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 2 

Abstract: 38 

The functional domain of the cerebellum has expanded beyond motor control to also include 39 

cognitive and affective functions. In line with this notion, cerebellar volume has increased over recent 40 

primate evolution, and cerebellar alterations have been linked to heritable mental disorders. To map 41 

the genetic architecture of human cerebellar morphology, we here studied a large imaging genetics 42 

sample from the UK Biobank (n discovery = 27,302; n replication: 11,264) with state-of-the art 43 

neuroimaging and biostatistics tools. Multivariate GWAS on regional cerebellar MRI features yielded 44 

351 significant genetic loci (228 novel, 94% replicated). Lead SNPs showed positive enrichment for 45 

relatively recent genetic mutations over the last 20-40k years (i.e., overlapping the Upper Paleolithic, 46 

a period characterized by rapid cultural evolution), while gene level analyses revealed enrichment 47 

for human-specific evolution over the last ∼6-8 million years. Finally, we observed genetic overlap 48 

with major mental disorders, supporting cerebellar involvement in psychopathology. 49 

  50 

Teaser: Genome-wide analysis of cerebellar morphology reveals links to recent human evolution 51 

and psychopathology 52 

 53 
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 3 

Introduction 74 

The cerebellum contains ~80% of all neurons in the human brain1 and has rapidly expanded in 75 

volume over recent primate evolution2. Indeed, the surface area of the cerebellar cortex extends to 76 

almost 80% of the surface area of the cerebral cortex3. Comparative genetic analyses suggest that 77 

protein coding genes with known roles in cerebellar development have been subject to a similar, or 78 

even greater, rate of hominid evolution as compared to cerebro-cortical developmental genes4. Thus, 79 

the evolution of the cerebellum may have played a key role in the emergence of human cognition, 80 

including language5.  81 

A growing number of neuroimaging and clinical studies in humans also link cerebellar 82 

structure and function to a wide range of cognitive and affective functions6-8, as well as to a number 83 

of heritable developmental9 and psychiatric10 disorders where these abilities either fail to develop 84 

properly or are compromised later in life. However, compared to supra-tentorial brain structures such 85 

as the cerebral cortex11 and the hippocampus12, few studies have mapped the genetic architecture 86 

of the cerebellum. 87 

 Of note, the few existing cerebellar genome-wide association studies (GWAS) have mostly 88 

been restricted to total cerebellar volume13,14, thus largely ignoring regional variation in cerebellar 89 

morphology. Importantly, such variation in the relative volumes of cerebellar subregions (i.e., 90 

variation in cerebellar shape independent of total cerebellar volume) has been associated with 91 

variation in behavioral repertoires in several species15,16, including domain-general cognition in 92 

primates16. 93 

We here performed a multivariate GWAS of MRI-derived regional cerebellar morphological 94 

features in a large population-based sample from the UK biobank (n discovery = 27,302; n replication 95 

= 11,264), functionally characterized the genetic signal, tested for enrichment of SNPs and genes 96 

linked to human evolution, and assessed genetic overlap with major mental disorders. 97 

 98 

Results 99 

  100 

Data-driven decomposition of cerebellar grey matter maps reveals highly reproducible 101 

structural covariance patterns. 102 

Since traditional atlases of the cerebellar cortex based on gross anatomical landmarks (i.e., lobules) 103 

only partially overlap with more recent functional parcellations of the cerebellum17-25, we first used a 104 

data-driven approach (non-negative matrix factorization, NNMF26-28) to parcellate voxel-based 105 

morphometry (VBM) based maps of cerebellar grey matter volume (containing 147,121 1*1*1 mm 106 

voxels) from 28,212 participants into a smaller number of structural covariance patterns (SCPs), i.e., 107 

cerebellar sub-regions where voxel-volumes co-vary consistently across individuals  (see Online 108 

Methods for details about the study sample, MRI processing and quality control procedures). Like 109 

other dimensionality reduction methods, such as principal component analysis (PCA) or independent 110 

component analysis (ICA), NNMF decomposes the input matrix (here 147k voxels * 28k participants) 111 
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 4 

into two lower rank matrices (voxel weights: W, and participant weights: H), so that the product of W 112 

and H approximates the original input data. The defining feature of NNMF is that it requires these 113 

lower rank matrices to be non-negative, which has previously been shown to result in sparse, 114 

reproducible and easily interpretable parcellations of high-dimensional brain imaging data26-30. In 115 

essence, when applied to voxel-wise indices of grey matter volume, NNMF yields distinct maps of 116 

voxels that show similar patterns of volume-variation across individuals, commonly referred to as 117 

