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Research highlights:  

• Ensemble learning of Support Vector Machines (SVM) and Prediction Analysis for 
Microarrays (PAM) algorithms classified schizophrenia samples with higher precision. 

• The pipeline developed in this analysis produced robust models with the ability to classify 
single microarray sample. 

• Cross-platform validation of ensemble model using RNA-Sequencing data resulted in high 
precision.  

Abstract: 

The need for molecular biomarkers for schizophrenia has been well recognized. Peripheral blood 
gene expression profiling and machine learning (ML) tools have recently become popular for 
biomarker discovery. The stigmatization associated with schizophrenia advocates the need for 
diagnostic models with higher precision. In this study, we propose a strategy to develop higher-
precision ML models using ensemble learning. We performed a meta-analysis using peripheral blood 
expression microarray data. The ML models, support vector machines (SVM), and prediction analysis 
for microarrays (PAM) were developed using differentially expressed genes as features. The 
ensemble of SVM-radial and PAM predicted test samples with a precision of 81.33% (SD: 0.078). The 
precision of the ensemble model was significantly higher than SVM-radial (63.83%, SD: 0.081) and 
PAM (66.89%, SD: 0.097). The feature genes identified were enriched for biological processes such 
as response to stress, response to stimulus, regulation of the immune system, and metabolism of 
organic nitrogen compounds. The network analysis of feature genes identified PRF1, GZMB, IL2RB, 
ITGAL, and IL2RG as hub genes. Additionally, the ensemble model developed using microarray data 
classified the RNA-Sequencing samples with moderately high precision (72.00%, SD: 0.08). The 
pipeline developed in this study allows the prediction of a single microarray and RNA-Sequencing 
sample. In summary, this study developed robust models for clinical application and suggested 
ensemble learning for higher diagnostic precision in psychiatric disorders. 
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1. Introduction: 

Schizophrenia (SCZ) is a complex neuropsychiatric disorder characterized by a disruption in thinking 
and sense of self. The death rate is two times higher in schizophrenic patients, with cardiovascular 
diseases and suicide as the leading causes of death (Costa E Silva, 1998; Hennekens et al., 2005; 
Laursen et al., 2014). The lifetime prevalence of 0.2 - 0.4 % globally (GBD 2017 Disease and Injury 
Incidence and Prevalence Collaborators, 2018) indicates its universal presence irrespective of cultural 
differences worldwide. One of the significant issues in treating psychiatric disorders is delayed 
diagnosis. The current diagnostic procedure for SCZ is based on psychological evaluation, making it 
clinician dependent. The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) based 
diagnosis for SCZ requires symptoms to be persistent for six months or more (American Psychiatric 
Association., 2013). The delay in the treatment accounts for a higher degree of years lived with 
disability associated with SCZ (GBD 2017 Disease and Injury Incidence and Prevalence 
Collaborators, 2018).  Recent studies suggest the treatment outcome could be improved if the time 
elapsed before the treatment is reduced (Chan et al., 2014). Thus, having a blood test can surely 
strengthen and quicken the current diagnostic process for SCZ.  

Molecular alterations such as gene expression changes associated with the disorder have been 
proposed to be used as potential biomarkers. Our previous study provides substantial evidence for 
using peripheral blood gene expression profiles for biomarker discovery (Wagh et al., 2021). The 
recent use of machine learning (ML) tools has accelerated the biomarker discovery process for 
psychiatric disorders. The ML tools have already provided gene expression markers with higher 
diagnostic potential (Hess et al., 2020; Liu et al., 2022; Zhu et al., 2021). Currently, the ML-based in 
silico approaches are limited to publicly available microarray datasets. ML-based in silico studies 
using biomarkers have reported higher diagnostic performance for psychiatric disorders (Ke et al., 
2021; Wu et al., 2022; Yu et al., 2016; Zhu et al., 2021). However, few studies have validated their ML 
models using independent test datasets (Hess et al., 2020, 2016; Liu et al., 2022). Application of the 
diagnostic models into clinics would need extensive validation and appropriate data scaling methods 
to develop robust models. In addition, most of the studies focused on accuracy and area under the 
curve (AUC) as evaluation parameters for the performance of ML models. However, schizophrenia is 
associated with a higher degree of stigmatization and demands a diagnostic test with higher precision 
(True positives / (True positives + False positives)).  

