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Abstract

The role of race in medical decision-making has been a contentious issue. Insights from his-
tory and population genetics suggest considering race as a differentiating marker for medical
practices can be influenced by systemic bias, leading to serious errors. This may negatively im-
pact treatment of complex diseases such as cardiovascular disease (CVD). We seek to identify
instrumental variables and independently verifiable epidemiological tests of whether diagnoses
and treatments impacting severe cardiovascular conditions are racially linked. Using data from
the UK Biobank (UKB), we found minimal, non-significant racial differences in log odds ratio
(OR) between a range of cardiovascular outcomes such as atrial fibrillation, coronary artery
disease, coronary thrombosis, heart failure and cardiac fatality. Genetics classification with
respect to principal components vs. racial identification of Black British showed no significant
differences in diagnoses or therapeutics for CVD related diseases and their associated comor-
bidities. However, Black British had significant risk of association with genetically predisposed
risk of CVD as captured by polygenic risk scores (PRS) of CVD (OR=1.12; 95%CI:1.034-1.223;
p < 0.006) as well as in 14 related traits. We used a sub-population based feature selection
method to find Townsend Deprivation Index, smoking history, hypertension, PRS for ischemic
stroke, low density lipoprotein cholesterol, and type II diabetes as the top features predicting
the ethnographic category of Black British with an AUC of 79.5%. Therefore, PRS can be
used to understand racial disparities in disease outcome which is otherwise not reflected in
clinical factors such as diagnoses outcome status or therapeutics in large observational cohorts
such as UKB. PRS yield better predictive power with underrepresented minorities and can
improve clinical decision-making.

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.10.23285769doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.02.10.23285769
http://creativecommons.org/licenses/by/4.0/


Introduction

The field of healthcare is not a stand-alone case of being strife with racial disparities, rather it

is a part of a structural racism in our society. Unequal treatment [1] was one of the first major

reports to state how systemic racism leads to disparities in therapeutics (Rx) and diagnoses

(Dx) of common diseases. Even after two decades from that report, we are still dealing with

rampant racial disparities in healthcare, recently evident during the COVID-19 pandemic,

where Black and Brown communities were disproportionately affected [2]. According to the

American Heart Association (AHA), “Race” is considered as a social construct based on

phenotype, ethnicity and other indicators of social differentiation resulting in varying access

to power and socio-economic resources [3]. Despite mounting evidence that race is not a

reliable proxy for genetic difference, use of race-correction algorithms are embedded, often

insidiously, within medical practice [4]. Physicians use these race-embedded algorithms to

individualize risk assessment and make clinical decisions. The AHA used to assign three

additional points to patients identifying as nonblack in the Get with the Guidelines-Heart

Failure Risk Score which assesses the risk of death in hospitalized patients [5]. But, the

reality is often very different from such systemic racism-induced race-embedded risk scores,

where in reality African Americans are 30% more likely to die from cardiac heart failure than

nonblack populations [6]. At the same time, prevalence of coronary artery disease is much

lower among black british compared to whites [7,8] highlighting the complexity of how racial

factors impact similar racial classifications in different populations. Similarly, the lack of

effectiveness of angiotensin-converting enzyme (ACE) inhibitors in African Americans based

on blood pressure measurements was also disputed with conflicting results indicating that

they are equally as effective in African Americans compared to Caucasian Americans [9, 10].

Similar examples are ubiquitous in healthcare and clinical decision-making. Hence, alternative

approaches such as race-conscious medicines based on genetics are promoted to reduce racial

health inequities [11].

Great strides have been made towards understanding race in the context of human ge-

netics since the Human Genome project. Hence, the clinical implementation of self-described

racial ethnographic category can often be very different from the population genetics derived

notion of “Race” but most race corrections implicitly assume that genetics track reliably with

race [4]. While genetic and genomic research is primarily focussed on understanding disease

mechanisms and identifying new therapeutic targets, it can also elucidate how genetics can

play a significant role in mitigating racial disparities in healthcare and making medicine more

equitable. Genomics can capture ancestry in a more precise way, allowing genetic influences
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to be teased apart from the impact of social and environmental factors [12]. Hence, we can

use genetic structure, often represented by principal components (PCs) as a proxy for ethno-

graphic racial categorizations in clinical studies and epidemiology. Another way genetics can

aid clinical decision-making is with polygenic risk scores (PRS) which predict complex traits

on the basis of genetic data. PRS are poised to improve biomedical outcomes via precision

medicine [13] and can be used as an additional biomarker along with the combination of

clinical, biochemistry, lifestyle, and historical risk factors [14] which can enhance phenotype

prediction accuracy in CVD. Recently, AHA has suggested efficacy, harm and logistics as

three criteria to consider for implementation of PRS in cardiovascular care [15]. PRS are

often plagued by poor transferability across populations as most large genetic cohorts are

overwhelmingly of European descent [14]. Thus, clinical use of PRS may end up exacerbating

racial disparities [13].

In this work, we seek to identify instrumental variables and independently verifiable tests

of whether Dx and Rx decisions impacting CVD and its comorbidities are racially linked.

