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ABSTRACT 

Background: Most patients diagnosed with breast cancer present with node-negative disease. 

Sentinel lymph node biopsy (SLNB) is routinely used to stage the axilla, leaving patients 

with healthy axillary lymph nodes without therapeutic effects but at risk of morbidities from 

the intervention. Numerous studies have developed nodal (N) status prediction models for 

noninvasive axillary staging using postoperative data or imaging features that are not part of 

the diagnostic workup. Lymphovascular invasion (LVI) is a top-ranked predictor of N 

metastasis; however, it is challenging to assess preoperatively. 

Objective: To externally validate a multilayer perceptron (MLP) model for noninvasive 

lymph node staging (NILS) in a large population-based register cohort (n=18 633) while 

developing a new N MLP in the same cohort. Data were extracted from the Swedish National 

Quality Register for Breast Cancer (NKBC), 2014–2017, comprising only routinely and 

preoperatively available documented clinicopathological variables. Furthermore, we aimed to 

develop and validate an LVI MLP to predict missing values of LVI status to increase the 

preoperative feasibility of the original NILS model. 

Methods: Three non-overlapping cohorts were used for model development and validation. 

Four N MLPs and one LVI MLP were developed using 11–12 routinely available predictors. 
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Three N models were used to account for the different availabilities of LVI status in the 

cohorts and external validation in NKBC. The fourth N model was developed for 80% of 

NKBC cases (n=14 906) and validated in the remaining 20% (n=3727). Three alternatives for 

imputing missing values of the LVI status were compared using the LVI model. The 

discriminatory capacity was evaluated by validation area under the receiver operating 

characteristics curve (AUC) in three of the N models. The clinical feasibility of the models 

was evaluated using calibration and decision curve analyses. 

Results: External validation of the original NILS model was performed in NKBC (AUC 

0.699, 95% CI: 0.690-0.708) with good calibration and the potential of sparing 16% of 

patients with node-negative disease from SLNB. The LVI model was externally validated 

(AUC 0.747, 95% CI: 0.694-0.799) with good calibration but did not improve the 

discriminatory performance of the N models. The new N model was developed in NKBC 

without information on LVI (AUC 0.709, 95% CI: 0.688-0.729) with excellent calibration in 

the hold-out internal validation cohort, resulting in the potential omission of 24% of patients 

from unnecessary SLNB.  

Conclusions: The NILS model was externally validated in NKBC, where the imputation of 

LVI status did not improve the model’s discriminatory performance. A new N model 

demonstrated the feasibility of using register data comprising only the variables available in 

the preoperative setting for NILS using machine learning. Future steps include ongoing 

preoperative validation of the NILS model and extending the model with, for example, 

mammography images. 

 

Trial Registration: Registered in the ISRCTN registry with study ID ISRCTN14341750. 

Date of registration 23/11/2018. 

 

Keywords: Breast neoplasm; sentinel lymph node biopsy (SLNB); noninvasive lymph node 

staging (NILS); prediction model; multilayer perceptron (MLP); register data 

 

The LVI model was presented as a poster at the San Antonio Breast Cancer Symposium® - 

December 6-10, 2022.
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INTRODUCTION 

Breast cancer is the most frequently diagnosed cancer worldwide; however, its overall 

prognosis is good [1], why the quality of life of affected patients is of increasing relevance. 

For the last two decades, sentinel lymph node biopsy (SLNB) has been the standard surgical 

procedure for evaluating axillary status in patients with breast cancer and clinically node-

negative (cN0) status [2]. The SLNB procedure causes less postoperative morbidity than 

axillary lymph node dissection (ALND); however, it is still associated with lymphedema, arm 

pain/numbness, and quality-of-life reduction [3]. Furthermore, in 70%–80% of cases [4] 

SLNB will prove negative without cancer cells in the sentinel lymph nodes, and surgical 

axillary intervention will have no therapeutic benefit. 

 

Multiple recent studies have presented prediction models for noninvasive staging of axillary 

nodal (N) status with the long-term aim of replacing SLNB for subgroups of patients with 

breast cancer [5-17]. Only routinely and preoperatively available data should be used for a 

feasible noninvasive diagnosis of axillary N status aimed at clinical implementation. Most 

published models include postoperative variables from surgical specimens, including 

pathological tumor size [10, 14], estrogen receptor (ER) status [5, 7, 13, 16], progesterone 

receptor (PR) status [5, 7], human epidermal growth factor receptor 2 (HER2) status [5, 7, 10, 

16], proliferation index Ki67 value [5, 7, 13], Nottingham histological grade (NHG) [5, 7, 8, 

12], histological type [5, 7, 8, 12], and lymphovascular invasion (LVI) [6, 7, 11]. 

 

ER, PR, HER2, and Ki67 showed moderate to very good concordance between core needle 

biopsy (CNB) and surgical specimens [18]. Therefore, these variables have the potential as 

preoperative predictors of lymph node status. Similarly, NHG and histological type showed 

more than 70% [19] and 80% [20] concordance rates, respectively, for the same comparison. 

However, LVI is challenging to evaluate on preoperative CNB because of the limited amount 

of tissue sample, and a high failure rate of 30% has been reported [21]. Along with tumor 

size, LVI status is the most important clinicopathological predictor of N status [22]. Although 

preoperative evaluation of LVI remains a challenge, an accurate preoperative assessment of 

LVI is needed to predict N status.  
 