In this study, we have attempted to develop an ensemble of ML algorithms to classify SCZ samples. 
We selected publicly available gene expression microarray datasets for this meta-analysis. The raw 
data from each platform was processed independently to avoid data leakage. ML models were 
developed using support vector machines (SVM) and prediction analysis for microarrays (PAM) 
algorithms. We made use of differential gene expression analysis (DGEA) for selecting features with 
potential diagnostic values. ML models with different sets of genes were compared based on their 
performance in test data class prediction. The test data predictions from best-performing models were 
ensembled to achieve higher precision. The gene ontology and networking analysis of the feature 
genes further highlighted the biological processes and hub genes associated with SCZ. These 
ensemble models were finally tested for cross-platform compatibility.  

2. Materials and methods: 

2.1. Identification of datasets: 

Peripheral blood gene expression microarray datasets for schizophrenia (SCZ) were identified from 
the Gene Expression Omnibus (GEO) (Edgar et al., 2002) and ArrayExpress (Parkinson et al., 2007) 
using keywords ‘Gene expression’, ‘Peripheral blood’, ‘Biomarkers’ and ‘Schizophrenia’ or 
‘Schizophrenia spectrum’. A similar search was performed on databases such as PubMed and 
Google Scholar. Studies with immortalized cell lines, specific cell types, and custom microarray 
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platforms were excluded. The analysis included studies with available raw data, while the authors 
were contacted to obtain the data for studies where it was not publicly available. 

2.2. Importing and processing of raw data: 

Raw data for each dataset was imported and processed independently in R (R Core Team, 2020). 
Probe filtration was carried out for Illumina datasets (e.g. Illumina probes with detection P.val <0.05 in 
≥ 3 samples were retained). Probe IDs of all the arrays were mapped to HUGO Gene Nomenclature 
Committee (HGNC) gene symbols (Braschi et al., 2019). Gene expression values for multiple probes 
were averaged out for individual genes. All the datasets were combined based on the common genes 
to obtain a meta-file. This meta-file with raw gene expression values (raw meta-file) was processed for 
the identification of outlier datasets and for machine learning (ML) based prediction analysis.  

2.3. Identification of outlier datasets: 

We made use of the expression status of differentially expressed genes for the identification of outlier 
datasets. Before differential gene expression analysis, samples from raw meta-file were 
independently quantile normalized based on the microarray platform used. Illumina, single-channel 
Agilent, and Affymetrix datasets were normalized using lumi (Du et al., 2008), limma (Ritchie et al., 
2015), and affy (Gautier et al., 2004) packages, respectively. The normalized data was further batch 
corrected using ComBat (Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, 
2020) and subjected to differential gene expression analysis (DGEA) using limma. The expression 
status of top differentially expressed genes was visualized for heterogeneity in their expression across 
the individual datasets using a Forest-plot (Gordon and Lumley, 2021).  

2.4. Pre-processing and data scaling for machine learning: 

To avoid any data leakage, the raw meta-file (raw gene expression values) was divided into train and 
test data before normalization and batch correction. To achieve this, samples were shuffled and then 
subjected to a random selection of train (90%) and test (10%) data (Figure 1A). This random selection 
was repeated to obtain 10 iterations of train and test datasets. Samples within the training data were 
quantile normalized based on the microarray platform (Figure 1B). Training data was further batch-
corrected independently (Figure 1B). In contrast, test data was normalized using quantile targets 
(Bolstad, 2020) from train data and batch corrected using train data as reference (Figure 1B) (Leek 
JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, 2020). Each iteration of 
normalized and batch-corrected train data was used for feature selection and development of ML 
models. In contrast, test data was used to evaluate ML models (Figure 1C). 

2.5. Feature selection and development of ML models: 

We used differential gene expression analysis (DGEA) as a feature selection method. The top 
differentially expressed genes were used as features for model building. Support vector machines 
(SVM) (David Meyer et al., 2021) with different kernels (linear, polynomial, radial and sigmoid) and 
prediction analysis for microarrays (PAM) (Hastie et al., 2019) algorithms were used for the 
development of diagnostic models for SCZ. The ML models built from each iteration of the train data 
was cross-validated (k=10) and were used for class prediction of respective test data samples (Figure 

1C). The ML models were evaluated based on accuracies and were selected for ensemble learning. 

