

It is made available under a CC-BY 4.0 International license. **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2023.02.10.23285757;](https://doi.org/10.1101/2023.02.10.23285757) this version posted February 11, 2023. The copyright holder for this preprint

- **SYNOPSIS:** This paper describes enteric pathogen hazards from discarded feces on the streets
of San Francisco and estimates their reduction following a public toilet intervention.
25
TOC/Abstract art:
Created with BioRe
-
-
-

26
27
28 --
27
28

30

30
31
32
33
34 31
32
33
34
35 **ABSTRACT**
32 Uncontained
33 discarded fec
34 enteric pathog
35 were non-hur
36 pathogenic E 32 Uncontained fecal wastes in cities may present exposure risks to the public. We collected discarded feces from public spaces in San Francisco for analysis by RT-qPCR for a range of enteric pathogens. Out of 59 samples, 33 discarded feces from public spaces in San Francisco for analysis by RT-qPCR for a range of
34 enteric pathogens. Out of 59 samples, we found 12 (20%) were of human origin and 47 (80%)
35 were non-human; 30 of 59 stools 34 enteric pathogens. Out of 59 samples, we found 12 (20%) were of human origin and 47 (80%)
35 were non-human; 30 of 59 stools were positive for \geq 1 of the 35 pathogens assessed, including
36 pathogenic *E. coli, Shig* 35 were non-human; 30 of 59 stools were positive for \geq 1 of the 35 pathogens assessed, including
36 pathogenic *E. coli, Shigella, norovirus, Cryptosporidium,* and *Trichuris*. Using quantitative
37 enteric pathogen es pathogenic *E. coli*, *Shigella*, norovirus, *Cryptosporidium*, and *Trichuris*. Using quantitative
enteric pathogen estimates and data on observed fecal waste from a public reporting system, we
modeled pathogens removed f 37 enteric pathogen estimates and data on observed fecal waste from a public reporting system, we
38 modeled pathogens removed from the environment attributable to a recently implemented
39 program of public toilet constr 38 modeled pathogens removed from the environment attributable to a recently implemented
39 program of public toilet construction. We estimated that each new public toilet reduced the
39 annual number of enteric pathogens 39 program of public toilet construction. We estimated that each new public toilet reduced the

40 annual number of enteric pathogens released into the immediate environment (within 500 m

41 walking distance), including 40 annual number of enteric pathogens released into the immediate environment (within 500 m walking distance), including 6.3 x 10^{12} enteropathogenic *E. coli* (95% CI: 4.0 x 10^{12} – 7.9 x 2 walking distance), including 6.3 x 10^{12} enteropathogenic *E. coli* (95% CI: 4.0 x 10^{12} – 7.9 x walking distance), including 6.3 x 10^{12} enteropathogenic *E. coli* (95% CI: 4.0 x 10^{12} – 7.9 x
2

10¹²), 3.2 x 10¹¹ enteroaggregative *E. coli* (95% CI: 1.3 x 10¹¹ – 6.3 x 10¹¹), and 3.2 x 10⁸ 42 43
 44
 45
 46
 47 $\emph{Shigella}$ (6.3 x 10⁷ – 2.5 x 10⁹ $\frac{43}{2}$ Shigella (6.3 x 10' – 2.5 x 10'). Improving access to public sanitation can reduce enteric

44 pathogen hazards in cities. Interventions must also consider the hygienic disposal of animal

45 waste to reduce mi

pathogen hazards in cities. Interventions must also consider the hygienic disposal of animal
waste to reduce microbial hazards with zoonotic infection potential.
46
INTRODUCTION
People experiencing homelessness are more waste to reduce microbial hazards with zoonotic infection potential.

46
 INTRODUCTION

48 People experiencing homelessness are more likely than the gener

29 communicable diseases¹, partly because they lack consistent 47
48
48
50
51 47 **INTRODUCTION**
48 People experiencing
49 communicable disea
50 including safe water
51 access to basic sanita
52 primarily those lacki People experiencing homelessness are more likely than the general population to suffer from
communicable diseases¹, partly because they lack consistent access to basic infrastructure
including safe water and sanitation² communicable diseases¹, partly because they lack consistent access to basic infrastructure communicable diseases¹, partly because they lack consistent access to basic infrastructure
including safe water and sanitation^{2, 3}. Nearly one million persons in US cities have insufficient
access to basic sanitation a including safe water and sanitation^{2, 3}. Nearly one million persons in US cities have insufficient including safe water and sanitation^{2, 3}. Nearly one million persons in US cities have insufficient
sccess to basic sanitation and over 600,000 cannot consistently access basic water infrastructure²,
primarily those la access to basic sanitation and over $600,000$ cannot consistently access basic water infrastructure²,

access to basic sanitation and over 600,000 cannot consistently access basic water infrastructure²,
primarily those lacking stable housing.
53
Nearly 130,000 people in California experience homelessness each day, and the primarily those lacking stable housing.
53
S4 Nearly 130,000 people in Californi
55 disproportionately unsheltered compare
56 Francisco does not have enough public
57 and soap and water for proper hand 54
54
55
56
57
58 S4 Nearly 130,000 people in California experience homelessness each day, and they are
disproportionately unsheltered compared to those in other states^{1, 4}. Like many US cities, San
Francisco does not have enough public disproportionately unsheltered compared to those in other states^{1, 4}. Like many US cities, San disproportionately unsheltered compared to those in other states^{1, 4}. Like many US cities, San
Francisco does not have enough public toilets to meet demand⁵. Consistent access to sanitation
and soap and water for prop Francisco does not have enough public toilets to meet demand⁵. Consistent access to sanitation Francisco does not have enough public toilets to meet demand³. Consistent access to sanitation
and soap and water for proper handwashing is necessary to prevent the spread of enteric
pathogens that may cause diarrheal d 57 and soap and water for proper handwashing is necessary to prevent the spread of enteric
58 pathogens that may cause diarrheal disease⁶. Without safe, hygienic, and publicly accessible
59 toilets when and where people pathogens that may cause diarrheal disease⁶. Without safe, hygienic, and publicly accessible pathogens that may cause diarrheal disease^o. Without safe, hygienic, and publicly accessible
toilets when and where people need them, open defecation is common⁷⁻⁹. As a result,
uncontained fecal waste can accumulate n toilets when and where people need them, open defecation is common⁷⁻⁹. As a result, toilets when and where people need them, open defecation is common⁷⁵. As a result,
uncontained fecal waste can accumulate near where people live, work, and play, creating
opportunities for exposure to enteric pathogens 60 uncontained fecal waste can accumulate near where people live, work, and play, creating
61 opportunities for exposure to enteric pathogens through well-known direct and indirect
62 pathways¹⁰⁻¹³. 61 opportunities for exposure to enteric pathogens through well-known direct and indirect

62 pathways¹⁰⁻¹³.

63 pathways $10-13$. 62 $pathways^{10-13}$.
63

Fecal contamination on the streets of San Francisco is so common that the Department of Public

Works (DPW) created a well-used system to report feces in public spaces, where instances of

fecal waste can be reported by d 65 Works (DPW) created a well-used system to report feces in public spaces, where instances of fecal waste can be reported by dialing 311 from a telephone (or, now, via a website or Twitter)^{11,14}. Data since 2008 are pu 66 fecal waste can be reported by dialing 311 from a telephone (or, now, via a website or Twitter)^{11,14}. Data since 2008 are publicly available at https://datasf.org/opendata/. As a step toward addressing the well-publi Twitter)^{11,14}. Data since 2008 are publicly available at https://datasf.org/opendata/. As a step For Twitter)^{11,14}. Data since 2008 are publicly available at https://datasf.org/opendata/. As a step
toward addressing the well-publicized problem, DPW implemented the Pit Stop program
beginning in 2014, aiming to reduc toward addressing the well-publicized problem, DPW implemented the Pit Stop program
69 beginning in 2014, aiming to reduce open defecation in public spaces by installing staffed public
67 toilets in areas of high need.^{11,} 69 beginning in 2014, aiming to reduce open defecation in public spaces by installing staffed public
670 toilets in areas of high need.^{11,12} The intervention also includes animal waste bags and waste bins
671 for disposa toilets in areas of high need.^{11,12} The intervention also includes animal waste bags and waste bins toilets in areas of high need.^{11,12} The intervention also includes animal waste bags and waste bins
for disposal. A full description of the program and its history is available at the Pit Stop website:
https://sfpublicw 71 for disposal. A full description of the program and its history is available at the Pit Stop website:

72 https://sfpublicworks.wixsite.com/pitstop. A recent impact assessment of the program estimated

73 that the inst 72 https://sfpublicworks.wixsite.com/pitstop. A recent impact assessment of the program estimated

73 that the installation of public latrines reduced 311 reports of fecal waste on the street by a mean

74 of 12.5 stools p that the installation of public latrines reduced 311 reports of fecal waste on the street by a mean
of 12.5 stools per week within 500 meters (walking distance) of newly installed Pit Stop
locations in the six months follo of 12.5 stools per week within 500 meters (walking distance) of newly installed Pit Stop
locations in the six months following installation, compared with a pre-intervention baseline¹⁵.
The greatest reduction in reports locations in the six months following installation, compared with a pre-intervention baseline¹⁵. To locations in the six months following installation, compared with a pre-intervention baseline¹⁵.
The greatest reduction in reports of fecal waste occurred in the Tenderloin neighborhood (i.e., 18
stools per week per The greatest reduction in reports of fecal waste occurred in the Tenderloin neighborhood (i.e., 18
stools per week per new facility), which had 10 public toilets, the most of any neighborhood in
the program. The Tenderloin 37 stools per week per new facility), which had 10 public toilets, the most of any neighborhood in
37 the program. The Tenderloin and South of Market (SoMa) had the highest counts of 311 reports
37 in the study period; to The program. The Tenderloin and South of Market (SoMa) had the highest counts of 311 reports

in the study period; together, these neighborhoods make up District 6, which had the highest

count of people experiencing home 79 in the study period; together, these neighborhoods make up District 6, which had the highest

80 count of people experiencing homelessness (n=3,656) in SF as of 2019¹⁶. With only 3 Pit Stop