Imaging of the breast and axilla can be used to assess preoperative tumor size and extract 

other features related to N status. Standard imaging modalities in the diagnostic workup of 
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breast cancer are mammography and ultrasound (US) of the breast and axilla; therefore, data 

from these imaging modalities can be obtained routinely. Several models have been 

developed using US features [5, 10, 11, 16, 17]. However, the US is operator-dependent; 

therefore, it is not reproducible, which limits its utility in prediction models. In addition, 

prediction models using other imaging modalities or combinations, such as US and magnetic 

resonance imaging (MRI) [9], positron emission tomography combined with US [13], MRI 

[14], contrast-enhanced spectral mammography (CESM) [15], and US combined with 

computed tomography [16] lack clinical feasibility. 

 

Nomograms have been developed based on postoperative, non-imaging, and pathological 

data. Li et al. [8] showed an internal validation area under the receiver operating 

characteristics curve (AUC) of 0.718 (95% CI: 0.714–0.723) when predicting lymph node 

metastasis including tumor size, NHG, and histological type. The discriminatory performance 

of the Memorial Sloan-Kettering Cancer Center nomogram [22] for prediction of sentinel 

lymph node metastasis, developed based on n=3786 patients, decreased significantly from an 

AUC of 0.75 in the internal validation to an AUC of 0.67, 95% CI: 0.63–0.72, when 

externally validated in a Dutch population (n=770) [23]. Furthermore, the Skåne University 

Hospital (SUS) nomogram [6], a logistic regression model based on 800 patients in Lund, 

Sweden, aiming to predict negative sentinel lymph nodes, had an internal validation AUC of 

0.74 (95% CI: 0.70–0.79). The nomogram was temporally (n=1318) and geographically 

(n=1621) externally validated with an AUC of 0.75 (95% CI: 0.70–0.81) and an AUC of 0.73 

(95% CI: 0.70–0.76), respectively [24]. 

 

In 2019, Dihge et al. [7] predicted axillary nodal status in patients with cN0 breast cancer 

using a multilayer perceptron (MLP) model for noninvasive lymph node staging (NILS) 

based on 15 clinical and postoperative pathological predictors. The NILS concept includes 

logistic regression and machine learning models for noninvasive staging of the axilla, aiming 

at a web interface implementation to be used in clinical practice. Similar to previous nodal 

prediction models, pathological tumor size and LVI were the top-ranked predictors in the 

original (MLP) NILS model [7]. Training and internal cross-validation were performed on 

the same n=800 patients as in Dihge et al. [6] and provided a prediction of the disease-free 

axilla. In addition, the possible clinical benefit of using the model to detect patients who were 

least likely to benefit from SLNB was assessed. Surgical axillary lymph node staging could 

have been avoided in 27% of patients given a false negative rate (FNR) of 10%, 
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corresponding to the accepted FNR for SLNB [25]. Although the benefit of replacing logistic 

regression with machine learning in clinical prediction models is not given [26], the MLP 

model outperformed the multivariable logistic regression model, given its discriminatory 

performance. 

 

This study primarily aimed to externally validate the original NILS model presented in 2019 

[7] and develop a new N model in a large population-based cohort of routinely collected data 

from The Swedish National Quality Registry for Breast Cancer (NKBC). In addition, it 

secondarily aimed to develop an LVI model and assess how the overall predictive 

performance of the N model is affected by applying the LVI model for missing values. To the 

best of our knowledge, this is the first LVI model to be incorporated into an N model. This 

study was conducted in concordance with the Transparent Reporting of a multivariate 

prediction model of Individual Prognosis Or Diagnosis to develop and validate prediction 

models [27]. 

METHODS 

Study population 

Three datasets with non-overlapping populations were used for model development and 

evaluation. The inclusion criteria for all three cohorts were female patients with invasive 

primary breast cancer and cN0 axilla scheduled for primary surgical treatment, with excision 

of the breast tumor by total mastectomy or partial mastectomy and axillary staging by SLNB. 

In addition, exclusion criteria for the three cohorts were male, previous ipsilateral breast or 

axillary surgery, bilateral cancer, previous neoadjuvant therapy, ductal carcinoma in situ 

only, missing pathological-anatomical diagnosis (PAD) tumor size, tumor size > 50 mm (T3), 

a tumor growing into the chest wall or skin (T4), metastatic disease (stage IV breast cancer), 

patients with clinically node-positive disease, and missing or incongruent data for axillary 

surgery and/or lymph node status. 

 

The three datasets originated from different periods. Dataset I (n=995) comprised consecutive 

patients diagnosed with primary breast cancer at the SUS Lund, Sweden, between January 

2009 and December 2012. Data were extracted from medical records and pathology reports, 

with a final cohort size of n=761 (Figure S1, Appendix). For Dataset I, a quality assessment 

scheme was performed to ensure accurate histopathological reporting and internal quality 
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control of the retrieved data from medical records. Dataset II (n=23 264) was a large 

population-based cohort of a breast cancer registry for external validation and development of 

a new N model. It consisted of patients with primary breast cancer from all breast cancer 

treatment units in Sweden, included in the NKBC register during 2014–2017, with a final 

cohort size of n=18 633 (Figure 1). Löfgren et al. [28] examined the data quality of NKBC in 

2019 and reported high validity and coverage of 99.9% for 2010–2014. Dataset III (n=598) 

comprised consecutive patients with primary breast cancer surgically treated in Malmö or 

Helsingborg, Sweden, between 2020 and 2019–2020, respectively. Data were, similar to 

those of Dataset I, extracted from medical records and pathology reports. The final cohort 

size was 525 patients (Figure S2, Appendix). The data extraction for Cohort III was validated 

and monitored by an independent researcher according to a specific quality assurance 

protocol [29]. The sample size calculation for validating the NILS concept has been 

published previously [29].  