Specifically, we seek to construct tests to identify whether racial status may contribute to

under-diagnosis, under prescribing, and/or increased mortality. It has been shown in prior

work that the UK Biobank (UKB) suffers from a well-established “healthy volunteer” effect

due to volunteer enrollment in UKB leading to enrollment bias [16]. Black British (BB), who

show strong deprivation according to the Townsend deprivation index are most likely impacted

by accessibility of treatment which also stems from a mistrust in healthcare due to a history of

systemic deprivation [17]. Due to the volunteering nature of enrollment, the distrust in health-

care is mitigated in UKB. The enrollees identified by self-described ethnographic category of

BB is 1.54% with 0.21% reported as “mixed”. The genetic history of BB in the UK (3% of

entire population) is complex, spanning multiple migrations into Britain, primarily fuelled by

colonization of African countries and the West Indies [18]. Therefore, racial classifications

can hide distinctive ancestral groups with differential responses to diseases. Understanding

any differences in disease impacts should account for possible treatment biases. We sought

to track differences along the paths of diagnosis and therapy for CVD related diseases such

as Atrial Fibrillation (AF), Coronary Artery Disease (CAD), Coronary Thrombosis (CT),

Coronary Fatality (CF), and Heart Failure (HF) as well as their comorbidities such as obe-

sity (OBESE), Chronic Kidney Disease (CKD), diabetes (DIAB), Hyperlipidemia (HL), and

Hypertension (HT).

We investigated whether using self-described ethnographic category of BB and other pop-

ulations in UKB such as East Asians (EAS), South Asians (SAS), mixed and individuals of
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European ancestry, known hereafter as UK White (UKW) are more susceptible to the above

cardiovascular and related diseases in Dx or Rx indicating evidence of racial disparity. We

further tested whether alternative genetic measures of ancestrally-correlated indices and poly-

genic risk scores (PRS) for the above diseases and related clinical variables can be used to

capture the racial disparity for BB. We find that PRS for CVD related traits is significantly

associated with BB. On the other hand, we either found protective effect or non-significant

associations with BB and CVD related Dx or Rx using clinical variables. Hence, the use of

genetics in the form of ancestrally informative markers for capturing population structure as

a proxy for a racial classification such as BB and PRS in clinical decision-making is an im-

portant way to understand racial disparities in large electronic health records (EHR)-linked

biobanks. Thus, genetics can play a crucial role in clinical decision-making yielding a more

equitable healthcare system.

1 Methods

1.1 Data

We extracted 104,604 samples with genetic information from UKB along with CVD associated

clinical variables related to both Dx and Rx and demographic features such as sex, Townsend

Deprivation Index (TDI), and age (we converted the continuous variable representing age to a

binary variable Age65, representing individuals who are 65 years or older as 1 and rest as 0).

We also extracted an enhanced PRS set (ePRS) [19] with PRS of 15 CVD related traits such

as AF, CVD, CAD, ischemic stroke (ISS), resting heart rate (RHR), venous thromboembolic

disease (VTE), body mass index (BMI), Hypertension (HT), low density lipoprotein (LDL)

and high density lipoprotein (HDL) cholesterol levels, etc. A full list of the clinical variables

extracted from UKB and the number of people with incident outcome is shown in Figure 1. To

identify whether presecriptions were treated differently for BB vs. nonblack, we extracted the

reported LDL levels just prior to the first prescription of statins (STAT) or fibrates (FIBR).

The ICD-9, 10 and other self-reported diagnoses codes used in UK Biobank to extract all

clinical information is available in Supplementary Table 1.

For Rx data, we extracted drugs used for CVD related Dx such as blood clot preventing an-

ticoagulants (ACGN), Angiotensin II Receptor Blockers (ARB) prescribed for HT, blood pres-

sure lowering Angiotensin-converting enzyme inhibitors (ACEIN), and Beta-blockers (BBL).

We defined one representative variable for CVD Rx, combining these medication usage indica-

tor variables as CVD Rx = {ACGN∨ARB∨ACEIN∨BBL}. Similarly for HL, we also defined
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HL Rx = {STAT∨FIBR}, DIAB Rx, for diabetes as DIAB Rx = {BGN∨SUR}, where BGN

and SUR stands for Biguanides and Sulfonylureas, respectively. HT Rx, for hypertension was

defined as presence of Calcium Channel Blockers (CCBL).

Figure 1: Barplot with the number and proportion of individuals with each trait such as race, demographics, clinical
variables, etc. in the UKB ePRS cohort. Variables include (in order as they appear) grouped and colored by their
class such as Demographics - Age (> 65): individuals older than 65 years; male participants; smoking status;
BB: Black British; EAS: East Asians; Mixed: mixed ancestry individuals; SAS: South Asians; UKW: individuals
with European ancestry in UK and Ireland, Cardiovascular Dx - AF: Atrial Fibrillation; CAD: Coronary Artery
Disease; CT: Coronary Thrombosis; HF: Heart Failure; CF: Coronary Fatality, Comorbidities - OBESE: Obesity;
CKD: Chronic Kidney Disease; DIAB: Diabetes; HT: Hypertension; HL: Hyperlipidemia, Cardiovascular Rx -
ACGN: Anticoagulant; ARB: Angiotensin Receptor Blocker; ACEIN: ACE Inhibitor; BBL: Beta Blocker; CCBL:
Calcium Channel Blocker; FIBR: Fibrate, STAT: Statin; BGN: Biguanide; SUR: Sulphonylurea. The percentage
of individuals with incident disease outcome is given atop every bar.