“structural covariance patterns”26,27,29. For each structural covariance pattern (common across all 118 

participants), NNMF also provides individual subject weighs expressing the degree to which these 119 

patterns are expressed, i.e., reflecting individual variation in regional cerebellar volumes.  120 

 In the current study NNMF yielded highly reproducible cerebellar structural covariance 121 

patterns  (across split-half datasets) for model orders (i.e., number of components/patterns specified) 122 

ranging from 2 to 100 (see Supplementary Figures 2 for summary maps of all tested model orders). 123 

After observing that the improved fit to the original data seen with higher model orders tended to 124 

level off between 15 and 30 components (indicating that the intrinsic dimensionality of the data might 125 

have been reached (see Supplementary Figure 3), we decided on a model order of 23 based on its 126 

good split-half reproducibility (see Fig. 1B, and Online Online Methods for details regarding model 127 

order selection). Importantly, when subject weights were summed across the 23 structural 128 

covariance maps, the resulting values corelated tightly (r = 0.9995) with estimates of total cerebellar 129 

grey matter volume (see also Supplementary Figure 4), demonstrating that our data-driven 130 

decomposition preserved inter-individual variation in cerebellar volume.  131 

 132 

 133 
Figure 1: Data driven decomposition of cerebellar grey matter maps yields highly reproducible and 134 
moderately heritable structural covariance patterns (SCPs). A: Binarized winner-takes-all map for the 23-135 
component solution based on data-driven decomposition of cerebellar grey matter maps from 28,212 136 
participants. Note that empirically derived boundaries between cerebellar regions only partially follow 137 
traditional lobular borders (marked with dotted black lines); B: Five distinct components overlapping cerebellar 138 
Crus I derived from the split-half reliability analyses. While one of these SCPs emerged as bilateral in Split 2, 139 
the remaining four SCPs were almost identical, despite being derived from two independent samples; C: 140 
Narrow sense (SNP-based) heritability of the 23 SCPs (see Supplementary Data 5 for numerical values). D: 141 
Hierarchical clustering of the 23 SCPs (derived from the full sample decomposition) based on their pairwise 142 
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genetic correlations revealed a primary division between the anterior and posterior cerebellum, with additional 143 
separations between medial and lateral regions. The full genetic correlation matrix can be found in 144 
Supplementary Data 6.  145 
 146 

Of note, our data-driven decomposition differed markedly from the standard cerebellar atlas based 147 

on gross anatomical features, shown as dotted lines in Fig 1A (see Supplementary Figure 3 for all 148 

23 components and Supplementary Data 1 for quantification of overlap between NNMF-derived 149 

structural covariance patterns (SCPs) and standard cerebellar anatomical regions, i.e. lobules). For 150 

instance, five distinct SCPs overlapped Crus I of cerebellar lobule VII (shown in Fig 1B), an 151 

anatomical region which already started to split into separate components at a model order of three. 152 

We further observed only partial overlap with task-based functional parcellations of the cerebellar 153 

cortex (Supplementary Data 2). While some SCPs clearly overlapped cerebellar regions previously 154 

associated with hand movements, eye-movements/saccades or autobiographical recall, other data-155 

driven SCPs overlapped multiple functionally defined cerebellar regions (Supplementary Data 2).   156 

 157 

Cerebellar structural covariance patterns are heritable and reveals a distinct anterior-158 

posterior pattern based on their bivariate genetic correlations. 159 

After removal of one of each genetically related pair of individuals (n = 910), 27,302 participants 160 

remained for the genetic analyses. In addition to the 23 regional cerebellar structural covariance 161 

patterns of primary interest, we also included total cerebellar volume, estimated total intracranial 162 

volume and 9 cerebral brain phenotypes to serve as covariates and/or comparison phenotypes. Prior 163 

to all genetic analyses, morphological features were adjusted for effects of scanner site, sex, age, 164 

estimated total intracranial volume, 40 genetic population components, genetic analysis batch and 165 

a quantitative structural MRI quality index (the Euler number31) using general additive models, before 166 

finally being rank-order normalized (see Online Methods for details). 167 

To validate our analysis approach, we computed genetic correlations (using LD-score 168 

regression, LDSC32) between univariate GWAS results on the comparison features (see Manhattan- 169 

and QQ-plots in Supplementary Figure 5) and previously published neuroimaging GWAS studies on 170 

these brain phenotypes. Results showed a mean rg of .90 (range: .80-.99, see Supplementary Data 171 