 

 
Figure 1. Patient selection for Cohort II. *Including records with the same information on age, mode of detection, hospital, 

and date of diagnosis, but with different laterality. ** Note that 31 patients were excluded by two of the six criteria in this 

step. NKBC, Swedish National Quality Register for Breast Cancer; PAD, pathological-anatomical diagnosis. 

Endpoints 

The following two endpoints were assessed: pathological N status (node-negative (N0) vs. 

node-positive (N+) disease) and pathological LVI status (LVI-positive vs. LVI-negative 

disease). Lymph node involvement was defined as metastatic infiltration > 0.2 mm in the 

lymph nodes; therefore, also patients with only nodal micrometastasis were included in the 
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study and categorized as N+. LVI positivity was defined as the presence of tumor cells within 

endothelium-lined lymphatic or blood-vascular channels [30]. A board-certified specialist in 

clinical pathology assessed both endpoints on surgical breast specimens according to the 

national guidelines for pathology [30].  

Data availability and preprocessing 

The original NILS model [7] included the following variables available preoperatively: age at 

diagnosis, body mass index (BMI), tumor laterality, mode of detection (mammographic 

screening or symptomatic presentation), menopausal status, tumor localization (centrally or 

1–12 o’clock position), and variables assessed on surgical breast specimens: largest 

pathological tumor size, tumor multifocality assessed by pathology, histological type, NHG, 

LVI status, ER status, PR status, HER2 status, and Ki67 labeling index. Access to variables 

differed in the large population-based register Cohort II (Table 1) compared with that of 

Cohort I and III (Table S1-S2, Appendix, respectively) with data extracted from medical 

records. BMI and tumor localization data were not routinely registered in NKBC, and these 

two variables were excluded. In addition, the inclusion of tumor characteristics and lymph 

node status in the contralateral breast and axilla violated the assumption of independent 

samples, and patients with bilateral tumors were excluded. Although the information on LVI 

status was missing in Cohort II, a separate prediction model for LVI status was developed in 

Cohort I because of its importance in predicting N status [7, 22]. All variables were defined 

and preprocessed as described by Dihge et al. [7], except for the histological type. In cohorts 

I and II, the histological type was categorized into the following three groups: no special 

type, lobular, and other/mixed. In Cohort III, data on other/mixed histological type was 

regrouped, and the mixed histological type was set as missing. 

 
Table 1. Patient and tumor characteristics for Cohort II. The number of missing values is shown for non-complete case 

variables. 

 All patients (n=18 

633) 

N0 (n=14 829) N+ (n=3804) 

    

Age (years), median 

(range) 

   

 65 (22-95) 65 (22-95) 63 (23-94) 

Menopausal status    
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Premenopausal    

 3336 (19%) 2515 (18%) 821 (23%) 

Postmenopausal    

 14 224 (81%) 11 457 (82%) 2767 (77%) 

Missing    

 1073 857 216 

Mode of detection    

Mammographic 

screening 

   

 10 816 (58%) 8992 (61%) 1824 (48%) 

Symptomatic 

presentation 

   

 7777 (42%) 5802 (39%) 1975 (52%) 

Missing    

 40  35 5  

Tumor size (mm), 

median (range) 

   

 15 (1-50) 14 (1-50) 19 (1-50) 

Multifocality    

Absent    

 15 537 (84%) 12 730 (86%) 2807 (74%) 

Present    

 3061 (16%) 2075 (14%) 986 (26%) 

Missing    

 35 24 11 

Histological type    

No special type 

(NST) 

   

 14 322 (77%) 11 325 (76%) 2997 (79%) 

Lobular    

 2387 (13%) 1862 (13%) 525 (14%) 
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Other invasive, 

including mixed 

types 

   

 1924 (10%) 1642 (11%) 282 (7%) 

NHG    

I    

 4112 (23%) 3600 (25%) 512 (14%) 

II    

 9672 (54%) 7595 (53%) 2077 (56%) 

III    

 4643 (26%) 3458 (24%) 1185 (32%) 

Missing    

 206 176 30 

ER status    

Negative (< 1%)    

 1490 (8%) 1199 (8%) 291 (8%) 

Positive (≥ 1%)    

 16 423 (92%) 13 053 (92%) 3370 (92%) 

Missing    

 720 577 143 

PR status    

Negative (< 1%)    

 2672 (15%) 2182 (16%) 490 (14%) 

Positive (≥ 1%)    

 14 973 (85%) 11 839 (84%) 3134 (86%) 

Missing    

 988 808 180  

HER2 status    

Negative    

 16 288 (89%) 12 989 (89%) 3299 (88%) 

Positive    

 2082 (11%) 1627 (11%) 455 (12%) 
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Missing    

 263 213 50 

Ki67 (%), median 

(range) 

   

 20 (0-100) 20 (0-100) 24 (1-100) 

Missing    

 133 123 10 
 

Study design  

This was an observational diagnostic study. Because of the absence of information on LVI 

status in Cohort II, three N models trained in Cohort I (N-LVI_presentI, N-LVI_imputedI, and 

N-LVI_absentI, Figure 2) were developed to externally validate the original NILS model [7]. 