1.2 Genomic Analyses

We performed genomic quality control (QC) on the imputed imputed genotype data of 104,604

samples and 44 million genetic variants using PLINK [20] and obtained 103,319 samples and

1.73 million variants (more details in Supplementary Note). We performed Principal Com-

ponent Analysis (PCA) on this data using TeraPCA [21] and obtained the top fifty principal

components (PCs).
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1.3 Association Tests

We performed logistic regression based association tests between CVD Dx and Rx with other

demographic and clinical variables including ePRS using statsmodels [22] in Python. Specif-

ically, we identified the association between racial categories and CVD Dx, Rx and related

comorbidities.

1.4 Feature Selection

To identify informative features and to assess their level of association with different race types

we analyzed data for all individuals that had no missing values, a total of 103,986 subjects. We

randomly split this data set into 75% (training) and 25% (testing). Race categories included

BB, SAS, UKW, EAS, and Mixed. We applied, for each race type, a sub-population-based

feature selection method [23] to identify and rank the most informative features. The method

was applied in 100 runs for each race on the training set and at the end of the runs all features

received a rank between 0 and 100, indicating importance such as higher rank corresponding

to higher importance (details in Supplementary Note).

2 Results

2.1 CVD Dx/Rx and race

The UKB ePRS cohort was used to test for racial bias in CVD related Dx or Rx using clinical

variables first. We observe (Figure 2A) that all of the five CVD Dx’s (AF, CAD, CT, CF,

and HF) had a protective effect on BB (mean OR=0.63; 95%CI: 0.48-0.87; p < 0.01).

Individuals with SAS ancestry (Indians, Pakistanis and Bangladeshis) have significantly

higher association with severe CVD Dx such as CAD, CT, HF, and even with CF. We observed

the same for CVD Rx with a protective effect on BB (OR= 0.72; 95%CI: 0.59-0.89; p < 0.0003)

and an increased risk in SAS (OR=2.07; 95%CI: 1.87-2.31; p < 10−15).

One of the early decision points exploring physician bias in CVD involves incident comor-

bodities of CVD such as HL, HT, and/or diabetes Dx along with their therapeutic interven-

tions. Hence, we sought a test for identifying whether treatment decisions disproportionately

impacted BB (Supplementary Figure 2). We found BB to be at a higher risk of diabetes

(OR=1.19; 95%CI: 1.07-1.32; p < 10−15), HT (OR=1.67; 95%CI: 1.54-1.79; p < 10−41), and

obesity (OR=1.32; 95%CI: 1.13-1.55; p < 10−4), while showing a non-significant effect for

HL (OR=0.89; 95%CI: 0.67-1.17; p < 0.4). Associations between BB and therapeutics of
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Figure 2: Association between demographic variables such as Age65 (age > 65), sex (Male), Townsend Deprivation
Index (TDI), smoking status (Smoker), and (A) self-described category of race (B) top 15 PCs and CVD Dx
denoted as (i) AF: Atrial Fibrillation (N = 4227), (ii) CAD: Coronary Artery Disease (N = 4710), (iii) CT:
Coronary Thrombosis (N = 2316), (iv) CF: Coronary Fatality (N = 258), (v) HF: Heart Failure (N = 8530), and
(vi) Cardiovascular Rx as defined in Methods (N = 10636). The significant ORs (p < 0.05) are shown in red with
error bars reflecting 95% CI.

CVD and related comorbidities followed a similar trend with BB showing a protective effect

on lipid-lowering HL Rx such as statins or fibrates (OR=0.77; 95%CI: 0.68-0.87; p < 10−5)

along with a non-significant effect on DIAB Rx (OR=0.96; 95%CI: 0.79-0.1.15; p < 0.6) and a

strong association with HT Rx (OR=1.35; 95%CI: 1.18-1.54; p < 10−6) . We tested whether

the blood lipids levels prior to HL Rx were different among BB vs. the rest of the popula-

tion and found no significant difference according to prescription for HL patients (OR=1.17;

95%CI: 0.67-1.82; p < 0.5), suggesting the differences in Rx rates were not due to observably

inconsistent application of clinical practice guidelines (CPGs).