81 public facilities in S count of people experiencing homelessness ($n=3,656$) in SF as of 2019¹⁶. With only 3 Pit Stop 80 count of people experiencing homelessness ($n=3,656$) in SF as of 2019¹⁶. With only 3 Pit Stop
public facilities in SoMa, there was no significant reduction of 311 reports associated with the Pit
82 Stop intervention 81 public facilities in SoMa, there was no significant reduction of 311 reports associated with the Pit
82 Stop intervention in this neighborhood. A recent independent analysis by the San Francisco
83 Chronicle of 311 data 82 Stop intervention in this neighborhood. A recent independent analysis by the San Francisco
83 Chronicle of 311 data concluded that, while feces-related service requests for every other
84 neighborhood in San Francisco 83 Chronicle of 311 data concluded that, while feces-related service requests for every other
84 neighborhood in San Francisco have gone up an average of 400% in the period from 2012-2021,
85 reports for the Tenderloin red 184 neighborhood in San Francisco have gone up an average of 400% in the period from 2012-2021, reports for the Tenderloin reduced by 29%, with pronounced further decreases in the area immediately around three Pit Stop int 85 reports for the Tenderloin reduced by 29%, with pronounced further decreases in the area

86 immediately around three Pit Stop interventions¹⁴. immediately around three Pit Stop interventions 14 . 36 immediately around three Pit Stop interventions¹⁴.
4

87

--
88
89
90
91
92 These interventions may affect exposures to enteric pathogen hazards to the public from human
and animal fecal waste, including among people experiencing homelessness who may bear the
greatest direct risks. Our primary aim 89 and animal fecal waste, including among people experiencing homelessness who may bear the greatest direct risks. Our primary aim was to estimate the degree to which Pit Stop interventions have reduced enteric pathogens greatest direct risks. Our primary aim was to estimate the degree to which Pit Stop interventions
have reduced enteric pathogens in the immediate environment surrounding new toilet facilities.
To this end, we: (1) conducte 91 have reduced enteric pathogens in the immediate environment surrounding new toilet facilities.

92 To this end, we: (1) conducted a systematic survey of discarded feces in a pre-defined area; (2)

93 determined whether 92 To this end, we: (1) conducted a systematic survey of discarded feces in a pre-defined area; (2) determined whether each fecal sample was of human or non-human origin; (3) quantified a range of enteric pathogens in reco determined whether each fecal sample was of human or non-human origin; (3) quantified a range
of enteric pathogens in recovered fecal samples, using molecular methods; and (4) used the
intervention-attributable reduction i 94 of enteric pathogens in recovered fecal samples, using molecular methods; and (4) used the
95 intervention-attributable reduction in observed feces from 311 reports¹⁵ to estimate reductions of
96 the enteric pathogens intervention-attributable reduction in observed feces from 311 reports¹⁵ to estimate reductions of

intervention-attributable reduction in observed feces from 311 reports¹⁵ to estimate reductions of
95 the enteric pathogens we detected.
97
MATERIALS AND METHODS
A previous longitudinal study estimated that the install the enteric pathogens we detected.

97
 MATERIALS AND METHODS

99 A previous longitudinal study es

00 Francisco neighborhoods resulted

01 (walking distance) of each facility 98
99
00
01
02 **MATERIALS AND METHODS**
499 A previous longitudinal study es
600 Francisco neighborhoods resulted
501 (walking distance) of each facility
602 and quantified a range of enteric
603 reduction of pathogen hazards attril 99 A previous longitudinal study estimated that the installation of public toilets in two San

00 Francisco neighborhoods resulted in a mean reduction of 18 stools per week within 500 meters

01 (walking distance) of each Francisco neighborhoods resulted in a mean reduction of 18 stools per week within 500 meters

101 (walking distance) of each facility¹⁵. We systematically collected discarded stools in this area

102 and quantified a ran (walking distance) of each facility¹⁵. We systematically collected discarded stools in this area we 101 101 (walking distance) of each facility¹⁵. We systematically collected discarded stools in this area
102 and quantified a range of enteric pathogens in each sample. We used these data to model the
103 reduction of

and quantified a range of enteric pathogens in each sample. We used these data to model the

103 reduction of pathogen hazards attributable to each facility.

104 **Sample Collection.** We used 311 reports of fecal waste in reduction of pathogen hazards attributable to each facility.

104
 Sample Collection. We used 311 reports of fecal waste in

106 identify hotspots for open defecation (OD) reports and de

107 stools for enteric pathogen 105
106
107
108
109 **Sample Collection.** We used 311 reports of fecal waste in San Francisco, CA in August 2020 to identify hotspots for open defecation (OD) reports and design a systematic survey of discarded stools for enteric pathogen anal 106 identify hotspots for open defecation (OD) reports and design a systematic survey of discarded
107 stools for enteric pathogen analysis. The available 311 data include reports of any discarded
108 feces, including both 107 stools for enteric pathogen analysis. The available 311 data include reports of any discarded
108 feces, including both suspected human and non-human fecal waste. The Tenderloin and SoMa
109 neighborhoods had the highe 108 feces, including both suspected human and non-human fecal waste. The Tenderloin and SoMa
109 neighborhoods had the highest number of 311 reports and were therefore selected for sampling;
5 109 neighborhoods had the highest number of 311 reports and were therefore selected for sampling;
5

we matched observed feces with 311 reports to verify that 311 data reliably indicated instances
111 of fecal waste (Text S1). We prioritized 20 blocks, including both sidewalks on either side of the
112 street for collecti 111 of fecal waste (Text S1). We prioritized 20 blocks, including both sidewalks on either side of the
112 street for collection (Figure S1, Figure S2). We generated a perimeter around the selected blocks,
113 with any blo 112 street for collection (Figure S1, Figure S2). We generated a perimeter around the selected blocks,
113 with any block inside the perimeter potentially utilized if samples were not available on the 20
114 selected block with any block inside the perimeter potentially utilized if samples were not available on the 20
selected blocks. We collected biospecimens on four Wednesday mornings in September and
October of 2020 before street cleaning selected blocks. We collected biospecimens on four Wednesday mornings in September and

115 October of 2020 before street cleaning began. Stool samples were collected into one-liter

116 biohazard bags and stored in a cool 115 October of 2020 before street cleaning began. Stool samples were collected into one-liter
116 biohazard bags and stored in a cooler with ice packs. We transferred samples into 1.5 mL
117 cryotubes and stored them at -2 biohazard bags and stored in a cooler with ice packs. We transferred samples into 1.5 mL
117 cryotubes and stored them at -20°C within 4 hours of collection. Any confirmed animal stool
118 (e.g., if the team observed an an

cryotubes and stored them at -20°C within 4 hours of collection. Any confirmed animal stool
118 (e.g., if the team observed an animal defecating) was not collected.
119
Sample preparation and analysis. We used the QIAamp 118 (e.g., if the team observed an animal defecating) was not collected.

119 **Sample preparation and analysis**. We used the QIAamp 96 Vir

121 Hilden, Germany) to extract nucleic acids from 100 mg of stoc

122 previously ---
120
121
122
123
124 **Sample preparation and analysis**. We used the QIAamp 96 Virus QIAcube HT Kit (Qiagen, Hilden, Germany) to extract nucleic acids from 100 mg of stool using a pre-treatment step previously validated for molecular detection 121 Hilden, Germany) to extract nucleic acids from 100 mg of stool using a pre-treatment step
122 previously validated for molecular detection of multiple enteric pathogens with both DNA and
123 RNA genomes $(Text S2)^{17, 18}$ previously validated for molecular detection of multiple enteric pathogens with both DNA and

RNA genomes (Text S2)^{17, 18}. We proceeded with extraction following the manufacturer's

protocol for the QIAamp 96 Virus QIAcu RNA genomes $(Text S2)^{17,18}$. We proceeded with extraction following the manufacturer's RNA genomes $(Text S2)^{17}$. ¹⁸. We proceeded with extraction following the manufacturer's
protocol for the QIAamp 96 Virus QIAcube HT Kit, which we automated on the QIAcube
(Qiagen, Hilden, Germany). We measured the concen 124 protocol for the QIAamp 96 Virus QIAcube HT Kit, which we automated on the QIAcube

125 (Qiagen, Hilden, Germany). We measured the concentration of dsDNA using the dsDNA HS

126 assay with a Qubit 4 Fluorometer (Invitr

(Qiagen, Hilden, Germany). We measured the concentration of dsDNA using the dsDNA HS
126 assay with a Qubit 4 Fluorometer (Invitrogen, Waltham, Massachusetts).
127 We quantified human mitochondrial DNA (mtDNA) in each samp assay with a Qubit 4 Fluorometer (Invitrogen, Waltham, Massachusetts).

127 We quantified human mitochondrial DNA (mtDNA) in each sample

129 whether feces were of presumptive human origin (Text S5, Figure S

130 previousl --
128
129
130
131
132 We quantified human mitochondrial DNA (mtDNA) in each sample by dPCR to determine

129 whether feces were of presumptive human origin (Text S5, Figure S3) using an assay that

130 previously demonstrated 100% sensitivity a whether feces were of presumptive human origin (Text S5, Figure S3) using an assay that

120 previously demonstrated 100% sensitivity and 97% specificity to human stool¹⁹. We normalized

121 mtDNA gene copy estimates to previously demonstrated 100% sensitivity and 97% specificity to human stool¹⁹. We normalized previously demonstrated 100% sensitivity and 97% specificity to human stool¹⁹. We normalized
131 mtDNA gene copy estimates to ng of dsDNA, and compared results against values reported in
132 the literature to categorize ntDNA gene copy estimates to ng of dsDNA, and compared results against values reported in
the literature to categorize samples as human or non-human.¹⁹ Positive and negative PCR
6 the literature to categorize samples as human or non-human.¹⁹ Positive and negative PCR the literature to categorize samples as human or non-human.¹⁹ Positive and negative PCR
6

controls²⁰ were run each day of analysis via qPCR (Text S3) and dPCR (Text S5, Table S7). We 133 controls²⁰ were run each day of analysis via qPCR (Text S3) and dPCR (Text S5, Table S7). We
134 developed and used custom TaqMan Array Cards (TAC) (Thermo Fisher Scientific, Waltham,
135 MA) using published primer developed and used custom TaqMan Array Cards (TAC) (Thermo Fisher Scientific, Waltham,

MA) using published primer and probe sequences (Tables S2-S4) for a range of enteric bacteria,

viruses, protozoa, helminths, and cont MA) using published primer and probe sequences (Tables S2-S4) for a range of enteric bacteria,
136 viruses, protozoa, helminths, and controls. TAC is a 384-well array card with 8 ports for loading
137 samples and each 1.5 2136 viruses, protozoa, helminths, and controls. TAC is a 384-well array card with 8 ports for loading