3). For the 23 cerebellar morphological features, we used the univariate GWAS summary statistics 172 

(see Supplementary Figures 6-7 for Manhattan- and QQ-plots) to compute genetic correlations 173 

between discovery (n = 27,302) and replication (n = 11,264) samples using LDSC32. These genetic 174 

correlations were high (mean rG: .92; range: .83-1), indicating reliable genetic signals (see 175 

Supplementary Data 4). 176 

Genetic complex trait analysis (GCTA33) revealed SNP-based heritability estimates (h2) 177 

ranging from .33 to .44 (Figure 1C and Supplementary Data 5). Analyses of total cerebellar volume 178 

(h2 = .35), estimated total intracranial volume (h2 = .41) and the 9 cerebral comparison phenotypes 179 

(h2 range: .26 to .45) gave a similar range of heritability estimates (Supplementary Data 5). 180 
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Hierarchical clustering of cerebellar features based on their bivariate genetic correlation 181 

matrix (GCTA-based rG ranging from 0.35 to 0.98, Supplementary Data 8) revealed a primary 182 

anterior-posterior division running along the horizontal fissure separating Crus I and Crus II, with 183 

secondary divisions grouping features into more lateral or medial, as well as more anterior and 184 

posterior features within the major anterior and posterior regions (Fig 1D). Of note, the primary 185 

division along the horizontal fissure was also evident from the (genetically naïve) two-component 186 

NNMF decomposition, while medial-to-lateral divisions already began to emerge with a model order 187 

of three (see Supplementary Figure 1).  188 

In order to examine whether this phenotypic and genetic correlation structure was also 189 

reflected in regional cerebellar gene expression patterns, we used the abagen toolbox34 to extract 190 

Allen Human Brain Atlas35 gene expression profiles for 22 of the 23 morphological features and 191 

computed their bivariate Pearson correlations (across 15,631 genes; Supplementary Data 7) and 192 

hierarchical clustering solution (Supplementary Figure 8). The anterior-posterior boundary across 193 

the horizontal fissure was also evident in the gene expression data, which in addition highlighted 194 

distinct gene expression patterns for the posterior midline (grouped together with the horizontal 195 

fissure), as well as for the most lateral regions of the cerebellar cortex. 196 

 197 

Multivariate GWAS reveals 351 genetic loci associated with cerebellar morphology.  198 

Figure 2A shows the main results for the multivariate GWAS across the 23 cerebellar structural 199 

covariance patterns applying MOSTest36. We observed 35,098 genome-wide significant (GWS) 200 

SNPs, which were mapped by FUMA37 to a total of 51,803 candidate SNPs by adding reference 201 

panel SNPs in high LD (r >.6) with GWS SNPs. The 51,803 candidate SNPs (see Supplementary 202 

Data 8) were represented by 1,936 independent significant SNPs and 560 lead SNPs in 351 genomic 203 

loci (see Supplementary Data 10). The LDSC intercept of the MOSTest summary statistics was 204 

1.0352 (i.e., indicative of no or minimal genetic inflation), while the QQ-plot of results based on 205 

permuted data (under the null hypothesis) confirmed the validity of the MOSTest analytical approach 206 

(Supplementary Figure 9). 207 
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 208 
Figure 2: Multivariate GWAS analysis of the 23 cerebellar structural covariance patterns 209 

revealed 351 independent genome-wide significant (GWS) loci. A: The upper half of the Miami 210 

plot shows the main results from the multivariate analysis. The lower half displays results from a 211 

series of 23 univariate analyses (corrected for multiple comparisons using the standard min-P 212 

approach), as well as results from a univariate analysis of total cerebellar grey matter (marked in 213 

orange). B-D: Euler diagrams showing the relative numbers of - and overlaps between - candidate 214 

SNPs (in thousands)  mapped by the three analysis approaches employed in the current study (B), 215 

the current and four recent studies reporting genetic associations with cerebellar morphology (C), as 216 

well as results from multivariate GWASs on hippocampal and cerebrocortical morphology (D). For 217 

full results on overlap between all cerebellar candidate SNPs and other brain phenotypes, see 218 

Supplementary Data 8.     219 

 220 

Annotation of all candidate SNPs using ANNOVAR38 as implemented in FUMA35 revealed that the 221 

majority of candidate SNPs were intronic (57.8%) or intergenic (38.3%). While only 0.7% were 222 

exonic, about 81% of the candidate SNPs were assigned minimal chromatin states between 1 and 223 