2.6. Ensemble learning and evaluation: 

In order to improve the precision of class prediction, we used ensemble learning of ML models of 
SVM and PAM. In brief, samples predicted as cases by both ML algorithms were labelled as cases in 
ensemble models. The performance of the ensemble model was evaluated in comparison with 
individual models using parameters such as precision, accuracy, sensitivity and specificity. 
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2.7. Functional enrichment and networking analysis: 

Functional enrichment analysis for the genes of interest was carried out using g:profiler. A  search tool 
for the retrieval of interacting genes/proteins (STRING) (Szklarczyk et al., 2019) based protein-protein 
interaction network (PPI) for these genes was established in Cytoscape (Shannon et al., 2003). The 
essential nodes (hub genes) of the PPI network were identified by the maximal clique centrality 
(MCC) method of the cytohubba plugin (Chin et al., 2014). A network of hub genes and their first-
stage nodes were later visualized in Cytoscape. 

2.8. Establishment of case-control study: 

Protocol for this study was approved by KEM Hospital Research Centre Ethics Committee (KEMHRC 
ID No. 2001) and Symbiosis International (Deemed University) Independent Ethics Committee 
(SIU/IEC/99). We recruited 20 participants of the age group 18-65 years from the Psychiatry Unit 
K.E.M hospital, Pune. Consent from all the participants was obtained before recruitment. Consent for 
participants with suspected case of SCZ was supported by the consent of first-degree relatives. 

The common exclusion criteria for control (CNT) and schizophrenia (SCZ) groups were the presence 
of a) acute or chronic infections, b) coronary heart disease, c) metabolic disorders, d) arrhythmia, e) 
heart disorders, f) hyper and hypothyroidism, g) inflammatory bowel disease and h) multiple sclerosis. 
Female participants with polycystic ovary syndrome, pregnant and lactating mothers, and women on 
in-vitro fertilization (IVF) treatment at the time of recruitment were also excluded from the study. The 
participants with a suspected case of schizophrenia and schizophrenia spectrum disorder were 
considered for recruitment under the SCZ group. Age and gender-matched participants with no 
history of psychiatric disorders were considered for recruitment under the control (CNT) group. All the 
participants, irrespective of the group, were subjected to diagnosis. 

2.9. Clinical interview and diagnosis: 

SCZ diagnosis was carried out using structured clinical interview for DSM-5 research version (SCID-
5-RV) (version 1.0.0) (First MB, Williams JB, Karg RS, 2015). The SCID-5-RV was administered by a 
trained psychiatrist and a psychologist. The SCZ diagnosis was later confirmed by a senior 
psychiatrist from the team. SCZ-diagnosed participants were also administered with positive and 
negative syndrome scale (PANSS) (Kay et al., 1987). The absence of any psychiatric disorder in the 
control group participants was confirmed by administering SCID-5-RV. Age, gender, family history for 
psychiatric disorders, medical history, and medication status were recorded for all the participants. 

2.10. Blood collection and RNA extraction: 

Random (non-fasting) venous blood samples were collected in K2EDTA vacutainers and processed 
on the same recruitment day. A blood cell count (hemogram) was performed on the samples 
collected. Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque (Sigma, 
Catalogue: GE17-5442-02) density gradient centrifugation and re-suspended in TRIZOL 
(ThermoFischer Scientific, Catalogue: 15596026). Samples were subjected to RNA-sequencing 
(RNA-Seq) using commercial services. In brief, ribo-depleted RNA samples were sequenced using 
NovaSeq 6000 system - Illumina to obtain a minimum of 60 million paired-end reads of 150 nucleotide 
length. 

2.11. Pre-processing of RNA-Sequencing data: 

The quality of each sample was confirmed using FastQC (Andrews, 2010). The sequences were 
aligned to the human genome (GENECODE hg38) (Frankish et al., 2019) using HISAT2 (Kim et al., 
2019). The aligned files were subjected to gene assignment using featureCounts (Liao et al., 2014) to 
create a count matrix. The gene expression values were locally normalized by converting the raw 
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count to counts per million (CPM) and transcript per million (TPM). The raw counts (RC), CPM and 
TPM matrix were further quantile normalized and batch corrected in reference to microarray training 
datasets independently. The quantile normalized and batch-corrected RC, CPM, and TPM matrices 
were further used to evaluate the cross-platform performance of ML models developed using 
microarray data. 