2137 samples and each 1.5 µL well contains lyophilized primers and probes for the detection of pre-

2138 defined tar Examples and each 1.5 µL well contains lyophilized primers and probes for the detection of pre-
defined targets. We analyzed extracted nucleic acids via TAC on the QuantStudio 7, generating
real-time RT-qPCR curves for ea defined targets. We analyzed extracted nucleic acids via TAC on the QuantStudio 7, generating
real-time RT-qPCR curves for each target for each sample (Text S3). Standard curve details and
95% limits of detection are prese real-time RT-qPCR curves for each target for each sample (Text S3). Standard curve details and
140 95% limits of detection are presented in Table S3. We visually compared exponential curves and
141 multicomponent plots wit 95% limits of detection are presented in Table S3. We visually compared exponential curves and

141 multicomponent plots with positive control plots to validate positive amplification^{21, 22}. We

142 manually set threshol multicomponent plots with positive control plots to validate positive amplification^{21, 22}. We multicomponent plots with positive control plots to validate positive amplification^{21, 22}. We
manually set thresholds to the point of inflection and considered targets amplifying at or below
35 cycles positive²³. We r manually set thresholds to the point of inflection and considered targets amplifying at or below

143 35 cycles positive²³. We re-ran samples that did not amplify DNA/RNA extraction positive

144 controls as expected at 35 cycles positive²³. We re-ran samples that did not amplify DNA/RNA extraction positive 2143 35 cycles positive²³. We re-ran samples that did not amplify DNA/RNA extraction positive

2144 controls as expected at a 1:10 dilution, and samples that did not then amplify controls were

2145 excluded from analys controls as expected at a 1:10 dilution, and samples that did not then amplify controls were
excluded from analysis. We performed additional confirmatory analysis of samples positive for
soil-transmitted helminths via micr excluded from analysis. We performed additional confirmatory analysis of samples positive for

146 soil-transmitted helminths via microscopy using the mini-FLOTAC method (Text S4, Figure

147 S4).¹⁶ We transformed cycle 146 soil-transmitted helminths via microscopy using the mini-FLOTAC method (Text S4, Figure 147 S4).¹⁶ We transformed cycle quantification (Cq) values into gene copy concentrations per gram feces using pathogen-specific S4).¹⁶ We transformed cycle quantification (Cq) values into gene copy concentrations per gram

147 S4).¹⁶ We transformed cycle quantification (Cq) values into gene copy concentrations per gram
148 feces using pathogen-specific standard curves.
149 **Stochastic model.** We estimated the annual number of pathogens di 148 feces using pathogen-specific standard curves.

149 **Stochastic model.** We estimated the annual nu

151 attributable to the Pit Stop intervention progra

152 copies (gc) into genomic units (i.e., discrete p

153 per ge 150
151
152
153
154 150 **Stochastic model.** We estimated the annual number of pathogens diverted from the environment attributable to the Pit Stop intervention program using R version 4.1.0²⁴. We transformed gene copies copies (gc) into ge attributable to the Pit Stop intervention program using R version $4.1.0^{24}$. We transformed gene attributable to the Pit Stop intervention program using R version 4.1.0²⁴. We transformed gene
copies (gc) into genomic units (i.e., discrete pathogens) using published values for gene copies
per genome (Table S5, model 152 copies (gc) into genomic units (i.e., discrete pathogens) using published values for gene copies
153 per genome (Table S5, model parameters)²³. We treated non-detects as true zeroes. Using the
154 fildistrplus packa per genome (Table S5, model parameters)²³. We treated non-detects as true zeroes. Using the 153 per genome (Table S5, model parameters)²³. We treated non-detects as true zeroes. Using the fitdistrplus package in R^{25} , we used maximum likelihood estimation (MLE) to fit log-normal distributions to the quantit fitdistrplus package in R^{25} , we used maximum likelihood estimation (MLE) to fit log-normal 154 fitdistrplus package in R^{25} , we used maximum likelihood estimation (MLE) to fit log-normal
155 distributions to the quantity of pathogens per gram of stool in fecal samples, obtaining separate
155 distributions to 155 distributions to the quantity of pathogens per gram of stool in fecal samples, obtaining separate

156 estimates of the mean and standard deviation of log-pathogens per gram of presumptively human

157 and non-human stool, respectively, for each pathogen detected. We thus generated an estimated

158 mean and standard d and non-human stool, respectively, for each pathogen detected. We thus generated an estimated

158 mean and standard deviation for the number of pathogens per gram of feces. However, we

159 assigned upper bound threshold mean and standard deviation for the number of pathogens per gram of feces. However, we
assigned upper bound thresholds to the distributions of pathogen concentrations in feces based
on biological plausibility (i.e., bacte assigned upper bound thresholds to the distributions of pathogen concentrations in feces based
on biological plausibility (i.e., bacteria: 10^9 /gram; viruses: 10^{12} /gram; protozoa: 10^7 /gram;
helminths: 10^6 /gram on biological plausibility (i.e., bacteria: 10^9 /gram; viruses: 10^{12} /gram; protozoa: 10^7 on biological plausibility (i.e., bacteria: $10^{9}/\text{gram}$; viruses: $10^{12}/\text{gram}$; protozoa: $10'/\text{gram}$;
161 helminths: $10^{6}/\text{gram}$) and to prevent outliers in the distribution from driving the overall annual
162 estimate helminths: 10^6 /gram) and to prevent outliers in the distribution from driving the overall annual 161 helminths: $10^{\circ}/\text{gram}$ and to prevent outliers in the distribution from driving the overall annual
162 estimate. We modeled an estimate of 18 stools per week that were diverted from the
163 environment¹⁵ due to ea 162 estimate. We modeled an estimate of 18 stools per week that were diverted from the

163 environment¹⁵ due to each new toilet facility across 52 weeks, because this was the reduction

164 reported by Amato *et al.* 2 environment¹⁵ due to each new toilet facility across 52 weeks, because this was the reduction 163 environment¹⁵ due to each new toilet facility across 52 weeks, because this was the reduction
164 reported by Amato *et al.* 2022¹⁵ for the Tenderloin and SOMA neighborhoods. Using a Monte
165 Carlo Simulation, we reported by Amato *et al.* 2022¹⁵ for the Tenderloin and SOMA neighborhoods. Using a Monte 164 reported by Amato *et al.* 2022¹⁵ for the Tenderloin and SOMA neighborhoods. Using a Monte

165 Carlo Simulation, we applied a binomial distribution to estimate whether each unique diverted

166 stool (of 18) contai Carlo Simulation, we applied a binomial distribution to estimate whether each unique diverted
stool (of 18) contained a specific pathogen. For each stool simulated to contain a given pathogen,
we estimated the concentratio stool (of 18) contained a specific pathogen. For each stool simulated to contain a given pathogen,
167 we estimated the concentration using the corresponding MLE-generated distribution. We fit a
169 log-normal distribution we estimated the concentration using the corresponding MLE-generated distribution. We fit a
168 log-normal distribution to the mass of human defecation events reported in Cummings *et al.*
1992 to stochastically estimate t 168 log-normal distribution to the mass of human defecation events reported in Cummings *et al.*
169 1992 to stochastically estimate the mass of each stool²⁶. For pathogens detected in only one of
170 the collected sampl 1992 to stochastically estimate the mass of each stool²⁶. For pathogens detected in only one of 169 1992 to stochastically estimate the mass of each stool²⁶. For pathogens detected in only one of
170 the collected samples, we used the number of pathogens per gram of stool for the single stool in
171 place of an MLE the collected samples, we used the number of pathogens per gram of stool for the single stool in
171 place of an MLE-generated mean and the average MLE standard deviation from plurally
172 detected pathogens (Table S5). We 171 place of an MLE-generated mean and the average MLE standard deviation from plurally detected pathogens (Table S5). We repeated the process 52 times to estimate pathogens reduced over a year. We then summed the number o detected pathogens (Table S5). We repeated the process 52 times to estimate pathogens reduced

173 over a year. We then summed the number of estimated pathogens across the entire year to

174 estimate the number of pathoge 173 over a year. We then summed the number of estimated pathogens across the entire year to
174 estimate the number of pathogens diverted annually, repeating the process 1000 times to generate
175 95% confidence intervals. 174 estimate the number of pathogens diverted annually, repeating the process 1000 times to generate
175 95% confidence intervals.
176 RESULTS 175 95% confidence intervals.
176
RESULTS

177
177 177 **RESULTS**

178 We tested 60 stool samples, but excluded one whose assays lacked positive control

179 amplification, leaving 59 samples for analysis. Positive controls exhibited consistent

180 amplification (Cq-20) and no amplifica 179 amplification, leaving 59 samples for analysis. Positive controls exhibited consistent

180 amplification (Cq~20) and no amplification was observed in our negative controls, except for the

181 16S assay (Cq~35, Text 180 amplification (Cq~20) and no amplification was observed in our negative controls, except for the

181 16S assay (Cq~35, Text S6), which is a known contaminant in mastermix containing the

182 TaqMan polymerase^{27,28}. 181 16S assay (Cq~35, Text S6), which is a known contaminant in mastermix containing the

182 TaqMan polymerase^{27,28}. Pathogen prevalence disaggregated by human mtDNA results is shown

183 in Table 1; we determined that TaqMan polymerase^{27,28}. Pathogen prevalence disaggregated by human mtDNA results is shown TaqMan polymerase^{27,28}. Pathogen prevalence disaggregated by human mtDNA results is shown
in Table 1; we determined that 12 samples were of human origin and 47 were from non-human
sources. Out of 35 pathogens analyzed u in Table 1; we determined that 12 samples were of human origin and 47 were from non-human
sources. Out of 35 pathogens analyzed using TAC, 30/59 samples (51%) contained one or more
pathogens, 21/59 (36%) contained two or m 184 sources. Out of 35 pathogens analyzed using TAC, 30/59 samples (51%) contained one or more

185 pathogens, 21/59 (36%) contained two or more pathogens, 8/59 (14%) contained 3 or more

186 pathogens, and 1/59 (2%) conta pathogens, 21/59 (36%) contained two or more pathogens, 8/59 (14%) contained 3 or more

pathogens, and 1/59 (2%) contained 5 pathogens. The most prevalent pathogens were atypical

enteropathogenic *E. coli* (EPEC) at 37% (pathogens, and 1/59 (2%) contained 5 pathogens. The most prevalent pathogens were atypical