Each of the three models had different access to values for LVI status. When applicable, 

missing data on the LVI status were imputed using an LVI model (LVI model in Figure 2). 

The model N-LVI_presentI was developed using only patients with documented LVI status 

(n=613 patients in Cohort I). For the model N-LVI_imputedI, patients with missing values for 

LVI status (n=148 patients) had these predicted using the LVI model, and the model was 

trained on all n=761 patients in cohort I. The model N-LVI_absentI was developed without 

access to LVI status in all 761 patients in Cohort I. The LVI model was developed based on 

613 patients in Cohort I with documented LVI status. 

 

The three available cohorts enabled us to externally validate the original NILS model [7] and 

investigate the effect of imputed values of LVI status on N model predictions. Imputations by 

the LVI model were further evaluated in the model N-LVI_presentI (see subheading LVI 

status model evaluation). The considerably larger size of Cohort II also enabled the 

development of a new N model (N-LVI_absentII; Figure 2) in a large population-based 

cohort. 

 

Cohort II was categorized into a training and a test dataset of 80%/20% stratified by N status 

to compare the performance of the model N-LVI_absentII with that of N models N-

LVI_presentI, N-LVI_imputedI, and N-LVI_absentI. The model N-LVI_absentII was 

developed using the training dataset (n=14 906), whereas the test dataset (n=3727) was set 

aside for comparison with the other developed N models. 
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Figure 2. Models developed and evaluated in the study. Three N models were developed to account for the lack of data on 

LVI status in Cohort II. The external validation was made in Cohort II (NKBC) (n=18 633). A new N model was developed 

in the training cohort (n=14 906) of Cohort II, and its performance was compared to that of the three other N models in the 

test cohort (n=3727) of Cohort II. An LVI model was developed to predict LVI status for patients without documented LVI 

status in Cohort I, and the LVI model was externally validated in Cohort III. In addition, different alternatives for LVI 

imputation were tested in the model N-LVI_presentI in Cohort III. LVI, lymphovascular invasion; N, nodal; NKBC, Swedish 

National Quality Register for Breast Cancer. 

Model development and selection 

The process of training the LVI model and the four N models was similar to that in Dihge et 

al. [7] but with minor modifications owing to different access to data, as presented above. 

Briefly, an ensemble MLP was developed for each examined hyperparameter combination, 

and every network in the ensemble was trained using 5-fold cross-validation, stratified by the 

endpoint distribution. The mean validation AUC of each ensemble was compared to identify 

the hyperparameter combination that yielded the highest validation AUC. One difference 

from the original model development was using random search instead of grid search, where 

each learning algorithm was assigned randomly selected hyperparameters, given a range of 

values. This hyperparameter optimization method is more efficient than iterating over all 

possible hyperparameter combinations [31]. 

Missing data  

The three cohorts had between 1%–2% missing values and 72%–90% complete-case patients 

(Tables S3–S5, Appendix). Missing LVI status were assumed to be missing at random 

conditional on the other predictors, and other values were assumed to be missing completely 

at random. In the original NILS model, missing data were handled using multiple random 
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imputation. In this study, missing data were imputed either by multiple random imputation or 

by the LVI model.  

 

All cases with missing LVI status values were predicted using the LVI model. During the 

development of the model N-LVI_imputedI, the LVI model was used to predict the LVI 

status of 148 patients lacking information on LVI status in Cohort I at the beginning of each 

fold in the 5-fold cross-validation. For each training epoch, the LVI status was set to LVI 

positive or negative, given the probability of the prediction. Missing values among other 

variables were imputed using multiple random imputation where a missing value was 

randomly replaced by a value in the present data distribution for the corresponding variable. 

The procedure was repeated at the beginning of each training epoch. 

LVI model evaluation 

To evaluate the LVI model developed in Cohort I, three types of imputations of LVI status 

were compared with the original values for LVI status in Cohort III. The comparison was 

made using the N status predicted by the N-LVI_presentI model. Subsequently, the three 

types of imputation were 1) the probability predicted using the LVI model, 2) the 

corresponding category (LVI-positive/LVI-negative) given the probability of the prediction, 

and 3) the corresponding category of the prediction given a cut-off of 0.3, matching the 

distribution of the LVI predictions in the internal cross-validation to that of the development 

cohort. 

 

The imputation option yielding the highest validation AUC for N status, calculated as the 

mean of the N-LVI_presentI model’s predictions over 25 imputed datasets, was chosen for 

the imputation of LVI status in Cohort II. Calibration curves of the observed versus mean 

predicted probabilities were used to visualize the LVI model calibration. 

N model evaluation 

The N model validation AUC was calculated as the mean of the AUCs over 25 datasets 

imputed for missing values and the LVI status was imputed by the LVI prediction model for 

each dataset when applicable. In addition, a secondary outcome for the N models was the 

proportion of patients that could be omitted from SLNB while maintaining the FNR at 10% 

(the generally accepted FNR of SLNB [25]). Set beforehand, developing an N model 

identifying candidate patients for SLNB omission in every fifth patient with cN0 breast 

cancer was to be considered successful.  
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Model predictions were recalibrated to the prevalence in the external validation cohort to 

account for the different N status distributions of Cohorts I and II [32]. In addition, 

calibration curves of the observed vs. mean predicted probabilities were used to visualize the 

model calibration. Finally, decision curves [33] were analyzed to examine the standardized 

clinical benefit [34] of the N models, where the threshold probabilities were set to the range 

of the acceptable level for the FNR (0%–10%).  

