 

seasonal variation was detected in either subgroup.  

 

Analysis using the GARIMAX model was performed on three non-ALL cohorts: cases with 

AML, solid tumors, and brain tumors. We did not detect any informative periodicity (first 

test) in any of the three-quarter types analyzed in any of these cohorts (Supplementary 

Figures S7, S9, and S11, Supplementary Table S3). Informative peak quarters (second test) 

were identified in solid tumors cohorts (Apr-Jun, 1st quarter type, and Mar-May, Sep-Nov for 

the 3rd quarter type), but not in AML, nor in brain tumors cohorts (Supplementary Figures 

S8, S10, and S12 Supplementary Tables S4). However, since informative periodicity was 
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lacking, we conclude that no informative seasonal variation was detected in any of these 

cohorts. 

 

Discussion 

In this study, we used GARIMAX to analyze a Swedish population-based cohort of 1,380 

BCP-ALL cases, aged between 0 and 18 years at diagnosis and an aged-matched cohort with 

AML, brain tumors, and solid tumors and found evidence for seasonal variation of BCP-ALL 

diagnoses with peaks in quarters Jun-Aug and Jul-Sep with July and August included in both 

peak quarters. In the comparison groups, we did not detect any seasonal variation.  

 

Our literature review (Table S5) revealed that seasonal variation in ALL diagnosis has been 

identified inconsistently across studies. Peaks, when detected, occur at various times 

throughout the year. Only 11 of 42 studies on ALL seasonality included cohorts of more than 

1000 cases. Differences in methods, cohort sizes, age at diagnosis, ethnicity, population 

susceptibility, and disease types (T- and B- or only B-cell ALL) may explain these varying 

results. Other factors may also contribute, including regional or climate-specific differences 

in seasonal patterns, daylight hours, cultural behaviors, socioeconomic conditions, microbiota 

exposure, antibiotic use, and infectious disease prevalence. 

 

Since several genetic ALL subgroups, such as ETV6::RUNX1 gene fusion, are found in 

neonatal blood spots, they are considered the first genetic hits that cause the expansion of 

preleukemic B-cell clones in utero (4-7), we hypothesized that the second hit that occurs after 

birth that eventually leads to leukemia progression, may be caused by common infectious 

agents, such as different viral infections that cause accumulated hematopoietic stress in 

predisposed and immunologically immature children. To further explore the meaning of our 
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finding of a seasonal peak in BCP-ALL diagnosis from an etiologic perspective, we 

hypothesize about four theoretic etiological models assuming different induction time-frames, 

i.e., time from exposure to clinically overt disease. 

 

Peak diagnosis indicated by GARIMAX Jun-Sep with highest number of cases in August 

may be associated with: 

1. A peak in the general load of common infections during winter months in Sweden 

(assuming induction time around 6-9 months) 

2. One or a few common infections peaking during winter months in Sweden that are 

more potent as drivers of disease progression (assuming induction time around 6-9 

months) 

3. One or a few common infections peaking during summer months in Sweden that are 

more potent as drivers of disease progression (assuming induction time around 1-2 

months) 

4. A short but marked decrease in spread of common infections during Swedish summer 

holidays, postponing a portion of cases in July to be accumulated during August when 

at risk individuals again are exposed to common infections (assuming induction time 

around 2-4 weeks).  

 

We consider all of the explanatory models above as possible, but today, the main limitation 

lies in the lack of available data on viral agents, making it difficult to deem one more likely 

than the others. Also, other environmental factors, such as lifestyle factors, chemical agents 

or the large seasonal differences in daylight in Sweden cannot be excluded (24). 
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Sweden is well known for its prolonged summer vacation when a vast majority of children 

and their parents are on summer vacation for 4-8 weeks in mid-June to mid-August. 

Therefore, a lock-down effect with reduced numbers of BCP-ALLs during longer vacations, 

and higher numbers, after returning to daycare/school may well reflect differences in 

infectious exposures. The possibility of a doctor´s delay in diagnosing the child or a parent’s 

delay in seeking care for their children during summer vacation, as an explanation for our 

findings, was considered since lower detection rates and higher mortality rates were reported 

in adult patients with cancer, diagnosed during the holiday season in Sweden (25). Although 

we cannot confidently exclude these explanations, we do consider them less likely as 

symptoms of BCP-ALL at diagnosis are acute and progress quickly. Also, we did not find 

any seasonal variation in the diagnosis of childhood AML, brain tumors, or solid tumors, 

which supports the presence of a true seasonal variation in BCP-ALL rather than a doctor's 

delay.  

 

Previous studies show environmental exposure heterogeneity in BCP-ALL subtypes, with 

ETV6::RUNX1 linked to space-time clustering (11). This led to our subgroup analyses of 

HeH and ETV6::RUNX1, but the GARIMAX model yielded inconclusive results for these 

subtypes. Notably, the HeH subtype showed peak quarters (Jul-Sep and Jun-Aug) similar to 

the entire BCP-ALL cohort, suggesting HeH may drive observed seasonal variations. 

However, the limited number of HeH cases (444) likely affected the harmonic function's 

periodicity detection. Future studies pooling Nordic datasets and examining genetic 

subgroups separately and together could provide clearer insights into BCP-ALL etiologies. 

 

Limitations 
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As described in the methods-section, our cases were aggregated into quarters based on their 

month of diagnosis. Although our method, through both generalization and formulation in the 

Bayesian setup, enables analysis of (in the context) small sample sizes, a limitation of our 

study is the sample size, since limited case numbers in each analyzed time frame, would, in 

itself have prevented informative results. This was, for example, the case in analyses of 

seasonal variation in cytogenetic subgroups represented by the two most common subtypes of 

BCP-ALL, HeH and ETV6::RUNX1. Another limitation that prevented studies of viral and 

other infectious agents is that the dataset does not contain detailed information about 

common infections.  

 

Strengths 

The GARIMAX model tests yearly seasonal variations, unlike chi-square which tests 

significant differences in stacked observations. GARIMAX also accounts for the discrete 

nature of BCP-ALL data through Negative-Binomial generalization, unlike ARIMA which 

assumes continuous data (26). This makes GARIMAX a key strength of our study. 

Additionally, using the population-based SCCR dataset enabled comparisons with other 

childhood cancers (AML, solid tumors, brain tumors). Aggregating cases by quarter also 

helped account for year-to-year variations in environmental factors affecting BCP-ALL 

progression, like viral infection peaks. 

 

Altogether, we report seasonal variation in BCP-ALL diagnosis, with peak quarters in June-

August and July-September. Our study improves upon previous reports by applying a 

powerful statistical model and examining a theoretically etiologically distinct cohort of BCP-

ALL cases (in terms of immunophenotype and age at diagnosis) while also including 

comparisons with other childhood cancer types (AML, solid tumors, and brain tumors). 
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However, expanding the cohort size would have strengthened the study and enabled more 

detailed subgroup analyses of molecular subtypes. 
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