2.2 Race and genetics

We sought to identify ancestrally informative genetic features by considering PCA and PRS to

see if they may reveal distinct subgroups, and whether identification of subgroups might yield

more predictivity of disease and therapy than the ethnographic category of race. We computed

PCA on the entire UKB ePRS cohort (Supplementary Figure 3) and chose to keep the top

15 PCs based on the percentage of variance explained by their corresponding eigenvalues

(Supplementary Figure 4).
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Figure 3: Association between self-described ethnographic category of race and demographic variables which in-
cludes the top 15 PCs along with demographic variables such as Age65 (age > 65), sex, smoking history and TDI.
Each panel corresponds to a race as summarized here: (i) Black British (N = 7963), (ii) East Asian (N = 4041),
(iii) Mixed (N = 993), (iv) South Asian (N = 7610), and (v) White (N = 77014). The significant ORs (p < 0.05)
are shown in red with error bars reflecting 95% CI.

2.2.1 Genetic structure as a proxy for race

We found that the indicator variable of BB had very significantly high OR=6.21 (95%CI:

5.82-6.61; p < 0.001) with PC0 (the first PC and so on for the following PCs), followed by

PC1 with OR=3.49 (95%CI: 3.21-3.81; p < 0.001). They are also significantly associated

with some of the other PCs with ORs (albeit with lesser significance) close to one (Figure 3).

Similarly, for EAS we observe the highest OR with PC6 with OR=4.39 (95%CI: 3.75-5.13;

p < 0.001), for SAS we observed association with PC7 and PC8 with mean OR=1.71 (95%CI:

1.55-5.1.89; p < 0.001), and for White individuals of European ancestry mostly with PC2

(OR=2.32; 95%CI: 2.15-2.51; p < 0.001) and also with PC3 and PC5 (mean OR=1.35; 95%CI:

2.26-1.47; p < 0.001). Therefore, we observed all distinct racial categories had significant

associations with one or more of the PCs with very high ORs and also with smaller strength

of relationship with other PCs. In addition, we found that BB were associated with individuals

who are younger than 65 years (OR=0.5; 95%CI: 0.47-0.52; p < 0.001, with Age65 variable

denoting individuals older than 65 years), significantly associated with TDI (OR=1.28; 95%CI:

1.27-1.28; p < 0.001), concordant with the fact that across all ages BB are more deprived

compared to other populations (Supplementary Figure 5), and have a protective effect on

smoking (OR=0.55; 95%CI: 0.52-0.58; p < 0.001).

When we replaced the race variable with genetic structure (PCs) in the association tests

between CVD Dx or Rx, we found no substantial change in association of statistics of CVD

and associated comorbidities Dx or Rx. For example, when we replace BB with PC0 (associ-

ated with highly significant OR=6.21) in the association test, we observed a mean OR=0.89
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(95%CI: 0.83-0.95; p < 0.002). Although it is above the mean OR of 0.63 with racial categories,

the protective effect still remains (Figure 2B; Supplementary Figures 1 and 2).

2.2.2 Race and PRS

CVD and related comorbidities in Dx and Rx showed a protective effect on BB in UKB.

Next, we wanted to test whether the predisposed genetics risk of CVD and related traits are

associated the race variable, specifically, with BB. We obtained 15 precomputed enhanced PRS

(ePRS) from UKB [19] and tested whether the self-described category of race is associated

with the ePRS as well as the association of these ePRS stratified by ancestry with respect

to Dx. Among the set of ePRS, six were CVD Dx, namely, AF, CVD, CAD, ISS, RHR, and

VTE. The rest were ePRS of CVD related comorbidities such as HT, Type I Diabetes (T1D)

Type II Diabetes (T2D), BMI, HbA1c, HDL/LDL cholesterol, remnant cholesterol (RMNC),

and total cholesterol (TCH).

Figure 4: Performance of 15 CVD related ePRS predicting racial categories of (i) Black, (ii) East Asian, (iii) Mixed,
(iv) South Asian, and (v) White. The association tests were corrected for age and sex. The significant associations
with 95% CI are marked in red.

We observed the racial category of BB was the most associated with the ePRS with the

strongest positive association with T2D (OR=1.21; 95%CI: 1.17-1.24; p < 10−36), followed

by RMNC (OR=1.11; 95%CI: 1.07-1.14; p < 10−12), ISS (OR=1.07; 95%CI: 1.07-1.14; p <

10−10), CAD (OR=1.11; 95%CI: 1.07-1.14; p < 10−12), RHR (OR=1.09; 95%CI: 1.06-1.13;

p < 10−9), and other traits. SAS population were the next best predicted by the ePRS

with multiple ePRS (CVD, CAD, RHR, VTE, HbA1c, etc.) being strongly associated with a

positive effect (Figure 4). This indicates BB and SAS are at most risk of CVD and related

diseases.
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We also tested the predictive performance for five ePRS, namely, AF, CAD, CVD, HT, and

T2D (abbreviated as PRS AF, PRS CAD, PRS CVD, PRS HT, and PRS T2D, respectively)

with respect to the Dx, for each population after correcting for age, sex, and top 15 PCs.

We observed all of these PRS to be predictive of the Dx significantly and the risk for BB

was uniformly present across all these diseases, taking into account transferability of issues

of PRS computed from European ancestry individuals to other populations (Supplementary

Figure 4).