Software and hardware 

All parts of the study were conducted using Python 3.9.7 (Python Software Foundation) [35] 

and TensorFlow 2.6.0 [36], with an Intel® Core™ i7-8700K CPU @ 3.70GHz or a GPU 

(2xGeForce RTX 2080) computer. 

Ethics 

The Regional Ethics Committee at Lund University, Sweden, approved Cohort I for the study 

(LU 2013/340). Cohorts II and III were approved for the study by the Swedish Ethical 

Review Authority (2019–02139) and (2021-00174), respectively. 

RESULTS 

LVI model to predict missing values of LVI status for NILS 

The LVI model was trained on 613 patients in Cohort I and evaluated in Cohort III (n=525) 

(Figure 2 and Table S5, Appendix). The model had an internal cross-validation AUC of 0.799 

(95% CI: 0.751–0.846) and an external validation AUC of 0.747 (95% CI: 0.694–0.799) 

(Figure 3). In addition, the LVI model showed good calibration in external validation (Figure 

S3, Appendix). The final architecture for the LVI and N models can be found in the Appendix 

(Table S7). 
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Figure 3. The LVI model had a discriminatory performance AUC of 0.799 (95% CI 0.751–0.864) in the internal validation 

and an AUC of 0.747 (95% CI 0.694–0.799) in the external validation. ROC, receiver operating characteristic; AUC, area 

under the ROC curve. 

All alternatives for LVI imputation were evaluated in Cohort III using the N model N-

LVI_presentI. The model N-LVI_presentI imputed with probabilistically drawn categorical 

values of LVI status performed slightly better than the other options (Table 2); therefore, this 

type of LVI imputation was subsequently used.  
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Table 2. AUC for the N status predictions of the model N-LVI_presentI for different strategies for imputing values of LVI 

status. The highest AUC, except when using the original LVI values, was obtained when imputing LVI status using the 

probabilistic imputation, the reason this method was chosen for LVI imputation in the rest of the analysis. AUC, area under 

the receiver operating characteristic curve;  LVI, lymphovascular invasion; N, nodal. 

 Original 

LVI status 

LVI status 

imputed by the 

predicted 

probability  

LVI status 

imputed by 

probabilistically 

categorical 

imputation  

LVI status 

imputed by 

categorical 

imputation with 

threshold 0.3 

 

     

N-

LVI_presentI, 

AUC (95% 

CI)  

    

 0.750 

(0.704-

0.795) 

0.737 

(0.689 – 0.783) 

0.740 

(0.693-0.784) 

0.738 

(0.691-0.783) 

 

 

External validation of the original NILS model 

To externally validate the original NILS model in Cohort II without information on LVI 

status, three N models (N-LVI_presentI, N-LVI_imputedI, and N-LVI_absentI) were 

developed for Cohort I (n=761), as shown in Figure 2. The original NILS model was 

internally cross-validated with an AUC of 0.740 (95% CI: 0.723–0.758) [7]. In the present 

external validation in Cohort II (n=18 633), both the N-LVIpresentI and N-LVIimputedI 

models reached an AUC of 0.686 (95% CI: 0.677–0.695) (Figure 4, left). Furthermore, upon 

validation, the model N-LVIabsent I  reached an AUC of 0.699 (95% CI 0.690–0.708). The 

classification performance of all N models is summarized in the Appendix (Table S8). 
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Figure 4. The ROC curve for the external validation (left) and the internal validation (right) of the original NILS model in 

Dihge et al. [7]. The models of this study had access to slightly different variables and a different number of patients in the 

training cohort than that of the original NILS model. The models N-LVI_presentI and N-LVI_imputedI both included LVI 

status, whereas N-LVI_absentI did not. Note that the original model was cross-validated with AUC 0.740 in [7], which was 

an average of five runs. The ROC curve of the original NILS model is in this figure represented by the run closest to the 

mean; AUC 0.741. LVI, lymphovascular invasion; ROC, receiver operating characteristic; AUC, area under the ROC curve; 

NILS, noninvasive lymph node staging. 

The impact of the LVI model on the overall N status predictions  

The internal validation of the N models showed a higher performance for models N-

LVI_presentI and N-LVI_imputedI using LVI status (AUC 0.726, 95% CI: 0.681–0.768 and 

AUC 0.711, 95% CI: 0.762–0.750, respectively), compared to that of model N-LVI_absentI 

not including LVI status (AUC 0.705, 95% CI 0.665–0.744) (Figure 4, right). For external 

evaluation of the models N-LVI_presentI and N-LVI_imputedI, the LVI model was used to 

predict the LVI status in Cohort II. 

 

When externally validated in Cohort II (n=18 633), the models N-LVI_presentI, N-

LVI_imputedI, and N-LVI_absentI showed similar performances (Figure 4, left). Therefore, 

the rest of the external validation focused on the model developed without access to LVI 

status, N-LVI_absentI. In the calibration plot, the model N-LVI_absentI demonstrated slightly 

lower predictions than the true values in the external validation (Figure S4, Appendix). 

However, when transforming the predictions in relation to the prevalence of N0 in the 

validation cohort, the calibration of the model N-LVI_absentI was satisfactory. 