187 enteropathogenic *E. coli* (EPEC) at 37% (22/59), typical EPEC and *Acanthamoeba spp.* each at

12% (7/59), *Cryptosporidium*

187 enteropathogenic *E. coli* (EPEC) at 37% (22/59), typical EPEC and *Acanthamoeba spp.* each at 12% (7/59), *Cryptosporidium* at 8% (5/59), and *Giardia* at 7% (4/59).
189
190 The mtDNA dPCR assay indicated 12 samples w 188 12% (7/59), *Cryptosporidium* at 8% (5/59), and *Giardia* at 7% (4/59).
189 The mtDNA dPCR assay indicated 12 samples were likely human in
191 animal in origin (Figure S3). The prevalence of atypical EPEC was hig
192 t ---
190
191
192
193
194 The mtDNA dPCR assay indicated 12 samples were likely human in origin and 47 were likely

191 animal in origin (Figure S3). The prevalence of atypical EPEC was higher in human stools (42%)

192 than in the non-human stools 191 animal in origin (Figure S3). The prevalence of atypical EPEC was higher in human stools (42%)

192 than in the non-human stools (36%). Typical EPEC, tied for second most abundant pathogen

193 found, was absent in hum than in the non-human stools (36%). Typical EPEC, tied for second most abundant pathogen

193 found, was absent in human stools, as were *Salmonella*, Norovirus, *Cryptosporidium*, *Giardia*,

194 and *Balantidium coli*. T 193 found, was absent in human stools, as were *Salmonella*, Norovirus, *Cryptosporidium*, *Giardia*, and *Balantidium coli*. The pathogens *Helicobacter pylori*, *Shigella* spp./EIEC (enteroinvasive *Escherichia coli*), 204 and *Balantidium coli*. The pathogens *Helicobacter pylori*, *Shigella* spp./EIEC (enteroinvasive
205 *Escherichia coli*), *Plesiomonas shigelloides*, and *Yersinia entercolitica* were only found in
206 human fecal sam

Escherichia coli), *Plesiomonas shigelloides*, and *Yersinia entercolitica* were only found in

196 human fecal samples.

197

198 Two samples were TAC-positive for *Trichuris*, one of which was presumptively of human

199 196 human fecal samples.
197
198 Two samples were T
199 origin. Due to a borde
200 negative results on sul 198
199
200 198 Two samples were TAC-positive for *Trichuris*, one of which was presumptively of human origin. Due to a borderline initial Cq value (34.4), a negative microscopy result, and inhibited or negative results on subsequent 0199 origin. Due to a borderline initial Cq value (34.4), a negative microscopy result, and inhibited or

199 negative results on subsequent TAC runs for *Trichuris* for this sample, we excluded the result in

199 200 negative results on subsequent TAC runs for *Trichuris* for this sample, we excluded the result in

201 our prevalence calculations. Microscopy for the other (non-human) *Trichuris*-positive sample

202 revealed *Trichuris vulpis*, *Toxocara canis*, and hookworm ova (Figure S4).

203

204 We estimated the annual number o revealed *Trichuris vulpis*, *Toxocara canis*, and hookworm ova (Figure S4).

203

204 We estimated the annual number of pathogens prevented from release into

205 as a result of each Pit Stop intervention under three scen 204
205
206
207
208 We estimated the annual number of pathogens prevented from release into the local environment

205 as a result of each Pit Stop intervention under three scenarios (Table 2): (i) that fecal waste

206 reduced was both human as a result of each Pit Stop intervention under three scenarios (Table 2): (i) that fecal waste

206 reduced was both human and animal, since Pit Stop interventions also include animal waste bags

207 and bins (ii) that al reduced was both human and animal, since Pit Stop interventions also include animal waste bags

207 and bins (ii) that all fecal waste reduced was of human origin; and (3) (i) that all fecal waste

208 reduced was of anima 207 and bins (ii) that all fecal waste reduced was of human origin; and (3) (i) that all fecal waste

208 reduced was of animal origin. There results of the three scenarios were similar due to the high

209 concentration 208 reduced was of animal origin. There results of the three scenarios were similar due to the high

209 concentration of pathogen shedding in feces, except for the instances where we only detected a

210 pathogen in huma 209 concentration of pathogen shedding in feces, except for the instances where we only detected a

210 pathogen in human or non-human feces (e.g., *Cryptosporidium*) (Table 2). The estimated

211 reduction in pathogens r 210 pathogen in human or non-human feces (e.g., *Cryptosporidium*) (Table 2). The estimated

211 reduction in pathogens released to environment in the scenario that considered both fecal waste

212 sources varied from 1 x 211 reduction in pathogens released to environment in the scenario that considered both fecal waste

212 sources varied from 1 x 10⁷ (95% CI: 1.6 x 10⁶, 1.3 x 10⁸) for *Trichuris* to 6.3 x 10¹² (95% CI:

213 4.0 x sources varied from 1 x 10⁷ (95% CI: 1.6 x 10⁶, 1.3 x 10⁸) for *Trichuris* to 6.3 x 10¹² 4.0 x 10^{12} , 7.9 x 10^{12}) for atypical enteropathogenic *E. coli.*

212 sources varied from 1 x 10' (95% CI: 1.6 x 10°, 1.3 x 10°) for *Trichuris* to 6.3 x 10¹² (95% CI: 4.0 x 10¹², 7.9 x 10¹²) for atypical enteropathogenic *E. coli.*
214 Because the Pit Latrine intervention include 213 4.0×10^{12} , 7.9 $\times 10^{12}$) for atypical enteropathogenic *E. coli*.
214 Because the Pit Latrine intervention includes animal was
216 these facilities may also result in reductions in enteric path
217 including E 215
216
217
218
219 Because the Pit Latrine intervention includes animal waste bags and bins, it is plausible that

216 these facilities may also result in reductions in enteric pathogens observed only in animal feces,

217 including EPEC (ty these facilities may also result in reductions in enteric pathogens observed only in animal feces,

217 including EPEC (typical), *Salmonella* spp., norovirus, *Cryptosporidium* spp., *Giardia* spp.,

218 *Balantidium coli* 217 including EPEC (typical), *Salmonella* spp., norovirus, *Cryptosporidium* spp., *Giardia* spp., *Balantidium coli*, and *Trichuris* spp. Assuming that the Pit Stop facilities reduce both human and animal feces in the s 218 *Balantidium coli*, and *Trichuris* spp. Assuming that the Pit Stop facilities reduce both human and
219 animal feces in the same proportion that they appear in our fecal samples (20% human, 80%
220 non-human), we esti 219 animal feces in the same proportion that they appear in our fecal samples (20% human, 80% non-human), we estimate quantitative reductions of the broad range of pathogens represented across all samples (Table 2).
222
22 220 non-human), we estimate quantitative reductions of the broad range of pathogens represented
221 across all samples (Table 2).
222 221 across all samples (Table 2).
222
223

222

- 224
- 225
- 226
- 225
226
227
228
229 ---
226
227
228
229 ---
227
228
229
- 227
- 228
- 228
229 ---
229 229

Ancyclostoma duodenale, Ascaris lumbricoides, Enterobius vermicularis, Hymenolepis nana, Necator

- *americanus,* and *Strongyloides stercolaris* 230 **Table 1.** Prevalence of pathogens in collected stool samples.
231 11
-

- 232
- 233
- 234
- 235
- 236
-
- 233 4
233 4 5 236 7
232 238 9 0
242 242 243 237
- 238
- 239
- 240
- 241 242
- 243

^bEnteroaggregative *Escherichia coli*
^cEnterotoxiganic *Escherichia coli*

Enterotoxigenic *Escherichia coli* ^d

Enteroinvasive *E. coli* ^e

^eClassified based on the concentration of human mitochondrial DNA (Supporting Information, Text S5)¹⁹

Table 2. Modeled annual pathogens prevented from release into the environment per Pit Stop in

245

246

247

2248

2250 We detected a wide range of enteric pathogens in the fecal samples we collected, with

251 approximat 245 study area (within 500 m walking distance).
246
247
248 **DISCUSSION**
250 We detected a wide range of enteric pa
251 approximately half (51%) of all samples po
252 Based on our pathogen analysis of fecal v 247
248
249
250
251
252 ---
248
249
250
251
252
253 249
250
251
252
253
254 249 **DISCUSSION**
250 We detected a
251 approximately b
252 Based on our p
253 wastes on the s
254 released into the We detected a wide range of enteric pathogens in the fecal samples we collected, with

251 approximately half (51%) of all samples positive for one or more of the pathogens we sought.

252 Based on our pathogen analysis of approximately half (51%) of all samples positive for one or more of the pathogens we sought.

252 Based on our pathogen analysis of fecal wastes and previously estimated reductions in fecal

253 wastes on the street¹⁵, t 252 Based on our pathogen analysis of fecal wastes and previously estimated reductions in fecal
253 wastes on the street¹⁵, the Pit Stop intervention has likely reduced the number of pathogens
254 released into the envir wastes on the street¹⁵, the Pit Stop intervention has likely reduced the number of pathogens wastes on the street¹³, the Pit Stop intervention has likely reduced the number of pathogens

released into the environment within 500 m walking distance of each new toilet facility installed.

Reducing pathogen hazards released into the environment within 500 m walking distance of each new toilet facility installed.

Reducing pathogen hazards in a densely populated environment can prevent disease

transmission, especially for the most vu Reducing pathogen hazards in a densely populated environment can prevent disease

256 transmission, especially for the most vulnerable population: people experiencing homelessness,

257 particularly unsheltered people livi transmission, especially for the most vulnerable population: people experiencing homelessness,
particularly unsheltered people living in the study area who previously lacked accessible public
sanitation and hygiene facilit

particularly unsheltered people living in the study area who previously lacked accessible public

258 sanitation and hygiene facilities.