2.2.3 Predicting race

Predicting BB using the feature selection method we observed the following features received

the highest ranks: PRS T2D (98), Age65 (95), PRS AF (94), Smoker (93), and HT (91).

Aggregating all of the top features we found the same set of top ten features across all race

variables, albeit with varying ranks for each racial category. We found Age65, HT, smoking

status, PRS AF, PRS T2D, PRS ISS, DIAB, TDI, PRS LDL SF, and STAT were the top ten

features (in decreasing order of importance) predicting race in this data set (Figure 5a).

(a) Stacked bar plot of the top features (in descending
order in x-axis) predicting race variables with length of
the bars corresponding to the inverted rank of the fea-
tures (higher rank means higher importance).

(b) Barplot depicting the net reclassification improve-
ment (NRI) of predictive performance with PRS in-
cluded as a predictor vs. excluding PRS, measured by
ROC AUC score for each race variable in the x-axis. 95%
CI of the prediction is shown in the error bars.

Figure 5: Predictive performance of racial categories.

We sought to use these top features to quantify whether PRS features contribute to the

predictivity of a self-described racial category. For each category, we used the testing set to as-

sess prediction performance and applied 100 permutations of randomly selected sub-derivation

and sub-validation sets using the testing set. We took the average AUC of these 100 runs to

calculate final AUCs and 95 percent confidence intervals, considering all selected features as

well as all selected features excluding PRS features. We observed that BB had the highest pre-

diction accuracy of 79.15% (95%CI: 0.77-0.80), followed by SAS (75.28%; 95%CI: 0.73-0.77),
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UKW (74.74%; 95%CI: 0.73 - 0.75), EAS (63.98%; 95%CI: 0.61-0.66), and Mixed (63.85%;

95%CI: 0.58-0.69) with all features, including PRS features as predictors (Supplementary Fig-

ure 7). Furthermore, we observed, that including PRS features as predictors versus excluding

them, contributed to positive net reclassification improvement (NRI) (measured as the differ-

ence between the predicitivity of the racial category using the two feature sets) for all races

except the Mixed category. The maximum positive NRI was observed in SAS, followed by

EAS, UKW, and BB (Figure 5b).

3 Discussion

Testing for clinical bias in treating BB and other underrepresented participants in the UKB

poses multiple problems. First, the population’s age structure is younger, and older age is a

primary associating variable with CAD and related CVD Dx. This was observed in our cohort

as BB tend to have lower odds of being older than 65 compared to the population (Figure 3).

Second, some CPGs are specific in treatment modalities, such as application of CCBL for

HT. Two opportunities of identifying bias are (1) whether the pathway from HL through CF

shows difference in rates of Dx between clinical screening and treatment versus the British

death registry, and, (2) whether patients identified with HL are treated at different rates with

lipid management Rx based on racial identification. A second question to identify bias is

whether racial identification may under-diagnose disease compared to genetics. Again, there

are two opportunities to investigate this (1) by use of PCs as ancestrally informative genetic

measures used instead of an indicator variable of race, and (2) using PRS as a predisposed

measure of genetic risk of CVD and comparing it with observed CVD Rx and Dx for each

racial category.

Investigating the association of race with HL Dx and Rx, we observed no significant change

in the direction of effect, with both HL Dx and Rx showing a protective effect for BB, after

controlling for age, sex, TDI, and smoking status. Exploring the interaction of age with BB

and its association with HL, we found that if the patient is 65 years or younger and BB, it is

significantly protective. If the patient is BB and over 65 years, the OR = 1.69 (95%CI: 0.927-

3.1; p = 0.082), hence statistical significance is insufficient to resolve whether BB is relatively

protective against age greater than 65. Although, BB was not significantly associated with HL

(Supplementary Figure 1), it showed a significant positive association with HT and obesity

which are notable antecedents of CVD Dx [24]. We observed, HL Rx also showed a protective

effect on BB (Supplementary Figure 2) and similarly, following the pattern in Dx variables,

11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.10.23285769doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285769
http://creativecommons.org/licenses/by/4.0/


HT Rx, showed a positive association with BB and DIAB Rx had no statistical significance

while associated with BB. We note, that the low sample sizes for both DIAB Rx (n=2710) and

HL Dx (n=1636) with BB (n=3107) with respect to rest of the population (n=100,212) may

play a role for the lack of statistical significance for these associations. Reported diagnoses

show higher risk of DIAB and HT indicates first that screening is being applied, and that,

while accessibility and trust may reduce BB participation, the risk among BB who do get

checkups are being tested. Therefore, it does not account for lower rates of Dx of HL, and

CVD Dx among BB, especially given higher odds of HT and DIAB. Since autopsy diagnoses,

as independent measures of disease than clinical physician visits, show similar levels of CVD

Dx involvement, the likelihood that the result is due to physicians failing to diagnose these

conditions is reduced. Further, even though the likelihood that a physician might prescribe a

HL Rx given a HL Dx, direct comparisons of LDL levels between groups resulting in HL Rx

therapies suggests guidelines are not being differentially applied.