Comparison between developed N models 

The fourth N status model, N-LVI_absentII, was developed in NKBC, a large population-

based cohort. The cohort was considerably larger (training cohort n=14 906) than the 
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development cohort for the other three N models and the original NILS model [7] (Cohort I). 

The test cohort of Cohort II (n=3727), set aside before the development of model N-

LVI_absentII, was used to compare the performance of the developed N models. The models 

N-LVI_presentI, N-LVI_imputedI, and N-LVI_absentI reached AUC of 0.684 (95% CI: 

0.663–0.705), 0.685 (95% CI: 0.663–0.706), and 0.696 (95% CI: 0.676–0.717), respectively 

(Figure 5). The model N-LVI_absentII reached a slightly higher AUC of 0.709 (95% CI: 

0.688–0.729). The calibration plot for the model N-LVI_absentII is shown in the Appendix 

(Figure S5). 

 
Figure 5. Validation in the test cohort (n=3727) of Cohort II for the N models N-LVI_presentI, N-LVI_imputedI, N-

LVI_absentI, and the new N model N-LVI_absentII developed in a larger cohort. N, nodal; ROC, receiver operating 

characteristic; AUC, area under the ROC curve. 

Potential clinical utility 

External validation of the N models before recalibration showed potential in sparing 

approximately 20% of cN0 patients from axillary surgery when using an FNR of < 10%. 

When recalibrating the predictions for the model N-LVI_absentI, the number decreased to 

approximately 16%. However, the new N model N-LVI_absentII developed in Cohort II 

could potentially spare 24% of patients with cN0 breast cancer from SLNB. The standardized 

decision curve analyses (Figure 6) specifically showed the range of predictions where 
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patients could benefit from utilizing the two prediction models. The standardized decision 

curve analysis for the original predictions of N-LVI_absentI before recalibration is shown in 

the Appendix (Figure S5). 

 

Figure 6. Decision curves showing the standardized net benefit of the model N-LVI_absentI (recalibrated) (left) and the 

model N-LVI_absentII (right). The black horizontal line represents the scenario of all patients being diagnosed as node-

negative; hence, no SLNB is performed. The colored function represents the diagnosis by the model. The golden, vertical 

(dashed) line at a threshold of approximately 0.9, separating the lighter color from the darker, shows the threshold for FNR 

< 10%. When all patients are considered node-positive and diagnosed through SLNB, the standardized net benefit is, by 

definition, zero. Notably, the darker, colored area does not represent the patients spared from surgery. Rather, it displays 

the standardized net benefit of the model where FNR < 10%. cN0, clinically node negative; FNR, false negative rate; SLNB, 

sentinel lymph node biopsy. 

 

DISCUSSION 

Principal results 

The proportion of patients diagnosed with early-stage breast cancer is increasing [4]. Along 

with improvements in adjuvant therapy, surgical treatment is becoming more conservative. 

Most patients with early-stage breast cancer have benign lymph nodes and would benefit 

from preoperative noninvasive staging of the axilla [3, 4]. In this study, we externally 

validated a previously published N model [7] in a national, large population-based register 

cohort (n=18 633) without access to LVI status and developed a new N model within the 

same cohort. Notably, the discriminatory performance (AUC 0.709, 95% CI: 0.688–0.729) of 

the new N model (N-LVI_absentII) developed in the large population-based cohort 

demonstrated that routine clinicopathological register data can be used to develop an N model 

to identify 24% of patients with cN0 for whom surgical axillary staging could be 

circumvented. The model developed in Cohort I without access to data on LVI status (N-
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LVI_absentI) achieved an AUC of 0.699 (95% CI: 0.690–0.708) and the potential to omit 

16% of patients from SLNB. The use of fewer variables and, in some cases, fewer patients 

was expected to result in a slight decrease in the performance of the models in this study 

compared with that of the original model. 

Comparison with prior studies 

Multiple studies have investigated the discriminatory performance of nomograms for 

predicting N status using retrospective clinicopathological data alone or in combination with 

imaging features [6, 8-17]. We aimed to externally validate and further develop a diagnostic 

tool for the noninvasive staging of N status using only routinely available clinicopathological 

data to improve the clinical utility of the model. Li et al. [8] and Gao et al. [12] developed 

nomograms using solely clinicopathological data that can be obtained preoperatively. 

However, the studies did not specify whether the data were extracted from the preoperative or 

postoperative setting. Li et al. had the advantage of a very large cohort (n=184 532); 

unfortunately, combining external validation data with parts of the development cohort 

resulted in inaccurate external validation (AUC 0.718). Gao et al. developed a nomogram 

based on 6314 patients with external validation on 503 patients, where the shift from training 

and internal validation to external validation increased from an AUC of 0.715 and 0.688 to an 

AUC of 0.876, respectively. This large discriminatory increase in external validation is 

unexpected and warrants questioning the model’s validity. 

 

One possibility for the transition from postoperative to preoperative variables is the use of 

imaging features. Mao et al. [15] developed a nomogram using CESM reported lymph node 

status and a radiomics signature to predict axillary lymph node status. In addition, the 

nomogram was externally validated on only n=62 patients with an AUC of 0.79 (95% CI: 

0.63–0.94). Using only features that can be obtained preoperatively is an advantage in Mao et 

al.’s study [15]. However, additional larger external validation is needed to confirm the 

results of the study. Furthermore, CESM is not part of the mammography screening program 

or routine workup for suspicious breast malignancies, limiting the study’s clinical feasibility. 