2.12. Statistical analysis: 

Data from processed microarray datasets and patient samples were analyzed using Microsoft Excel- 
Real Statistics (Zaiontz, 2020) and PAST (Hammer et al., 2001). Microarray datasets processed using 
PAM, SVM and ensemble approach were tested for normality using the Shapiro-Wilk test. For data 
with normal distribution, one-way ANOVA with an alpha of 0.05 followed by Tukey’s post hoc test with 
Dunn–Šidák correction was performed. For clinical samples, age and blood cell count data were 
tested for normality as mentioned previously. The difference between control and case groups was 
studied using an unpaired t-test for normal datasets and Mann-Whitney U test for non-normal data. 
The gender for control and case groups were compared using Chi-square test respectively.  

3. Results: 

3.1. Microarray datasets show variability in gene expression with no outliers:  

We identified seven peripheral blood expression array datasets for SCZ (Table 1). Participants from 
these datasets belonged to different ethnic groups. Most of the datasets identified had medicated or a 
mixed population of SCZ participants. For Kumarasinghe et al., paired study, only the ‘before 
treatment’ samples were considered for the analysis to avoid over-representation of the same 
samples. Only the genes common to all seven datasets were retained for the meta-analysis. The 
resulting metafile contained 449 samples with 6775 genes. 

The differential gene expression analysis (DGEA) of the quantile normalized and batch-corrected 
meta-file (Supplementary figure 1) resulted in 1988 DEGs in SCZ samples with respect to controls 
(adj. P val <0.05) (Supplementary figure 2).  Heterogeneity among the datasets was observed by 
Forest-plot of two up-regulated (CLEC5A and EIF1AY; LFC >1) (Supplementary figure 3A and 3B) 
and two down-regulated (EOMES and EHMT2; LFC <-1) DEGs (Supplementary figure 3C and 3D). 
The expression pattern of the selected DEGs varied across all datasets with respect to the mean 
expression status; however no specific dataset could be identified as an outlier. Hence, all the 
datasets were retained for the analysis. 

3.2. Ensemble learning results in higher precision for schizophrenia diagnosis: 

The pre-processing of raw meta-file resulted in normalized (Supplementary figure 4) and batch-
corrected (Supplementary figure 5) train and test datasets. The DGEA of each train data iteration 

resulted in the identification of DEGs as features (Supplementary figure 6). Machine learning models 
were built using these feature genes from training datasets. 

We used two different ML models, support vector machines (SVM) and prediction analysis for 
microarrays (PAM), to classify test data samples. The performance of these ML models was 
evaluated based on the mean test data prediction accuracy. SVM models with kernels such as 
“linear”, “polynomial”, “radial”, and “sigmoid” kernels did not show any significant difference in the test 
data prediction accuracy (data not shown). We chose SVM-radial for further analysis. A comparison of 
SVM-radial models with different numbers of features (top5, top25, top100, top400, top1600, and all 
genes) revealed that the performance of SVM-radial drops with features more than 400 DEGs (Figure 
2A). PAM models with different numbers of features did not impact the test data prediction accuracy 
(Figure 2B). SVM-radial and PAM models were further used for combinatorial analysis.  
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We ensemble the select ML models of SVM-radial and PAM for this combinatorial analysis. In brief, 
only the samples identified as cases by both algorithms were classified as cases to reduce false 
positives in test data class prediction. The ensemble of SVM-radial and PAM with top 400 DEGs 
(ensemble-400) had the highest precision of 81.33% (SD: 0.078) compared to all other ensemble 
models (Supplementary figure 7A). Also, the accuracy of ensemble-400 (68.59%, SD: 0.055) and 
ensemble-all genes (69.48%, SD: 0.048) was significantly high compared to ensemble-5 (60.37%, 
SD: 0.057) (Supplementary figure 7B). However, no significant difference was observed in the 
sensitivity and specificity of the ensemble models (Supplementary figure 7C and 7D). We chose 
ensemble-400 based on the absolute value (expressed in percentage) of precision for further 
analysis. The precision of ensemble-400 was significantly higher compared to the SVM-radial: 66.83 
(SD: 0.081) and PAM: 66.89% (SD: 0.097) (Figure 2C). The ensemble learning achieved higher 
precision without a significant drop in accuracy when compared to individual models (Figure 2D). 
Interestingly, the decrease in sensitivity of ensemble-400 was not significant when compared to SVM-
radial and PAM (Supplementary figure 8A and 8B).  