Racial categorization is poorly defined, driven by historical interactions, and loaded with

false assumptions [4]. There is a significant possibility that such classifications poorly align

with ancestrally informative mutations (AIMs) relevant to pathogenic processes, and to unfair

diagnoses and prescribed therapies. However, presumed race has impacted enfranchisement

for economic and cultural opportunity resulting in deprivation with medical impact that may

spuriously correlate with AIMs, impacting people with, various ethnicities [25]. It is possi-

ble that the long British colonial history may have brought a very diverse range of distinct

populations which are now labeled simply as Black British. Therefore, racial classification

may hide genetically distinctive groups with differential response to diseases. PCA applied to

genome-wide single nucleotide variants is strongly reflective of ancestry [26]. In populations

structured by ethnicity, these genetic characteristics may include variants that may reflect

linkage that are physiologically relevant, but they may also include diet, or economic status

correlations [27]. PCA will provide more information about cryptic admixtures that may also

impact associations with diseases. Therefore, we sought to identify whether there was an an-

cestrally genetic community labeled as BB or admixed that may show different risks of CVD,

and which might point towards therapies that would save more lives. Apart from a continuum

of admixture, no distinctive ancestral group was identifiable. PCs were very strongly predic-

tive of ethnographic classifications. The PCs captured similar predictive information for CVD

Dx, Rx, and comorbidities that the social construct “Black British” identifies. BB tended to

be protective of incident CVD Dx and Rx (Figure 2) and the same was reflected when PCs

were used instead of racial categories.
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PRS is a single-score summary of an individual’s pre-disposed genetic risk or liability of

a trait or disease. PRS in UKB has revealed 20-fold more people of greater risk of CVD Dx

than previous studies [28]. BB and SAS were the populations with most positive associations

across ePRS of CVD and comorbidities Dx obtained from UKB (Figure 4). PRS for CAD has

been shown to be at higher odds for SAS populations in prior work [29] and here, we reveal

the first known systematic evaluation for BB populations who are shown to be at higher odds

of PRS for CVD and related comorbid traits. The ethnographic category of BB was also

predicted by PRS of AF and T2D with high accuracy, along with other demographic variables

(Figure 5a). Thus, although BB had a protective effect for CVD Dx and Rx, we show that the

population has a higher odds of the pre-disposed genetic risk of CVD and its comorbidities.

Therefore, we posit that instead of this higher risk of CVD, BB populations either do not get

diagnosed or treated for CVD. This observation is also influenced by the lack of enrollment

of BB individuals in UKB and other large biobanks. We note that PRS has shown to suffer

from lack of transferability and bias across populations [13], primarily due to overwhelming

presence of European ancestry individuals in large biobanks. This phenomenon was mitigated

during the release of ePRS in UKB [19]. Recent advances in applications of machine learning

also help establish more generalizable PRS for clinical use [30,31]. This calls for more diversity

in enrollment and evaluation of underrepresented populations for creating a more equitable

healthcare system.

4 Conclusion

We investigated for bias in Dx and Rx for CVD and related metabolic diseases by associating

them with the self-described ethnographic category of race in a large biobank. We found that

the OR for Dx and Rx for these diseases did not vary for the racial categories. The OR for

dyslipidemia Dx and CT were proportional to the OR for death due to MI in the death registry,

which offered an independent diagnostic review. Ancestral genetic analysis did not identify

a distinctive group of BB that might have carried a higher rate of disease or mortality, and

the genetic components associated with BB identifications was similarly predictive of relevant

metabolic syndrome and CVD Dx. Interestingly, we observed among hyperlipidemics, being

BB tended to suppress prescription, even among older patients. except among those diagnosed

as obese, in which case, prescription was more likely. PRS analyses, showed that BB and SAS

were of higher risk of PRS for CVD and metabolic syndrome Dx, however, the Dx and Rx

rates were negatively associated with BB. This indicates that although racial disparities exist
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in terms of pre-disposed genetic risk of CVD Dx, it is not reflected in Dx and Rx rates in large

biobanks. Thus, a more concerted effort is required to study populations with African, Asian

and other underrepresented ancestries to create a fair healthcare system.

5 List of Abbreviations

CVD: Cardiovascular diseases

UKB: UK Biobank

OR: Odds Ratio

AF: Atrial Fibrillation

CAD: Coronary Artery Disease

PRS: Polygenic Risk Scores

AHA: American Heart Association

Dx: Diagnoses

Rx: Therapeutics

ACE: Angiotensin Converting Enzyme

PCs: Principal Components

BB: Black British

CT: Coronary Thrombosis

CF: Coronary Fatality

HF: Heart Failure

OBESE: Obesity

CKD: Chronic Kidney Disease

DIAB: Diabetes

HL: Hyperlipidemia

HT: Hypertension

EAS: East Asians

SAS: South Asians

UKW: UK White

ISS: Ischemic Stroke

RHR: Resting Heart Rate

VTE: Venous Thromboembolic Disease

BMI: Body Mass Index
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LDL: Low Density Lipoprotein

HDL: High Density Lipoprotein

STAT: Statins

FIBR: Fibrates

ACGN: Anticoagulants

ARB: Angiotensin II Receptor Blockers

ACEIN: Angiotensin Converting Enzyme Inhibitors

BBL: Beta Blockers

CCBL: Calcium Channel Blockers

PCA: Principal Component Analysis

Age65: Age above 65 years

6 Declarations

6.1 Ethics approval and consent to participate

Data analysis was performed under UK Biobank application 50658 using existing publicly

available and deidentified data and was IRB exempt.