Bove et al. [5] developed a support vector machine (SVM) classifier for clinical data and one 

SVM for radiomics data to predict N status. They used soft voting, which implies combining 

the probabilities of each prediction in the two models. They chose the prediction with the 

highest total probability, which resulted in an AUC of 0.886 on the hold-out test set. 

Combining pre- and postoperative variables is a limitation of the study, and the axillary US is 
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an operator-dependent imaging modality. However, the results show the potential for using 

imaging features in machine learning models for noninvasive staging of N status. The SVM 

classifier had an AUC of 0.739 using only postoperative clinicopathological data, similar to 

that of the original NILS model [7]. However, both the training (n=114) and test (n=28) 

datasets were small; therefore, a larger external validation is needed to confirm the results. 

 

In this study, the LVI model, trained using only routine clinicopathological variables and 

developed to increase the feasibility of the NILS models in the preoperative setting, had an 

external validation AUC of 0.747 (95% CI: 0.694–0.799). To the best of our knowledge, this 

is the first LVI model to be incorporated into an N model. Preoperative assessment of LVI on 

CNB is challenging, and several models have been developed to predict the LVI status. For 

example, Shen et al. [37] developed a logistic regression model for the LVI status using 

clinicopathological variables (n=392). Although the model reached an AUC of 0.670 (95% 

CI: 0.607–0.734) in the training dataset, it was not further validated. In addition, others have 

investigated the importance of radiomics features for predicting LVI status, for example, 

digital mammography features [38] with LVI prediction specificity of 98.8% in the 

development cohort and MRI features [39] with an AUC of 0.732 in the test dataset. 

However, while highlighting the potential for predicting LVI status using radiomics, the data 

used are not part of the diagnostic workup for breast cancer, limiting clinical feasibility. 

 

Despite the AUC of 0.747 for the LVI model in this study, the imputation of values for LVI 

status did not improve the discriminatory performance of the N models in the large 

population-based register cohort (NKBC). This may indicate that the uncertainty in the LVI 

model’s predictions was still too large for the LVI model to be of benefit when predicting N 

status. Nevertheless, the reliability and/or distribution of data, such as multifocality, may 

change in the preoperative setting [40], which could change the prerequisites for predicting 

LVI status. Given the growing evidence on the significance of LVI status as a predictor of 

axillary N status [7, 11, 22, 41], further evaluation of the presented LVI model is warranted. 

Potential clinical utility 

Omitting SLNB in subgroups of patients is consistent with the American Society of Clinical 

Oncology guidelines from 2021 [2], stating that SLNB is optional for all patients ≥ 70 years 

old with cN0, ER+, and HER2- if the patient received adjuvant endocrine therapy. In this 

study, using only routine clinicopathological data, the models developed without access to 
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LVI status in Cohort I (recalibrated) and Cohort II presented the potential to spare 16%–24% 

of patients with cN0 from SLNB, irrespective of age and tumor subtype. In addition, a health-

economic study concluded that the NILS model is cost-effective [42]. If lymphedema is 

considered to negatively impact the patients’ quality of life, the NILS model also showed a 

net health gain [42].  

Strengths and limitations 

Criticism has been raised against the use of small sample sizes in the development and 

external validation of machine learning models in oncology, as well as the poor handling of 

missing data [39]. Accordingly, we aimed to externally validate the original NILS model [7] 

in a nationwide and large population-based register cohort (n=18 633) and to develop a new 

NILS model within this larger cohort (n=14 906). Using a large population-based register 

cohort is advantageous in the following two ways: 1) its consecutive nature constitutes a good 

approximation of the true distributions of the population, and 2) it demonstrates the reality of 

data handling where input data will comprise missing values and occasional mistakes in 

documentation. Importantly, we have shown that register data can be used to develop an N 

model with equally satisfactory results as when using more curated data, including the LVI 

status. Our external validation of the original NILS model [7] was performed in a temporally, 

geographically, and domain-wise different cohort from the original development cohort. We 

presented calibration and net benefit curves to demonstrate the utility of the models. In 

addition, the 1091 patients in Cohort II with missing or incongruent data for axillary surgery 

and/or lymph node status (Figure 1) showed a similar distribution of clinical variables (data 

not shown) as the final study population of Cohort II. Therefore, there was no indication of 

selection bias. 

 

Another strength of our study is the thorough management of missing data using both the 

LVI model and multiple random imputation. Our comprehensive handling of missing values 

may increase the utility of N models in a clinical preoperative setting. It also showed that for 

the discriminatory performance in N staging, the manner the predictions of LVI status were 

presented to an N model was of minor importance. However, this requires further 

investigation in the preoperative setting and/or utilization of an LVI model with even higher 

discriminatory performance to completely rule out the potential advantage of MLP LVI 

predictions in NILS. 
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However, this study had some limitations. First, the models were developed using a 

combination of variables available before and after surgery to externally validate the original 

NILS model [7] which is based on preoperative and postoperative variables. Further 

development of the NILS concept is an ongoing validation of the NILS model, using 

exclusively preoperative variables [29]. Second, the generalizability of the LVI and N models 

developed in Cohort I can be affected by the smaller size of the development cohorts which 

can be considered a weakness of the study. Therefore, regularization of the networks and 5-

fold cross-validation were used to minimize overfitting. The drop in performance from the 

internal to external validation was small for all models, which is a clear strength of our 

findings.  