3.3. Functional enrichment and network analysis identify biological processes, pathways and hub 
genes associated with schizophrenia: 

The top 400 DEGs as features in combinatorial analysis predicted SCZ samples with the highest 
precision (lesser false positives). We identified common genes (n: 207) between the top 400 DEGs 
from all ten iterations of training datasets. Functional enrichment analysis of the common genes 
identified apoptosis and natural killer cell-mediated cytotoxicity as the top two enriched Kyoto 
encyclopaedia of genes and genomes (KEGG) pathways (adj.P.val <0.05). The majority of DEGs 
were enriched for the biological processes associated with immune function. However, the top 
biological process enriched were response to stimulus and response to stress (Figure 3A). Metabolic 
processes such as the organonitrogen compound metabolic process and regulation of nitrogen 
compound metabolic process were also significantly enriched. We identified the top 5 hub genes 
(PRF1, GZMB, IL2RB, ITGAL, and IL2RG) from the PPI network of common genes (Figure 3B). 

3.4. External cross-platform validation of ensemble models: 

A case-control study was established with 20 participants of Indian origin (SCZ: 10, CNT: 10). There 
was no significant difference in age, gender, and blood cell counts between case and control group 
participants (Table 2). All the SCZ-affected participants recruited in this study were on antipsychotic 
medication. Ribonucleic acid (RNA) isolated from the peripheral blood samples of the participants 
were subjected to RNA-Sequencing analysis. The sequencing resulted in ~80 million reads per 
sample. The quality of sequencing was satisfactory (Supplementary figure 9) which resulted in 
acceptalble percent alignment (Supplementary table 1). The RNA-Sequencing data was used for 
external cross-platform validation of the models. The class prediction analysis was performed using 
raw counts (RC), counts per million (CPM) and transcript per million (TPM) matrices, as mentioned in 
the methodology section. The prediction accuracy of ML models with TPM counts was relatively better 
compared to CPM and RC (data not shown). ML models’ performance with TPM counts is reported in 
this analysis. SVM-radial (51.50%, SD: 0.05), PAM (58.50%, SD: 0.02) and ensemble with top 400 
DEGs (62.50%, SD: 0.03) predicted RNA-Seq test samples with low accuracy (Figure 4A). However, 
the ensemble-400 was able to classify SCZ samples with moderate precision (72.00%, SD: 0.08), 
which was significantly higher than PAM (57.00%, SD: 0.05) and SVM-radial (47.00%, SD: 0.11) 
(Figure 4B). The higher precision of ensemble models was accompanied by higher specificity and 
lower sensitivity compared to the individual models (data not shown).  
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4. Discussion: 

A neuropsychiatric disorder such as schizophrenia is associated with stigmatization. Hence, a 
diagnostic test with higher precision is desirable. In this study, we attempted to develop an ensemble 
model with higher precision for classifying SCZ samples. The ensemble model resulted in the test 
data precision of 81.33% (SD: 0.078), without any significant drop in accuracy. We developed a 
unique strategy of pre-processing microarray data to build a robust model that can be applied to a 
single sample level for clinical application.  

Microarray data was pre-processed for building ML models. Seven different datasets with participants 
from varied ethnicity were included in this analysis. The pre-processing of data involved shuffling of 
samples, division of samples into train and test data, normalization, and batch correction. Shuffling of 
samples ensured the representation of each dataset in train and test data. The ten-fold split of 
samples into train and test data before normalization prevented data leakage. The train data was pre-
processed independently, whereas test data was normalized and batch-corrected using train data as 
reference (Figure 1B). This pre-processing of test data removed the existing technical differences and 
allowed us to independently process and predict each test sample. The pre-processing resulted in the 
development of robust models with a better chance of survival in clinics.   