7 (i.e., open chromatin states), implying effects on active transcription37 (see Supplementary Data 8-224 

9). 225 
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 8 

         We evaluated the robustness of these multivariate results using a multivariate replication 226 

procedure established in Loughnan et al39, which computes a composite score from the mass-227 

univariate z-statistics (i.e., applying multivariate weights from the discovery sample to the replication 228 

sample input data) and then tests for associations between this composite score and genotypes in 229 

the replication sample (for mathematical formulation see Loughnan et al39). Results showed that 230 

97% of the 339 loci lead SNPs present in both samples (i.e., 94% of the 351 reported loci lead SNPs 231 

from the discovery sample) replicated at a nominal significance threshold of p < .05 (Supplementary 232 

Figure 10 and Supplementary Data 10), and that 74% remained significant after Bonferroni 233 

correction (Supplementary Data 10). Moreover, 99% of loci lead SNPs showed the same effect 234 

direction across discovery and replication samples (Supplementary Figure 9 and Supplementary 235 

Data 10).  236 

In addition, we assessed the robustness of the multivariate patterns by computing bivariate 237 

correlations between feature z-score vectors assigned to the discovery sample lead SNPs in an 238 

independent multivariate GWAS (MOSTest) performed on the replication sample. These correlations 239 

(restricted to the 339 loci lead SNPs present in both samples) were relatively high (mean r: .70, see 240 

Supplementary Data 10 and Supplementary Figure 11). Figure 3 and Supplementary Figure 11 also 241 

give some examples of discovery and replication sample multivariate patterns projected back onto 242 

the cerebellar cortex. 243 

         To compare our main multivariate MOSTest results to univariate approaches, the lower part 244 

of the Miami plot in Figure 2A, and Figure 2B, displays results from a set of univariate GWASs on 245 

the cerebellar morphological features (which yielded 8370 candidate SNPs and 57 genomic loci, 246 

corrected for multiple comparisons using the min-P approach40,41, see also Supplementary Figures 247 

6-7 for univariate Manhattan and QQ-plots), as well as the 4044 candidate SNPs and 10 significant 248 

loci resulting from the univariate GWAS on total cerebellar grey matter volume (marked in orange). 249 

52 of the 57 loci identified in the univariate analyses of regional cerebellar features overlapped 55 of 250 

the 351 loci identified using the multivariate method, while 9 out of 10 loci identified in the univariate 251 

analysis of total cerebellar volume were also identified in the multivariate analysis (the slightly 252 

mismatching numbers are due to loci of unequal lengths, causing some larger loci to overlap with 253 

several smaller loci). Thus, our multivariate analysis of regional cerebellar features increased the 254 

locus yield ~35-fold relative to analyzing total cerebellar volume and ~6-fold relative to performing a 255 

set of univariate analyses on the same regional features.   256 

We next compared the current findings with previously reported genetic loci for cerebellar 257 

morphology by extracting summary statistics from two recent GWAS studies using the UKBB sample 258 

(n = 19k42 and 33k43) that included regional cerebellar volumes among the full set of analyzed brain 259 

imaging-derived phenotypes (10142 and 3,14443, respectively), as well as two recent GWASs on total 260 

cerebellar volume (n = 33k13 and 27k14, respectively). Candidate SNPs and independent GWS loci 261 

were identified in FUMA using the same settings as for our primary analyses and employing a liberal 262 

p-value threshold of 5e-8 (i.e., not correcting for the total number of brain imaging features analyzed). 263 
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Results are displayed in Figure 2c and Supplementary Data 8 and 10. In brief, we found that 19,527 264 

of the 51,803 candidate SNP (i.e., 36%) and 123 of the 351 identified genomic loci (i.e., 35%) 265 

overlapped with candidate SNPs and loci extracted from these three previous studies. Thus, 228 of 266 

the 351 (i.e., 65%) genetic loci reported here are novel to the literature on of cerebellar morphology 267 

genetics (see Supplementary Data 10. 268 

Overlap of cerebellar candidate SNPs and genetic loci with results from recent multivariate 269 

analyses of hippocampal and cerebrocortical morphology are displayed in Figure 2D and 270 