259

260 Four out of five samples were non-human in origin, with *Giardia, Cryptospo* 258 sanitation and hygiene facilities.
259
260 Four out of five samples were n
261 (typical) occurring only in anim 260
261 260 Four out of five samples were non-human in origin, with *Giardia*, *Cryptosporidium*, and EPEC (typical) occurring only in animal stools, though each of these has zoonotic potential^{12, 29}.
13 (typical) occurring only in animal stools, though each of these has zoonotic potential^{12, 29}. 261 (typical) occurring only in animal stools, though each of these has zoonotic potential^{12, 29}.
13

262 Microscopy results also revealed a high burden of helminth infection in a presumptive canine
263 sample. Humans are not the definitive host of *Toxocara* and canine hookworm, but humans can
264 be infected by them^{30,} 263 sample. Humans are not the definitive host of *Toxocara* and canine hookworm, but humans can
264 be infected by them^{30, 31}. While provision of public toilets has the potential to reduce human open
265 defecation, con be infected by them^{30, 31}. While provision of public toilets has the potential to reduce human open be infected by them^{30, 31}. While provision of public toilets has the potential to reduce human open
265 defecation, control of animal feces requires different interventions. Although the Pit Stop
266 intervention include defecation, control of animal feces requires different interventions. Although the Pit Stop
intervention included animal waste bag distribution and disposal bins, further measures are
probably required, including public e 266 intervention included animal waste bag distribution and disposal bins, further measures are

267 probably required, including public education, enforcement, environmental controls, or other

268 measures. Stray or fer probably required, including public education, enforcement, environmental controls, or other
measures. Stray or feral animals may also contribute fecal waste. Based on our detection of a
range of potentially zoonotic enter measures. Stray or feral animals may also contribute fecal waste. Based on our detection of a

269 range of potentially zoonotic enteric pathogens in non-human fecal waste with the potential for

270 human contact, control human contact, control of animal feces should be considered in this setting^{12, 29}.

269 range of potentially zoonotic enteric pathogens in non-human fecal waste with the potential for
270 human contact, control of animal feces should be considered in this setting^{12, 29}.
271 Our findings should be consi 270 human contact, control of animal feces should be considered in this setting^{12,29}.
271 Our findings should be considered alongside some limitations and caveats.
273 our findings should be considered alongside some li 272
273
274
275
276 272 Our findings should be considered alongside some limitations and caveats. First, though we tested for a range of important enteric pathogens, we selected these targets *a priori* and they are a subset of pathogens tha tested for a range of important enteric pathogens, we selected these targets *a priori* and they are a subset of pathogens that may be relevant in this context, especially considering the widespread presence of non-human f 274 subset of pathogens that may be relevant in this context, especially considering the widespread
275 presence of non-human fecal wastes. Other potential zoonoses, including *Toxoplasma gondii*,
276 *Toxocara*, and cani presence of non-human fecal wastes. Other potential zoonoses, including *Toxoplasma gondii*,

276 *Toxocara*, and canine hookworm may have been present and future studies should consider

277 them^{12,29}. Second, the frequ Toxocara, and canine hookworm may have been present and future studies should consider

277 them^{12, 29}. Second, the frequency of detection of these pathogens cannot be assumed to represent

278 prevalence of infection in them^{12, 29}. Second, the frequency of detection of these pathogens cannot be assumed to represent them^{12, 29}. Second, the frequency of detection of these pathogens cannot be assumed to represent
prevalence of infection in any population: multiple fecal samples in the study area may well have
been from a single indivi prevalence of infection in any population: multiple fecal samples in the study area may well have

279 been from a single individual, and our quantitative estimations are based on a limited number of

280 samples. Third, d been from a single individual, and our quantitative estimations are based on a limited number of

280 samples. Third, detection of pathogen-associated nucleic acids does not and cannot indicate

281 viability or infectivit samples. Third, detection of pathogen-associated nucleic acids does not and cannot indicate

281 viability or infectivity. These data cannot be used directly in assessing risk of exposure, without

182 further assumptions viability or infectivity. These data cannot be used directly in assessing risk of exposure, without

further assumptions beyond the scope of our analysis. Fecal samples were apparently fresh when

sampled, but pathogens ca 282 further assumptions beyond the scope of our analysis. Fecal samples were apparently fresh when
283 sampled, but pathogens can be inactivated in the environment. Fourth, even without public
284 toilets, many discarded s 283 sampled, but pathogens can be inactivated in the environment. Fourth, even without public
284 toilets, many discarded stools will go on to be collected and safely disposed of through street and
284 284 toilets, many discarded stools will go on to be collected and safely disposed of through street and

285 sidewalk cleaning, being effectively removed from the environment and therefore unlikely to

286 result in exposure. For this reason and others, we cannot conclude that the reduction in pathogen

287 hazards associated result in exposure. For this reason and others, we cannot conclude that the reduction in pathogen
hazards associated with feces would necessarily result in changes to human exposures, infection,
or disease, only that the p

hazards associated with feces would necessarily result in changes to human exposures, infection,

288 or disease, only that the potential exists.

289 Fifth, we treated non-detects on TAC as true zeroes, so our estimates m or disease, only that the potential exists.

289

290 Fifth, we treated non-detects on TAC

291 given the lower limit of detection for tar

292 same highly sensitive and specific pr

293 adopted for pathogen detection and 290
291
292
293
294 290 Fifth, we treated non-detects on TAC as true zeroes, so our estimates might be conservative
291 given the lower limit of detection for targets using these assays (Table S3). While TAC uses the
292 same highly sensitiv 291 given the lower limit of detection for targets using these assays (Table S3). While TAC uses the
292 same highly sensitive and specific probe-based RT-qPCR chemistry that has been widely
293 adopted for pathogen detec 292 same highly sensitive and specific probe-based RT-qPCR chemistry that has been widely

293 adopted for pathogen detection and quantification in both clinical and research settings across a

294 range of sample matrice adopted for pathogen detection and quantification in both clinical and research settings across a

294 range of sample matrices, the physical constraints of the platform result in much smaller reaction

295 volumes $(\sim 1.$ range of sample matrices, the physical constraints of the platform result in much smaller reaction
volumes $(\sim 1.5 \mu L)$ than for traditional tube-based approaches $(20 \mu L - 50 \mu L)$. The reduced
reaction volume may negative volumes (~1.5 μ L) than for traditional tube-based approaches (20 μ L – 50 μ L). The reduced
reaction volume may negatively impact analytical sensitivity (i.e., increase the probability of
false negatives at low tar reaction volume may negatively impact analytical sensitivity (i.e., increase the probability of

297 false negatives at low target concentrations) and likewise increase the variability of estimated

298 target quantities a 297 false negatives at low target concentrations) and likewise increase the variability of estimated

298 target quantities at lower concentrations. However, TAC has previously been shown to compare

299 favorably with tr target quantities at lower concentrations. However, TAC has previously been shown to compare

favorably with traditional qPCR approaches in terms of quantification linearity as well as

pathogen-specific sensitivity and sp 299 favorably with traditional qPCR approaches in terms of quantification linearity as well as

200 pathogen-specific sensitivity and specificity in stool samples^{21, 23, 32}. We observed similar

201 linearity of quantifi pathogen-specific sensitivity and specificity in stool samples^{21, 23, 32}. We observed similar pathogen-specific sensitivity and specificity in stool samples^{21, 25, 32}. We observed similar

301 linearity of quantification with our standard curves for all but two assays, which were excluded

302 from the analysis 301 linearity of quantification with our standard curves for all but two assays, which were excluded
302 from the analysis (Table S3), suggesting that our estimated pathogen gene copy concentrations in
303 positive samples 302 from the analysis (Table S3), suggesting that our estimated pathogen gene copy concentrations in
303 positive samples were sufficiently reliable for the purposes of parametrizing the log-normal
304 pathogen concentrati 303 positive samples were sufficiently reliable for the purposes of parametrizing the log-normal
304 pathogen concentration distributions (which operate on the scale of order-of-magnitude
305 differences in pathogen quanti 304 pathogen concentration distributions (which operate on the scale of order-of-magnitude differences in pathogen quantity) we employed in our stochastic models.
306 305 differences in pathogen quantity) we employed in our stochastic models.
306
15

Finally, in our quantitative model estimating pathogen reductions attributable to the Pit Stop
308 intervention, we assumed that our stool samples (their pathogen content over time, and
309 human/animal origin) are represe 308 intervention, we assumed that our stool samples (their pathogen content over time, and
309 human/animal origin) are representative of the fecal wastes reduced due to public toilet
310 construction. This may or may not human/animal origin) are representative of the fecal wastes reduced due to public toilet
310 construction. This may or may not be the case. Our samples were from a narrow window in time,
311 when some pathogens may be more 310 construction. This may or may not be the case. Our samples were from a narrow window in time,
311 when some pathogens may be more prevalent than others, and this may not be representative of
312 what is being shed over when some pathogens may be more prevalent than others, and this may not be representative of
312 what is being shed over time in the populations contributing fecal wastes to the streets in our
313 study area. We assumed a what is being shed over time in the populations contributing fecal wastes to the streets in our
study area. We assumed a mean reduction of 18 instances of OD within 500 meters of newly
installed Pit Stop locations¹⁵ in o study area. We assumed a mean reduction of 18 instances of OD within 500 meters of newly
314 installed Pit Stop locations¹⁵ in our study area, per week, throughout the modeled period of one
315 year based on six months o installed Pit Stop locations¹⁵ in our study area, per week, throughout the modeled period of one in 314 in stalled Pit Stop locations¹⁵ in our study area, per week, throughout the modeled period of one
315 year based on six months of observational data. We first estimated reductions in pathogen
316 hazards assuming year based on six months of observational data. We first estimated reductions in pathogen
hazards assuming all contained waste was of human origin, given the Pit Stop's primary
ostensible role in serving people. We also es 316 hazards assuming all contained waste was of human origin, given the Pit Stop's primary
317 ostensible role in serving people. We also estimated hazard reductions based on enteric pathogen
318 quantification across all ostensible role in serving people. We also estimated hazard reductions based on enteric pathogen
quantification across all samples, which from our collection effort were determined to be 20%
human origin and 80% animal ori quantification across all samples, which from our collection effort were determined to be 20%
human origin and 80% animal origin. The Pit Stop interventions included both toilet facilities as
well as bags and bins for anim 319 human origin and 80% animal origin. The Pit Stop interventions included both toilet facilities as
320 well as bags and bins for animal waste control, so both types of stools could plausibly be reduced
321 in the immedi well as bags and bins for animal waste control, so both types of stools could plausibly be reduced
in the immediate surroundings. We observed differences between pathogens detected according
to presumptive human versus ani 322 in the immediate surroundings. We observed differences between pathogens detected according
322 to presumptive human versus animal sources, with some pathogens appearing in only human
323 stools and others occurring i 322 to presumptive human versus animal sources, with some pathogens appearing in only human
323 stools and others occurring in non-human stool only. For example, *Helicobacter pylori* and
324 *Shigella/EIEC* were detected