We used differential gene expression analysis (DGEA) for feature selection, which can be important 
for the application of models in clinical settings. Feature selection methods perform better than 
extraction methods for their “explainability” in clinical settings (Bhandari et al., 2022). In addition, 
simple filter methods such as DGEA are computationally less intensive as compared to embedded 
methods of feature selection. The comparison of ML models with different sets of DEGs revealed that 
the number of features does not affect the performance of PAM models, unlike SVM, for inexplicable 
reasons (Figure 2A and 2B). Further, we combined the test data predictions from SVM and PAM 
models to develop ensemble learning for higher precision. Both ML algorithms use different logic for 
classification. Thus, a consensus between the models resulted in higher precision without any 
significant drop in accuracy compared to the individual models (Figure 2C and 2D). The increase in 
precision was associated with increased specificity and an expected drop in sensitivity 
(Supplementary figure 9A and 9B). Each individual dataset used in this analysis showed a variation in 
prediction accuracy when tested using an ensemble model. The unavailability of medication status for 
each sample did not allow us to assess the impact of medication status on test data prediction. It 
should be noted that the antipsychotic-treated samples from GSE18312 showed an intermediate 
accuracy when compared to the drug-naive samples from Kumarasinghe et al. and GSE54913 
datasets. Similarly, the mixed medication status samples from GSE27383, GSE38481, and 
GSE38484 did not show a variation in overall accuracy or precision. Precision on the higher side of 
60% for each dataset suggested our prediction algorithm's robustness (Supplementary figure 10).  

We could identify very few studies using ML models for SCZ class predictions. In silico analysis by 
Jonathan Hess et al., reported an area under the curve (AUC) of 0.72 to 0.77 for SCZ Vs CNT and 
0.607 for bipolar disorder (BD) Vs SCZ in two separate studies with independent test datasets (Hess 
et al., 2020, 2016). A recent study reported a much higher AUC of 0.993 with 10-fold cross-validation 
for the classification of SCZ samples from that of controls (Zhu et al., 2021). However, the higher 
performance of the models in this study can be attributed to the uniform population with fewer 
confounding factors such as ethnicity. We did not come across a study with the aim of developing ML 
models with higher precision using ensemble learning. The previous studies with a multi-modal 
approach suggest the need to integrate biological and clinical information for better performance of 
ML models (Fernandes et al., 2020; Ke et al., 2021). However, the unavailability of clinical information 
for each sample in the publicly available GEO datasets restricted this analysis to only gene 
expression markers.  
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Ensemble of SVM-radial and PAM with top 400 DEGs (Ensemble-400) classified test data samples 
with the highest precision (Figure 2C). We identified common genes (n: 207) between the top 400 
DEGs in the ten iterations of training datasets. Enrichment analysis of these common genes 
highlighted key pathways such as apoptosis and natural killer cell-mediated cytotoxicity (Figure 3A), 
which have been known to be dysregulated in SCZ (Parellada and Gassó, 2021; Yovel et al., 2000). 
The biological processes related to immune function and organonitrogen compound metabolic 
process have also been associated with SCZ earlier (Dmitrieva et al., 2022; Van Kesteren et al., 
2017). In addition to biological processes and pathways, we also identified the key regulators (hub 
genes) of the protein-protein interaction network (Figure 3B). These hub genes were involved in top 
enriched biological processes such as response to stress and response to stimulus. The hub genes 
identified in this study have been previously reported in association with neuropsychiatric disorders, 
including SCZ (Fallin et al., 2005; Ghazaryan et al., 2014; Ibrahim et al., 2017). The genome wide 
association studies have also associated PRF1, GZMB, and IL2RB with SCZ (Pardiñas et al., 2018; 
Ripke et al., 2014). Further, IL2RB, ITGAL and IL2RG are known to be differentially expressed in the 
peripheral blood of SCZ-affected individuals (Ghazaryan et al., 2014; Leirer et al., 2019). Interestingly, 
only ITGAL and IL2RB have been reported to be differentially expressed in the first episode SCZ 
affected individuals (Leirer et al., 2019). Of these 207 DEGs, MAP4K1, GOT2, MCM3, SIGIRR, 
SRPK1, TIPARP, RPRD1A, ATIC, NKG7, and SCAP were also highlighted in our previous study for 
their association with SCZ (Wagh et al., 2021) 