 

Recalibration was performed for the model developed without access to LVI status in cohort I 

(N-LVI_absentI) because of the different prevalence of benign lymph nodes in Cohorts I and 

II (65% pN0 vs. 80% pN0). No recalibration was performed for the LVI model because the 

prevalence of a positive LVI status was similar in Cohorts I and III. Notably, when 

transforming the N status predictions in relation to the new prevalence, the calibration and the 

overall net benefit of the model N-LVI_absentI improved, while the fraction of patients to be 

spared from SLNB decreased. Therefore, to potentially increase the number of candidate 

patients to be omitted from SLNB, an important future development of the model could be to 

evaluate it using partial AUC [43] or concordant partial AUC [44]. The model selection is 

then based on the model’s performance under specific conditions, for example, FNR < 10%, 

which could optimize the model performance for patients most likely to benefit from the 

prediction. Another option is to investigate the modification of the loss function when 

training the MLP to optimize the algorithm for the largest number of patients to be omitted 

from SLNB while keeping the FNR < 10%.  

 

An additional strength of this study was the use of three disjoint cohorts for model 

development and validation. After model development, two patients in Cohort I were 

incorrectly classified as N0 instead of N+. However, these two patients corresponded to less 

than 1% of the cohort and did not affect the overall results. Cohort II demonstrated high 

validity and a high coverage of key variables [28]. An independent researcher validated and 

monitored Cohort III according to a specific quality assurance protocol to ensure well-

characterized data. All variables, except one, were defined in coherence; the mixed 

histological type was categorized as missing in Cohort III. However, this should have a 
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limited effect on the results since mixed histological type is rare (approximately 5%) [45]. 

We excluded bilateral patients not to risk dependency and information leakage between the 

two tumors and/or nodal statuses. The exclusion limits the target group to a minor extent, as 

bilateral cancers are generally diagnosed in less than 5% of patients [46]. 

Future studies 

Future steps include a prospective external validation of the NILS concept in a larger cohort 

and an evaluation of the incorporation of LVI predictions in a NILS model in the 

preoperative setting. External validation of the LVI model in a Norwegian breast cancer 

cohort is also planned. The feasibility of using register data for prediction modeling 

demonstrates the possibility of using larger and less-curated databases in machine learning 

models for NILS. 

 

Implementing neural network models that are equal or superior to linear models allows 

extending the model to more complex data that cannot be handled by logistic regression in 

end-to-end learning. This enables less human interference, simpler implementation, and 

models to optimize the entire task. Therefore, to potentially improve the discriminatory 

performance of noninvasive staging of lymph nodes for future clinical implementation, 

additional types of data conferring to the knowledge of lymphatic spread should ideally be 

investigated. Imaging features are both preoperatively available and have shown high 

discriminatory performance in nodal prediction models [5, 9-11, 13-15]. In addition, 

molecular subtypes are associated with the outcome as well as N status and the difficult-to-

treat triple-negative subtype has the lowest risk of nodal metastasis compared to luminal 

tumors [6]. Consequently, models based on gene expression analysis have shown potential in 

correctly identifying N0 patients in specific subtypes of breast cancer, such as luminal-A 

[47], ER+/HER2- [48] and triple-negative tumors [49], to capture additional aspects of 

lymphatic spread, such as immune signatures. Gene expression data have also shown the 

potential to increase the number of candidate patients to be omitted from SLNB when 

combined with clinicopathological data compared to predicting N status using 

clinicopathological data alone [50]. Therefore, planned extensions of the NILS model include 

mammography images and gene expression data, mainly focusing on molecular subtypes and 

immune signatures. 
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Conclusions 

We externally validated the original NILS model [7] in a large population-based register 

cohort, with a discriminatory performance of 0.699 (95% CI: 0.690–0.708). Prediction of 

LVI status did not improve the performance of the N model, despite its documented 

importance in prediction of axillary stage. A new MLP model for predicting N status was 

developed in a large population-based register cohort, demonstrating the feasibility of 

developing a prediction model for noninvasive nodal staging using register data comprising 

only variables available in the preoperative setting and, notably, no information on LVI status 

(AUC 0.709, 95% CI: 0.688–0.729). Therefore, future studies include evaluating the LVI 

model in the preoperative setting, the ongoing preoperative validation of the NILS concept, 

and extend the NILS model with preoperative and routinely available data such as 

mammography images and gene expression data.  
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Abbreviations: 

ALND: axillary lymph node dissection 

AUC: area under the receiver operating characteristic curve 

BMI: body mass index 

CESM: contrast-enhanced spectral mammography 

CNB: core needle biopsy 

cN0: clinically node-negative 

ER: estrogen receptor 

FNR: false negative rate 

LVI: lymphovascular invasion 

MLP: multilayer perceptron 

MRI: magnetic resonance imaging 

HER2: human epidermal growth factor receptor 2 

N: nodal 

NHG: Nottingham histological grade 

NILS: noninvasive lymph node staging 

NKBC: Swedish National Quality Register for Breast Cancer 

PAD: pathological-anatomical diagnosis 

PR: progesterone receptor 

ROC: receiver operating characteristic 

SLNB: sentinel lymph node biopsy 

SUS: Skåne University Hospital 

SVM: support vector machine 

US: ultrasound 
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