stools and others occurring in non-human stool only. For example, *Helicobacter pylori* and
324 *Shigella/EIEC* were detected only in presumptively human stools.
325 Clean water, safe sanitation, and adequate hygiene are n Shigella/EIEC were detected only in presumptively human stools.
325 Clean water, safe sanitation, and adequate hygiene are not unive
327 with gaps most apparent among those experiencing homelessne
328 credit for proactivel 326
327
328
329 Clean water, safe sanitation, and adequate hygiene are not universal in American cities^{2, 33, 34}, Clean water, safe sanitation, and adequate hygiene are not universal in American cities^{2, 33, 34}, with gaps most apparent among those experiencing homelessness^{2, 7}. San Francisco deserves credit for proactively workin with gaps most apparent among those experiencing homelessness^{2, 7}. San Francisco deserves with gaps most apparent among those experiencing homelessness^{2, \prime}. San Francisco deserves credit for proactively working to solve this problem, which is not inexpensive^{14, 15} and can be politically contentious as c credit for proactively working to solve this problem, which is not inexpensive 14 , 15 and can be credit for proactively working to solve this problem, which is not inexpensive^{14, 15} and can be politically contentious as cities grapple with the growing crisis of homelessness. Water and 16 329 politically contentious as cities grapple with the growing crisis of homelessness. Water and
16

sanitation are human rights³⁵ that are essential to living a dignified life. Construction of publicly 330 sanitation are human rights³⁵ that are essential to living a dignified life. Construction of publicly accessible, safe toilets is a commonsense approach to reducing enteric pathogen hazards in cities⁹, though the accessible, safe toilets is a commonsense approach to reducing enteric pathogen hazards in cities⁹, though the primary reason to continue to invest in public sanitation facilities is to support the physical, mental, and cities⁹, though the primary reason to continue to invest in public sanitation facilities is to support cities⁹, though the primary reason to continue to invest in public sanitation facilities is to support
the physical, mental, and social well-being of people – much of which is difficult or impossible
to measure in pract the physical, mental, and social well-being of people – much of which is difficult or impossible
to measure in practice – and because it is the right and humane thing to do. Moreover, sanitation
is a biological necessity to measure in practice – and because it is the right and humane thing to do. Moreover, sanitation
is a biological necessity that is needed wherever people live. The waste must go somewhere: an
adult weighing 80 kg (near th is a biological necessity that is needed wherever people live. The waste must go somewhere: an
adult weighing 80 kg (near the mean body mass in North America) will produce an average of
approximately 38 kg of feces per yea adult weighing 80 kg (near the mean body mass in North America) will produce an average of
approximately 38 kg of feces per year^{36, 37}, 100% of which should be effectively and safely
managed to protect all members of the approximately 38 kg of feces per year^{36, 37}, 100% of which should be effectively and safely approximately 38 kg of feces per year^{36, 37}, 100% of which should be effectively and safely
338 managed to protect all members of the community from infectious disease. Cities should also
339 consider interventions aimed managed to protect all members of the community from infectious disease. Cities should also
consider interventions aimed at reducing animal feces, which are an underappreciated source of
enteric pathogen hazards in urban s 339 consider interventions aimed at reducing animal feces, which are an underappreciated source of enteric pathogen hazards in urban spaces. Our findings demonstrate that a wide range of pathogens with zoonotic potential m 340 enteric pathogen hazards in urban spaces. Our findings demonstrate that a wide range of pathogens with zoonotic potential may be present in discarded animal waste, with uncertain implications for human exposure and dis pathogens with zoonotic potential may be present in discarded animal waste, with uncertain
342 implications for human exposure and disease transmission.
343
344 REFERENCES
346 1. Fazel, S.; Geddes, J. R.; Kushel, M., The h

-
-
-

implications for human exposure and disease transmission.
343
344
REFERENCES
346 1. Fazel, S.; Geddes, J. R.; Kushel, M., The health of hon
347 descriptive epidemiology, health consequences, and clinical and
348 384, (99 344
345
346
347
348
350
351 345
345
347
348
355
355
355
353 **REFERENCES**

345 **REFERENCES**

347 descriptive epidem

384 384, (9953), 1529-4

350 2019. American Jou

351 3. Yin, S.; Bar

352 Hepatitis A Virus In

353 4. Liu, C. Y.

354 homelessness in Ca

355 5. Park, Y. S.; descriptive epidemiology, health consequences, and clinical and policy recommendations. *Lancet* **2014,**

348 384, (9953), 1529-40.

2. Capone, D.; Cumming, O.; Nichols, D.; Brown, J., Water and Sanitation in Urban America

348 384, (9953), 1529-40.

348 384, (9953), 1529-40.

2. Capone, D.; Cumming, O.; Nichols, D.; Brown, J., Water and Sanitation in Urban America, 2017–

2019. *American Journal of Public Health* 2020, 110, (10), 1567-1572.
 348 364, (3333), 1323-40.
349 2. Capone, D.; C
350 2019. *American Journa*
351 3. Yin, S.; Barker
352 Hepatitis A Virus Infec
353 4. Liu, C. Y.; C
354 homelessness in Califc
355 5. Park, Y. S.; Bli:
355 Cities. *Journal of* 2019. *American Journal of Public Health* 2020, 110, (10), 1567-1572.

350 2019. *American Journal of Public Health* 2020, 110, (10), 1567-1572.

351 3. Yin, S.; Barker, L.; Ly, K. N.; Kilmer, G.; Foster, M. A.; Drobeniuc, 2015. American Journal of Public Health 2020, 110, (10), 1507-1572.

351 3. Yin, S.; Barker, L.; Ly, K. N.; Kilmer, G.; Foster, M. A.; Drobe

352 Hepatitis A Virus Infection in the United States, 2007-2016. Clin Infect

35 1352 Hepatitis A Virus Infection in the United States, 2007-2016. Clin Infect Dis 2020, 71, (10), e571-e579.

1353 4. Liu, C. Y.; Chai, S. J.; Watt, J. P., Communicable disease among people experiencing

1354 homelessness 353 A. Liu, C. Y.; Chai, S. J.; Watt, J. P., Communicable disease among people experiencement in the United States, 2007-2016.
353 A. Liu, C. Y.; Chai, S. J.; Watt, J. P., Communicable disease among people experience
354 h

354 homelessness in California. *Epidemiol Infect* **2020**, 148, e85.
355 5. Park, Y. S.; Bliss, D. Z., Availability of Public Toilets in Parks and Recreational Sites in Selected US
356 Cities. Journal of Wound Ostomy & Con 354 homelessness in California. Epidemior inject 2020, 148, e85.
355 5. Park, Y. S.; Bliss, D. Z., Availability of Public Toilets ir
356 Cities. Journal of Wound Ostomy & Continence Nursing 2019
357 6. Bartram, J.; Cairncr

356 Cities. Journal of Wound Ostomy & Continence Nursing 2019, 46, (3), 235-239.
357 6. Bartram, J.; Cairncross, S., Hygiene, sanitation, and water: forgotten foundations of health. PLoS *Med* 2010, 7, (11), e1000367.
358 357 Cities. Journal of Wound Ostomy & Commence Nursing 2019, 46, (3), 235-239.
357 6. Bartram, J.; Cairncross, S., Hygiene, sanitation, and water: forgotten for *Med* 2010, 7, (11), e1000367. 3537 6. Bartram, J.; Campeloss, S., Hygiene, sanitation, and water: forgotten foundations of health. PLos
358 *Med* 2010, 7, (11), e1000367. $\frac{358}{2558}$ Med 2010, $\frac{11}{11}$, e1000307.

It is made available under a CC-BY 4.0 International license. **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2023.02.10.23285757;](https://doi.org/10.1101/2023.02.10.23285757) this version posted February 11, 2023. The copyright holder for this preprint

Needs, and Potential Sanitary Risks in Atlanta, Georgia, 2017–2018. American Journal of Public Health

2018, 108, (9), 1238-1240.

8. Frye, E. A., Capone, D., and Evans, D.P., Open Defecation in the United States: Perspect 360 Needs, and Totential Santa Sanita American Santa Conglia, 2017–2016. American Souther Potential 2018, 108, (9), 1238-1240.

361 2018, 108, (9), 1238-1240.

362 8. Frye, E. A., Capone, D., and Evans, D.P., Open Defecati **2018, 108, (9), 1238-1240.**
 362 8. Frye, E. A., Capone

the Streets. *Environmental*
 364 9. Moreira, F. D.; Re:
 365 spaces: A systematic review
 366 10. Brown, J.; Cairncr

children. *Arch Dis Child* **201**
 36 1963 the Streets. *Environmental Justice* 2019, 12, (5), 226-230.

19. Moreira, F. D.; Rezende, S.; Passos, F., On-street toilets for sanitation access in urban public

19. Moreira, F. D.; Rezende, S.; Passos, F., On-stree 363 the Streets. Environmental Justice 2013, 12, (3), 220-230.

364 9. Moreira, F. D.; Rezende, S.; Passos, F., On-stree

365 spaces: A systematic review. Utilities Policy 2021, 70, 101:

366 10. Brown, J.; Cairncross, S.; spaces: A systematic review. Utilities Policy 2021, 70, 101186.

365 spaces: A systematic review. Utilities Policy 2021, 70, 101186.

366 10. Brown, J.; Cairncross, S.; Ensink, J. H., Water, sanitation, hygiene and enteric Spaces: A systematic review. Utilities Policy 2021, 70, 101186.

366 10. Brown, J.; Cairncross, S.; Ensink, J. H., Water, sani

children. Arch Dis Child 2013, 98, (8), 629-34.

368 11. Ginn, O.; Rocha-Melogno, L.; Bivins, children. *Arch Dis Child 2013*, 98, (8), 629-34.