We also performed cross-platform validation of the ensemble model using RNA-Sequencing data. 
These samples were not part of the machine learning model development and hence served as 
external test data for the validation of the models. To achieve this, we established a case-control 
study with age and gender-matched participants. The validation study included pre-processing of 
RNA-Sequencing data to generate transcript per million (TPM), counts per million (CPM) and raw 
counts. These values were batch-corrected in reference to microarray train data and the samples 
were predicted by ML models independently. The predicted accuracy of test data with TPM values 
was relatively higher compared to CPM and RC (data not shown) suggesting the compatibility of TPM 
values for cross-platform validation studies. Similar to microarray data, the ensemble model predicted 
SCZ samples with significantly better precision as compared to individual models (Figure 4B). 
Prediction analysis for microarrays (PAM) models performed significantly better when compared to 
the support vector machines (SVM-radial) in cross-platform data prediction. However, overall low 
accuracies of individual models suggest a need for the development of better cross-platform 
normalization techniques (Figure 4A). 

5. Strengths and limitations of the study: 

To the best of our knowledge, this is the first study that uses ensemble learning for schizophrenia 
(SCZ) diagnosis with higher precision. The higher precision offered by ensemble learning, even with 
the existing diversity in the samples with respect to ethnicity, age, gender, and medication status, 
indicates the robustness of the models. The pre-processing of raw microarray data in this analysis 
ensures no data leakage and allows the prediction of a single test sample. Notably, cross-platform 
validation confirms the compatibility of transcript-per-million (TPM) normalization of RNA-Sequencing 
data with microarray-based machine learning (ML) models for prediction analysis. The pipeline 
established in this study is not limited to SCZ and can be used for any disorder associated with a 
higher degree of stigmatization. There are several limitations of this study. The unavailability of clinical 
information for each sample restricted its use in developing multi-modal ML models. The performance 
of ML models in cross-platform validation was relatively poor, suggesting scope for developing better 
normalization methods. The analysis was restricted to only SCZ and did not attempt multi-class 
classification as Yang et al. did in their study (Yang et al., 2022). The modest sample size of the case-
control study established did not allow us to explore Indian scenario for schizophrenia in detail. 
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6. Conclusions and future directions: 

In conclusion, we provide proof of concept for developing robust predictive models with higher 
precision for diagnosing SCZ. The current strategy effectively deals with the problems like data 
leakage and pre-processing of single microarray samples. The feature genes and biological pathways 
identified in this study can be pursued to explore their potential role in the disorder. Most importantly, 
this study attempted cross-platform class prediction using RNA-Sequencing data as test samples. 
However, a relatively poor cross-platform performance indicates the need for better cross-platform 
normalization techniques. In addition, the availability of data from other high throughput genome-wide 
studies may create novel avenues for developing multi-modal learning. Specifically, the multi-omic 
approach integrating genomic, transcriptomic, and proteomic data will surely result in the precise 
diagnosis of psychiatric disorders. 
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Figure legends: 

Figure 1: The workflow depicts the steps involved in sample processing and class prediction analysis. 
A) A raw meta-file with 6775 common genes (rows) across all the datasets and 449 samples 
(columns) was used for the analysis. Samples from the raw meta-file were shuffled and divided into 
train and test data (9:1). Random selection of was repeated to produce ten iterations of train and test 
data. B) Each iteration of train data was independently quantile normalized. The quantile targets for 
each batch in the train data were used to normalize respective test data. Normalized train data was 
batch corrected independently, while test data was batch corrected in reference to the respective train 
data. C) The pre-processed train data was used for feature selection and ML model. The pre-
processed test data was used for model testing. 

Figure 2: Test data prediction accuracy and precision of SVM-radial, PAM and ensemble models with 
differentially expressed genes (DEGs) as features. Machine learning models with different number of 
features were compared using one-way ANOVA followed by Tukey’s post hoc test with Dunn–
Šidák correction. A) No significant difference was observed between SVM-radial models with different 
number of features. B) Similar comparison of PAM models also resulted in no significant difference. 
The ensemble of SVM-radial and PAM models with top 400 DEGs outperformed the individual 
models. C) The test data classification precision for ensemble model with top 400 DEGs was 
significantly high compared to the SVM-radial and PAM. D) The drop in the accuracy of ensemble 
model was not significant. 