6.2 Consent for publication

Not applicable

6.3 Availability of data and materials

The feature selection tool used in this study is available in https://github.com/IBM/spbfs

6.4 Competing interests

The authors declare that they have no competing interests

6.5 Funding

This work has been supported by IBM Research.

6.6 Authors’ contributions

AB and DEP conceived the project. AB and DEP performed epidemiological analyses. AB

performed genomic analyses. UK performed the race prediction task. AB, DEP, and UK

15

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.10.23285769doi: medRxiv preprint 

https://github.com/IBM/spbfs
https://doi.org/10.1101/2023.02.10.23285769
http://creativecommons.org/licenses/by/4.0/


wrote the manuscript. KN and LP participated in discussions, reviewed, and supervised the

project.

6.7 Acknowledgements

Not applicable

16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.10.23285769doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285769
http://creativecommons.org/licenses/by/4.0/


References

[1] Nelson, A. (2002). Unequal treatment: confronting racial and ethnic disparities in health

care. Journal of the national medical association 94(8), 666.

[2] Lopez, L., Hart, L. H., and Katz, M. H. (2021). Racial and ethnic health disparities

related to COVID-19. Jama 325(8), 719–720.

[3] Churchwell, K., Elkind, M. S., Benjamin, R. M., Carson, A. P., Chang, E. K., Lawrence,

W., Mills, A., Odom, T. M., Rodriguez, C. J., Rodriguez, F., et al. (2020). Call to action:

structural racism as a fundamental driver of health disparities: a presidential advisory

from the American Heart Association. Circulation 142(24), e454–e468.

[4] Vyas, D. A., Eisenstein, L. G., and Jones, D. S. Hidden in plain sight—reconsidering the

use of race correction in clinical algorithms, (2020).

[5] Peterson, P. N., Rumsfeld, J. S., Liang, L., Albert, N. M., Hernandez, A. F., Peterson,

E. D., Fonarow, G. C., and Masoudi, F. A. (2010). A validated risk score for in-hospital

mortality in patients with heart failure from the American Heart Association get with

the guidelines program. Circulation: Cardiovascular Quality and Outcomes 3(1), 25–32.

[6] Graham, G. (2015). Disparities in cardiovascular disease risk in the United States.

Current cardiology reviews 11(3), 238–245.

[7] Francis, D. K., Bennett, N. R., Ferguson, T. S., Hennis, A. J., Wilks, R. J., Harris,

E. N., MacLeish, M. M., Sullivan, L. W., and On behalf of the U.S. Caribbean Alliance

for Health Disparities Research Group (USCAHDR). August (2015). Disparities in car-

diovascular disease among Caribbean populations: a systematic literature review. BMC

Public Health 15(1), 828.

[8] Lip, G. Y. H., Barnett, A. H., Bradbury, A., Cappuccio, F. P., Gill, P. S., Hughes, E.,

Imray, C., Jolly, K., and Patel, K. March (2007). Ethnicity and cardiovascular disease

prevention in the United Kingdom: a practical approach to management. Journal of

Human Hypertension 21(3), 183–211. Number: 3 Publisher: Nature Publishing Group.

[9] Cardillo, C., Kilcoyne, C. M., Cannon III, R. O., and Panza, J. A. (1998). Racial

differences in nitric oxide–mediated vasodilator response to mental stress in the forearm

circulation. Hypertension 31(6), 1235–1239.

[10] Duello, T. M., Rivedal, S., Wickland, C., and Weller, A. (2021). Race and genetics versus

‘race’in genetics: a systematic review of the use of African ancestry in genetic studies.

Evolution, medicine, and public health 9(1), 232–245.

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.10.23285769doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285769
http://creativecommons.org/licenses/by/4.0/


[11] Cerdeña, J. P., Plaisime, M. V., and Tsai, J. (2020). From race-based to race-conscious

medicine: how anti-racist uprisings call us to act. The Lancet 396(10257), 1125–1128.

[12] Chisholm, R. L. (2021). Is genetic ancestry a tool to combat health disparities? Cell

184(8), 1964–1965.

[13] Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., and Daly, M. J.

(2019). Clinical use of current polygenic risk scores may exacerbate health disparities.

Nature genetics 51(4), 584–591.

[14] Lewis, C. M. and Vassos, E. (2020). Polygenic risk scores: from research tools to clinical

instruments. Genome medicine 12(1), 1–11.