368 11. Ginn, O.; Rocha-Melogno, L.; Bivins, A.; Lowry, S.; Cardelino, M.; Nichols, D.; Tripathi, S. N.; Soria,

569 F.; Andrade, M.; Bergin, M.; Deshusses, M. A.; Brown, 368 11. Ginn, O.; Rocha-Melogno, L.; Bivins, A
368 11. Ginn, O.; Rocha-Melogno, L.; Bivins, A
369 F.; Andrade, M.; Bergin, M.; Deshusses, M
2021, 55, (21), 14758-14771.
372 12. Penakalapati, G.; Swarthout, J.; Delah
573 F.; Andrade, M.; Bergin, M.; Deshusses, M. A.; Brown, J., Detection and Quantification of Enteric

369 F.; Andrade, M.; Bergin, M.; Deshusses, M. A.; Brown, J., Detection and Quantification of Enteric

370 Pathogens in Aer

Pathogens in Aerosols Near Open Wastewater Canals in Cities with Poor Sanitation. *Environ Sci Technol*
 2021, 55, (21), 14758-14771.

372 12. Penakalapati, G.; Swarthout, J.; Delahoy, M. J.; McAliley, L.; Wodnik, B.; Le

270 Pathogens in Aerosols wear open Wastewater canals in cities with Foot Salindation. Environ Sci Technol

371 2021, 55, (21), 14758-14771.

272 Penakalapati, G.; Swarthout, J.; Delahoy, M. J.; McAliley, L.; Wodnik, B.; L 2021, 55, (21), 14758-14771.

372 12. Penakalapati, G.; Swa

373 Exposure to Animal Feces an

374 Environ Sci Technol 2017, 51,

375 13. Wagner, E. G.; Lanoix

376 *World Health Organ* 1958, 39

377 14. Rezal, A., Poop com Exposure to Animal Feces and Human Health: A Systematic Review and Proposed Research Priorities.

374 *Environ Sci Technol* **2017**, 51, (20), 11537-11552.

375 13. Wagner, E. G.; Lanoix, J. N., Excreta disposal for rural a Environ Sci Technol 2017, 51, (20), 11537-11552.

374 Environ Sci Technol 2017, 51, (20), 11537-11552.

375 13. Wagner, E. G.; Lanoix, J. N., Excreta disposal for rural areas and small communities. *Monogr Ser*

376 World 274 Environ Sci Technol 2017, 51, (20), 11537-11552.

375 13. Wagner, E. G.; Lanoix, J. N., Excreta dispo

376 *World Health Organ* **1958,** 39, 1-182.

377 14. Rezal, A., Poop complaints have swelled

378 *San Francisco Ch* 376 World Health Organ 1958, 39, 1-182.
376 World Health Organ 1958, 39, 1-182.
377 14. Rezal, A., Poop complaints have swelled in all San Francisco neighborhoods — except this one.
378 San Francisco Chronicle 23 August 20 377 14. Rezal, A., Poop complaints has
378 *San Francisco Chronicle* 23 August 202
379 15. Amato, H. K.; Martin, D.; Hoop
380 public restroom interventions on rep
381 2020. *BMC Public Health* 2022, 22, (1)
382 16. Researc San Francisco Chronicle 23 August 2022, 2022.

379 15. Amato, H. K.; Martin, D.; Hoover, C. M.; Graham, J. P., Somewhere to go: assessing the impact of

380 public restroom interventions on reports of open defecation in Sa

379 San Francisco Cinomere 23 August 2022, 2022.
379 15. Amato, H. K.; Martin, D.; Hoover, C. M.
380 public restroom interventions on reports of o
381 2020. BMC Public Health 2022, 22, (1), 1673.
382 16. Research, A. S. *S* public restroom interventions on reports of open defecation in San Francisco, California from 2014 to

380 public restroom interventions on reports of open defecation in San Francisco, California from 2014 to

381 2020. BM 2381 2020. BMC Public Health 2022, 22, (1), 1673.

381 2020. BMC Public Health 2022, 22, (1), 1673.

382 16. Research, A. S. San Francisco Homeless Count & Survey Comprehensive Report;

383 <u>www.appliedsurveyresearch.org</u>: Solar Edite Public Health 2022, 22, (1), 1675.

382 16. Research, A. S. San Francisco

383 www.appliedsurveyresearch.org: San Jose, Ca

384 17. Capone, D.; Berendes, D.; Cumming,

385 J., Analysis of Fecal Sludges Reveals 383 WWW.appliedsurveyresearch.org: San Jose, California, 2019; p 76 pages.
383 WWW.appliedsurveyresearch.org: San Jose, California, 2019; p 76 pages.
384 17. Capone, D.; Berendes, D.; Cumming, O.; Knee, J.; Nalá, R.; Risk, 384 17. Capone, D.; Berendes, D.; Cumming, O.; Knee, J.; Nalá, R.; Risk, B.
385 J., Analysis of Fecal Sludges Reveals Common Enteric Pathogens in
386 *Environmental Science & Technology Letters* 2020, 7, (12), 889-895.
387 1., Analysis of Fecal Sludges Reveals Common Enteric Pathogens in Urban Maputo, Mozambique.

386 *Environmental Science & Technology Letters* 2020, 7, (12), 889-895.

387 18. Knee, J.; Sumner, T.; Adriano, Z.; Anderson, C. Environmental Science & Technology Letters 2020, 7, (12), 889-895.

387 18. Knee, J.; Sumner, T.; Adriano, Z.; Anderson, C.; Bush, F.; Capone, D.; Casmo, V.; Holcomb, D.;

588 Kolsky, P.; MacDougall, A.; Molotkova, E.; Bra 288 Environmental Science & Technology Letters 2020, 7, (12), 889-895.

387 18. Knee, J.; Sumner, T.; Adriano, Z.; Anderson, C.; Bush, F.; C

388 Kolsky, P.; MacDougall, A.; Molotkova, E.; Braga, J. M.; Russo, C.; Sc

389 Kolsky, P.; MacDougall, A.; Molotkova, E.; Braga, J. M.; Russo, C.; Schmidt, W. P.; Stewart, J.; Zambrana,

388 Kolsky, P.; MacDougall, A.; Molotkova, E.; Braga, J. M.; Russo, C.; Schmidt, W. P.; Stewart, J.; Zambrana,

3

W.; Zuin, V.; Malá, R.; Cumming, O.; Brown, J., Effects of an urban sanitation intervention on childhood

enteric infection and diarrhea in Maputo, Mozambique: A controlled before-and-after trial. *elife* 2021,

10, e62278 enteric infection and diarrhea in Maputo, Mozambique: A controlled before-and-after trial. *elife* 2021,

391 I.0, e62278.

392 I.9. Zhu, K.; Suttner, B.; Pickering, A.; Konstantinidis, K. T.; Brown, J., A novel droplet di

2021 entertion and diarries in Maputo, Mozambique: A controlled before-and-after trial. elife 2021,

391 10, e62278.

201 Ehu, K.; Suttner, B.; Pickering, A.; Konstantinidis, K. T.; Brown, J., A novel droplet digital PCR
 392 19. Zhu,
393 19. Zhu,
393 human mtDl
394 20. Borc
395 Environmen
396 Reporting fo
397 10223.
398 21. Lapp
6.39 C.; Opensha
400 R.; Leder, K.
401 and host res
402 *Lancet Plane* buman mtDNA assay for fecal source tracking. Water Res 2020, 183, 116085.

393 human mtDNA assay for fecal source tracking. Water Res 2020, 183, 116085.

20. Borchardt, M. A.; Boehm, A. B.; Salit, M.; Spencer, S. K.; Wiggi Mathmin Michael source tracking. Water Res 2020, 100, 116005.

20. Borchardt, M. A.; Boehm, A. B.; Salit, M.; Spencer, S. K.; Wigginto

Environmental Microbiology Minimum Information (EMMI) Guidelines: qP

Reporting for En Environmental Microbiology Minimum Information (EMMI) Guidelines: qPCR and dPCR Quality and

396 Reporting for Environmental Microbiology. *Environmental Science & Technology* 2021, 55, (15), 10210-

397 10223.

21. Lappan Reporting for Environmental Microbiology. *Environmental Science & Technology* 2021, 55, (15), 10210-

397 10223.

21. Lappan, R.; Henry, R.; Chown, S. L.; Luby, S. P.; Higginson, E. E.; Bata, L.; Jirapanjawat, T.; Schang, 1987 Reporting for Environmental Microbiology. Environmental Science & Technology 2021, 35, (15), 10210-

19223.

21. Lappan, R.; Henry, R.; Chown, S. L.; Luby, S. P.; Higginson, E. E.; Bata, L.; Jirapanjawat, T.; Schang,
 398 21.

398 21.

399 C.; Ope

400 R.; Lede

401 and hos

402 *Lancet*

403 22.

404 Simulta

405 23.

80isen, C.; Openshaw, J. J.; O'Toole, J.; Lin, A.; Tela, A.; Turagabeci, A.; Wong, T. H. F.; French, M. A.; Brown, R.
R.; Leder, K.; Greening, C.; McCarthy, D., Monitoring of diverse enteric pathogens across environmental
and host C.; Openshaw, J. J.; O'Toole, J.; Lin, A.; Tela, A.; Turagabeci, A.; Wong, T. H. F.; French, M. A.; Brown, R.

400 R.; Leder, K.; Greening, C.; McCarthy, D., Monitoring of diverse enteric pathogens across environmental

4 and host reservoirs with TaqMan array cards and standard qPCR: a methodological comparison study.

402 Lancet Planet Health 2021, 5, (5), e297-e308.

403 22. Lappan, R.; Jirapanjawat, T.; Williamson, D. A.; Lange, S.; Chow

Lancet Planet Health 2021, 5, (5), e297-e308.

402 Lancet Planet Health 2021, 5, (5), e297-e308.

403 22. Lappan, R.; Jirapanjawat, T.; Williamson, D. A.; Lange, S.; Chown, S. L.; Greening, C., Simultaneous detection of mu 402 Edifferential 2021, 5, (5), e257-e308.
403 22. Lappan, R.; Jirapanjawat, T.; Willia
404 Simultaneous detection of multiple pathogen:
405 23. Liu, J.; Gratz, J.; Amour, C.; Nshama
806 Boisen, N.; Nataro, J.; Haverstick, Simultaneous detection of multiple pathogens with the TaqMan Array Card. *MethodsX* 2022, 9, 101707.