Figure 3: Functional enrichment and networking analysis was performed using the common genes 
from top 400 DEGs of ten iterations of training sets. The enriched top 10 biological processes 
(adj.P.val <0.05) and KEGG pathways were visualized using a bar-plot. A STRING based protein-
protein network was established for common genes using Cytoscape. The maximal clique centrality 
(MCC) method of cytohubba plugin identified top 5 hub genes. The network of 5 hub genes and their 
first-degree nodes was visualized. The intensity of node colour represents the MCC rank. i.e., PRF1 
ranked as number one followed by GZMB, IL2RB, ITGAL, and IL2RG respectively.  

Figure 4: Cross-platform validation of SVM-radial, PAM and ensemble models with top 400 
differentially expressed genes. Microarray based ensemble learning was tested for their ability to 
classify schizophrenia samples from RNA-Sequencing platform. A comparative analysis between the 
models was performed using one-way ANOVA followed by Tukey’s post hoc test with Dunn–
Šidák correction. A) Ensemble models classified test samples with significantly higher accuracy when 
compared to individual models. B) Similarly, ensemble models classified test samples with 
significantly higher precision compared to the individual models. 
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Table 1: Schizophrenia Microarray gene expression datasets 

Dataset Platform Control 
/SCZ 

Female 
(%) 

Medication 
status 

Genes 
analysed 

Ethnicity or 
origin 

GSE18312 
(Bousman 
et al., 
2010) 

Affymetrix Human Exon 
1.0 ST Array 8+13 33 Medicated 17131 San Diego 

and Taiwan 

GSE27383 
(van 
Beveren et 
al., 2012) 

Affymetrix Human 
Genome U133 Plus 2.0 
Array 

29+43 NA Mix 21826 Multi ethnic 
groups 

GSE38481 
(de Jong et 
al., 2012) 

Illumina HumanRef-
8_V3 beadchip 22+15 27 Mix 12647 Denmark and 

Netherland 

GSE38484 
(de Jong et 
al., 2012) 

Illumina HumanHT-
12_V3 beadchip 96+106 42 Mix 17233 Denmark and 

Netherlands 

GSE48072 
(Stoll et al., 
2013) 

Illumina HumanHT-
12_V4 beadchip 31+35 53 NA 15155 

Finland, 
Sweden, 
Caucasian 

GSE54913 
(Xu et al., 
2016) 

Arraystar Human 
LncRNA microarray 
V2.0  

12+18 NA Treatment 
naive 13003 Han Chinese  

Kumarasin
ghe et al. 
2013 
(Kumarasin
ghe et al., 
2013) 

Illumina HumanHT-
12_V3 beadchip 11+10 

38 Treatment 
naive  10544 Sinhalese  

Note: The “Mix” medication status indicates that the participants with and without drug treatment were 
part of the study. While, “NA” indicates unavailability of information on medication status. 
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Table 2: Demographics and selected features of cell types in case-control study 

Characteristics SCZ Control P value 

Age (Year)* (n: 20) 33.0 (9.754) 36.6 (6.04) 0.4988 

Gender (M/F)# (n: 20) 3/5 4/6 0.9200 

Neutrophil (103/μL)# 4.8 (2.04) 3.9 (1.26) 0.2810 

Lymphocyte (103/μL)# 2.3 (0.68) 2.2 (0.43) 0.8623 

Monocyte (103/μL)# 0.5 (0.13) 0.6 (0.11) 0.3617 

Eosinophil (103/μL)$ 0.2 (0-0.3)* 0.2 (0.1-0.7)* 0.2369 

Basophil (103/μL)$ 0.025 (0-0.1)* 0.040 (0-0.1)* 0.9650 

Note: SCZ: Schizophrenia, CNT: Control, * Chi-squared test, # Unpaired t-test (s.d.), $ Mann-Whitney U 
test (min-max). Note: Since cell counts for two samples were not available the comparison of blood cell 
counts between SCZ and CNT was performed on 18 samples. 
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Figure 1 
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Figure 3 
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