[15] O’Sullivan, J. W., Raghavan, S., Marquez-Luna, C., Luzum, J. A., Damrauer, S. M.,

Ashley, E. A., O’Donnell, C. J., Willer, C. J., and Natarajan, P. Polygenic Risk Scores

for Cardiovascular Disease: A Scientific Statement From the American Heart Association.

Circulation , 10–1161.

[16] Fry, A., Littlejohns, T. J., Sudlow, C., Doherty, N., Adamska, L., Sprosen, T., Collins,

R., and Allen, N. E. (2017). Comparison of sociodemographic and health-related char-

acteristics of UK Biobank participants with those of the general population. American

journal of epidemiology 186(9), 1026–1034.

[17] Armstrong, K., McMurphy, S., Dean, L. T., Micco, E., Putt, M., Halbert, C. H., Schwartz,

J. S., Sankar, P., Pyeritz, R. E., Bernhardt, B., et al. (2008). Differences in the patterns

of health care system distrust between blacks and whites. Journal of general internal

medicine 23(6), 827–833.

[18] Daley, P. O. (1998). Black Africans in Great Britain: spatial concentration and segrega-

tion. Urban Studies 35(10), 1703–1724.

[19] Thompson, D. J., Wells, D., Selzam, S., Peneva, I., Moore, R., Sharp, K., Tarran, W. A.,

Beard, E. J., Riveros-Mckay, F., Palmer, D., et al. (2022). UK Biobank release and

systematic evaluation of optimised polygenic risk scores for 53 diseases and quantitative

traits. medRxiv .

[20] Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., and Lee, J. J.

(2015). Second-generation PLINK: rising to the challenge of larger and richer datasets.

Gigascience 4(1), s13742–015.

[21] Bose, A., Kalantzis, V., Kontopoulou, E.-M., Elkady, M., Paschou, P., and Drineas, P.

(2019). TeraPCA: a fast and scalable software package to study genetic variation in

tera-scale genotypes. Bioinformatics 35(19), 3679–3683.

18

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.10.23285769doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285769
http://creativecommons.org/licenses/by/4.0/


[22] Seabold, S. and Perktold, J. (2010). statsmodels: Econometric and statistical modeling

with python. In 9th Python in Science Conference.

[23] Kartoun, U., Myers, P., Severson, K., Dai, W., Ng, K., and Stultz, C. (2022). Feature

selection based on subpopulations and propensity score matching: A coronary artery dis-

ease use case using the UK Biobank. In AMIA Annual Symposium Proceedings. American

Medical Informatics Association.

[24] Turer, C. B., Brady, T. M., and De Ferranti, S. D. Obesity, hypertension, and dyslipi-

demia in childhood are key modifiable antecedents of adult cardiovascular disease: a call

to action, (2018).

[25] Williams, D. R., Mohammed, S. A., Leavell, J., and Collins, C. (2010). Race, socioeco-

nomic status, and health: complexities, ongoing challenges, and research opportunities.

Annals of the new York Academy of Sciences 1186(1), 69–101.

[26] Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., Indap, A.,

King, K. S., Bergmann, S., Nelson, M. R., et al. (2008). Genes mirror geography within

Europe. Nature 456(7218), 98–101.

[27] Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries, J., Okada, Y., Martin, A. R.,

Martin, H. C., Lappalainen, T., and Posthuma, D. (2021). Genome-wide association

studies. Nature Reviews Methods Primers 1(1), 59.

[28] Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H., Natara-

jan, P., Lander, E. S., Lubitz, S. A., Ellinor, P. T., et al. (2018). Genome-wide polygenic

scores for common diseases identify individuals with risk equivalent to monogenic muta-

tions. Nature genetics 50(9), 1219–1224.

[29] Wang, M., Menon, R., Mishra, S., Patel, A. P., Chaffin, M., Tanneeru, D., Deshmukh,

M., Mathew, O., Apte, S., Devanboo, C. S., et al. (2020). Validation of a genome-wide

polygenic score for coronary artery disease in South Asians. Journal of the American

College of Cardiology 76(6), 703–714.

[30] Reyes, D. M., Bose, A., Karavani, E., and Parida, L. (2023). FairPRS: adjusting for

admixed populations in polygenic risk scores using invariant risk minimization. In Pacific

Symposium on Biocomputing. Pacific Symposium on Biocomputing, volume 28, 198–208.

[31] Ruan, Y., Lin, Y.-F., Feng, Y.-C. A., Chen, C.-Y., Lam, M., Guo, Z., He, L., Sawa,

A., Martin, A. R., et al. (2022). Improving polygenic prediction in ancestrally diverse

populations. Nature genetics 54(5), 573–580.

19

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.10.23285769doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285769
http://creativecommons.org/licenses/by/4.0/

	Methods
	Data
	Genomic Analyses
	Association Tests
	Feature Selection

	Results
	CVD Dx/Rx and race
	Race and genetics
	Genetic structure as a proxy for race
	Race and PRS
	Predicting race


	Discussion
	Conclusion
	List of Abbreviations
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and materials
	Competing interests
	Funding
	Authors' contributions
	Acknowledgements