23. Liu, J.; Gratz, J.; Amour, C.; Nshama, R.; Walongo, T.; Maro, A.; Mduma, E.; Platts-Mills, J.;

23. Liu, J.; Gratz,

- 3. Etiu, J.; Gratz, J.; Amour, C.; Nshama, R.; Walongo, T.; Maro, A.; Mduma, E.; Platts-Mills, J.; Boisen, N.; Nataro, J.; Haverstick, D. M.; Kabir, F.; Lertsethtakarn, P.; Silapong, S.; Jeamwattanalert, P.; 101707.
18
- 405 23. Liu, J.; Gratz, J.; Amour, C.; Nshama, R.; Walongo, T.; Maro, A.; Mduma, E.; Platts-Mills, J.; 18

It is made available under a CC-BY 4.0 International license. **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2023.02.10.23285757;](https://doi.org/10.1101/2023.02.10.23285757) this version posted February 11, 2023. The copyright holder for this preprint

-
-
-
-
-
- Quantitative PCR Methods for Enteropathogen Detection. *PLOS ONE* 2016, 11, (6), e0158199.

409 Quantitative PCR Methods for Enteropathogen Detection. *PLOS ONE* 2016, 11, (6), e0158199.

409 24. Team, R. C., R: A language
- 408 Contained Contains and Contained Contained Contained Contains and the software]. R Foundation for Statistical Computing 2021.
409 24. Team, R. C., R: A language and environment for statistical computing (Version 4.0.5) 410 software]. *R* Foundation for Statistical Computing **2021**.

411 25. Delignette-Muller, M. L.; Dutang, C., fitdistrplus: An R Package for Fitting Distributions. Journal

412 of Statistical Software **2015**, 64, (4), 1 -410 Software]. R Foundation for Statistical Computing 2021.
411 25. Delignette-Muller, M. L.; Dutang, C., fitdistrplus
412 of Statistical Software 2015, 64, (4), 1 - 34.
413 26. Cummings, J. H.; Bingham, S. A.; Heaton, K. 412 *of Statistical Software* 2015, 64, (4), 1 -34.
412 *of Statistical Software* 2015, 64, (4), 1 - 34.
413 26. Cummings J. H.; Bingham, S. A.; Heaton, K. W.; Eastwood, M. A., Fecal weight, colon cancer risk,
414 and diet 412 *by Statistical Software 2013, 04,* (4), 1-34.
413 26. Cummings, J. H.; Bingham, S. A.; He
and dietary intake of nonstarch polysaccha
415 27. Corless, C. E.; Guiver, M.; Borro
416 Contamination and sensitivity issues w and dietary intake of nonstarch polysaccharides (dietary fiber). Gastroenterology 1992, 103, (6), 1783-9.

415 27. Corless, C. E.; Guiver, M.; Borrow, R.; Edwards-Jones, V.; Kaczmarski, E. B.; Fox, A. J.,

416 Contaminatio 414 and dietary material and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol 2000, 38,
415 27. Corless, C. E.; Guiver, M.; Borrow, R.; Edwards-Jones, V.; Kaczmarski, E. B.; Fox, A. J.,
416 Cont Contamination and sensitivity issues with a real-time universal 165 rRNA PCR. *J Clin Microbiol* 2000, 38,

417 (5), 1747-52.

28. Philipp, S.; Huemer, H. P.; Irschick, E. U.; Gassner, C., Obstacles of Multiplex Real-Time 417 Contamination and sensitivity issues with a real-time universal 105 hMM FCR. 3 Chir Microbiol 2000, 30,
417 (5), 1747-52.
418 28. Philipp, S.; Huemer, H. P.; Irschick, E. U.; Gassner, C., Obstacles of Multiplex Real-Ti 418 28. Philip
418 28. Philip
420 Hemother 20
421 29. Prenc
422 Joyeux, M.; H
423 B.; Robertsor
424 Humphrey, J.
425 animals, sanit
426 30. Borg,
427 Med J 1973, 4
428 31. Wood Bacterial 16S rDNA: Primer Specifity and DNA Decontamination of Taq Polymerase. *Transfus Med*

420 Hemother 2010, 37, (1), 21-28.

421 29. Prendergast, A. J.; Gharpure, R.; Mor, S.; Viney, M.; Dube, K.; Lello, J.; Berger,
-
-
-
-
- Hemother 2010, 37, (1), 21-28.

420 Hemother 2010, 37, (1), 21-28.

421 29. Prendergast, A. J.; Gharpure, R.; Mor, S.; Viney, M.; Dube, K.; Lello, J.; Berger, C.; Siwila, J.;

422 loyeux, M.; Hodobo, T.; Hurt, L.; Brown, T 421 29. Prendergast, A. J.; Gha
422 Joyeux, M.; Hodobo, T.; Hurt, L
423 B.; Robertson, R. C.; Evans, C.;
424 Humphrey, J. H.; Berendes, D.,
425 animals, sanitation, and hygien
426 30. Borg, O. A.; Woodruff, A27 Med J 1973 422 Joyeux, M.; Hodobo, T.; Hurt, L.; Brown, T.; Hoto, P.; Tavengwa, N.; Mutasa, K.; Craddock, S.; Chasekwa, B.; Robertson, R. C.; Evans, C.; Chidhanguro, D.; Mutasa, B.; Majo, F.; Smith, L. E.; Hirai, M.; Ntozini, R.; Hum 8. Robertson, R. C.; Evans, C.; Chidhanguro, D.; Mutasa, B.; Majo, F.; Smith, L. E.; Hirai, M.; Ntozini, R.; Humphrey, J. H.; Berendes, D., Putting the "A" into WaSH: a call for integrated management of water, animals, san Humphrey, J. H.; Berendes, D., Putting the "A" into WaSH: a call for integrated management of water,

animals, sanitation, and hygiene. *Lancet Planet Health* **2019**, 3, (8), e336-e337.

30. Borg, O. A.; Woodruff, A. W., P
-
-
-
-
- animals, sanitation, and hygiene. *Lancet Planet Health* **2019**, 3, (8), e336-e337.

426 30. Borg, O. A.; Woodruff, A. W., Prevalence of infective ova of Toxocara species in public places. *Br*

427 *Med J* **1973**, 4, (589 425 animals, sanitation, and nygiene. Lancet Plancet Pearl 2015, 3, (0), e336-e337.
426 30. Borg, O. A.; Woodruff, A. W., Prevalence of infective ova of Toxocara s
427 Med J 1973, 4, (5890), 470-2.
428 31. Woodruff, A. W., 427 *Med J1973, 4, [S890], 470-2.*
427 *Med J1973, 4, [S890], 470-2.*
428 31. Woodruff, A. W., Toxocariasis. *British Medical Journal* 1970, 3, (5724), 663-669.
429 32. Liu, J.; Gratz, J.; Amour, C.; Kibiki, G.; Becker, S. 428 31. Woodruff, A. W., Toxa
428 31. Woodruff, A. W., Toxa
429 32. Liu, J.; Gratz, J.; Amo
430 U.; Haque, R.; Haverstick, I
431 simultaneous detection of 19
432 33. Mueller, J. T.; Gastey
433 the United States. Nature Con 428 31. Woodram, A. W., Toxocanasis. British Medical Journal 1970, 3, (3724), 683-669.
429 32. Liu, J.; Gratz, J.; Amour, C.; Kibiki, G.; Becker, S.; Janaki, L.; Verweij, J. J.; Taniud
430 U.; Haque, R.; Haverstick, D. M.; 430 U.; Haque, R.; Haverstick, D. M.; Houpt, E. R., A laboratory-developed TaqMan Array Card for
431 simultaneous detection of 19 enteropathogens. *J Clin Microbiol* **2013**, 51, (2), 472-80.
432 33. Mueller, J. T.; Gasteye 431 simultaneous detection of 19 enteropathogens. *J Clin Microbiol* **2013**, 51, (2), 472-80.
432 33. Mueller, J. T.; Gasteyer, S., The widespread and unjust drinking water and clean water crisis in
433 the United States. 331 simultaneous detection of 19 enteropatingens. J can multiple 2013, 31, (2), 472-00.

33. Mueller, J. T.; Gasteyer, S., The widespread and unjust drinking water and c

433 the United States. Nature Communications 2021, the United States. Nature Communications 2021, 12, (1), 3544.

434 34. Meehan, K.; Jurjevich, J. R.; Chun, N. M. J. W.; Sherrill, J., Geographies of insecure water access

and the housing & #x2013; water nexus in US cities 433 the Onted States. Nature Communications 2021, 12, (1), 3544.

434 Meehan, K.; Jurjevich, J. R.; Chun, N. M. J. W.; Sherrill,

435 and the housing & #x2013; water nexus in US cities. *Proceedin*
 436 2020, 117, (46), and the housing–water nexus in US cities. *Proceedings of the National Academy of Sciences*
 2020, 117, (46), 28700-28707.
 35. Nations, U., The Human Rights to Safe Drinking Water and Sanitation: Resolution In
- 436 2020, 117, (40), 20700-28707.
437 35. Nations, U., The Huma
438 R., Ed. UN General Assembly: 2
439 36. Berendes, D. M.; Yang
440 and animal faecal biomass. Nat
441 37. Yang, P. J.; LaMarca, M
442 Matter 2017, 13, (29),
- 439 36. Berendes, D. M.; Yang, P. J.
440 and animal faecal biomass. Nature S
441 37. Yang, P. J.; LaMarca, M.; K.
442 *Matter* **2017**, 13, (29), 4960-4970.
443
- 435 and the housing-water next in the bottom is the bottom of actuality of Sciences
436 **2020**, 117, (46), 28700-28707.
437 35. Nations, U., The Human Rights to Safe Drinking Water and Sanitation: Resolution In Council, H. 438 R., Ed. UN General Assembly: 2018.
439 36. Berendes, D. M.; Yang, P. J.; Lai, A.; Hu, D.; Brown, J., Estimation of global recoverable human and animal faecal biomass. *Nature Sustainability* 2018, J. (11), 679-685.
441 440 and animal faecal biomass. *Nature Sustainability* 2018, 1, (11), 679-685.
441 37. Yang, P. J.; LaMarca, M.; Kaminski, C.; Chu, D. I.; Hu, D. L., Hydrodynamics of defecation. *Soft Matter* 2017, 13, (29), 4960-4970.
 440 and animal faecal biomass. Nature Sustainability 2016, 1, (11), 673-665.
441 37. Yang, P. J.; LaMarca, M.; Kaminski, C.; Chu, D. I.; Hu, D. L., Hy.
442 Matter 2017, 13, (29), 4960-4970. 441 37. Yang, P. J.; Lamarca, M.; Kaminski, C.; Chu, D. I.; Hu, D. L., Hydrodynamics of defecation. Soft
442 Matter 2017, 13, (29), 4960-4970.
443 442 *Matter 2017, 13, (29), 4966-4970.*
443