Supplementary Data 8 and 10 (final columns). Of note, we found that 32 and 29 percent of the 271 

candidate SNPs discovered here for the cerebellum overlapped with candidate SNPs for vertex-wise 272 

cerebrocortical surface area and thickness44, respectively, while 11.4 percent overlapped with 273 

candidate SNPs found for hippopcampal subregions45. 95 of the 351 genetic loci overlapped loci 274 

linked to the other multivariate brain phenotypes (Supplementary Data 10). Thus, 64% of the 275 

candidate SNPs and 73% of genetic loci appeared to be specifically associated with cerebellar 276 

morphology. 277 

 278 

Significant genetic variants show heterogeneous effects across the cerebellar cortex, 279 

influencing both regional and total volumes.   280 

A major advantage of our multivariate analysis approach is its sensitivity to both highly localized and 281 

more generally distributed effects of SNPs on cerebellar morphology. This is illustrated in Figure 3, 282 

which displays the 351 loci lead SNPs as a function of both the most extreme individual Z-score 283 

across all cerebellar features (e.g, analogous to the strongest “local” effect) and of the mean Z-score 284 

across these features (i.e. analogous to the main effect on overall cerebellar volume).  285 

 286 
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 287 
Figure 3: Loci lead SNPs show spatially heterogeneous and replicable effects across the cerebellar 288 
cortex. The 351 loci lead SNPs identified by MOSTest are plotted as a function of main overall effect across 289 
all cerebellar features (x-axis: mean Z-score) and most extreme effect for any single cerebellar feature (y-axis: 290 
most extreme Z-score across features), and colour coded by SNP discovery method. The cerebellar flat-maps 291 
show discovery (left) and replication (right) sample regional distributions of Z-scores (color-scale range from -292 
10 to 10) for a few selected lead SNPs (see Supplementary Data 10 for individual feature Z-scores for all 351 293 
discovery sample loci lead SNPs). SNP rs7877685 was only present in the discovery sample. 294 
 295 

As can be seen, some loci lead SNPs (e.g. rs13107325; rs76934732) show pronounced positive or 296 

negative mean z-scores, indicating a relatively consistent direction of effect across cerebellar 297 

features. See also inset figures displaying feature Z-scores projected back onto the cerebellar cortex. 298 

Many of these SNPs also emerged in the univariate analysis of total cerebellar volume and were 299 

recently reported in GWASs on total cerebellar volume13,14. 300 

         Many other loci lead SNPs, however, show strong “local” signals with opposite effect 301 

directions across features, yielding very weak global signals (e.g. rs117332043; rs78777685). Thus, 302 

while several of the most significant SNPs in this category have previously been reported in GWASs 303 

including local cerebellar morphological features42,43, they did not emerge from analyses of total 304 

cerebellar volume, neither in the current nor in previous studies. 305 
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Finally, our multivariate MOSTest approach is also sensitive to SNPs displaying weaker 306 

effects distributed across several cerebellar features, often with opposite effect directions (e.g. 307 

rs12464825; rs2388334). For this category of SNPs, neither of the univariate methods have sufficient 308 

power at the current sample size. In contrast, these two example SNPs robustly emerged from the 309 

multivariate analysis (discovery sample p-values < 1e-56; replication sample p-values <1e-15). 310 

 311 

Genetic variants associated with cerebellar morphology are enriched for evolutionary recent 312 

mutations in the human genome. 313 

We next mapped the evolutionary age of cerebellar lead SNPs (thresholded for linkage 314 

disequilibrium at r2 <0.1) by merging them with a recently published dataset on dated mutations in 315 

the human genome46. Following the analysis procedure established by Libedinsky et al.47, we plotted 316 

the histogram of dated lead SNPs over the last 2 million years in bins of 20.000 years (Figure 4A 317 

and Supplementary Data 11), and tested for positive or negative enrichment by comparing them to 318 

empirical null distributions derived from 10,000 randomly drawn and equally sized sets of all SNPs 319 

in the full human genome dating dataset (after matching them to cerebellum-associated lead SNPs 320 

in terms of minor allele frequency; see Online Methods for details).  321 

 322 

 323 
Figure 4: Lead SNPs associated with cerebellar morphology are enriched for evolutionary recent 324 
mutations in the human genome. A: Histogram of estimated SNP age (ranging from 0 to 2 million years, in 325 
bins on 20,000 years) for 548 independent lead SNPS associated with cerebellar morphology. The solid black 326 
and dotted lines denote the mean and upper  95th confidence interval (Bonferroni corrected across 100 time-327 
bins)  derived from a null model constructed from 10,000 of equally sized sets of SNPs randomly drawn from 328 
the Human Genome Dating Atlas of Variant Age (after matching these to cerebellar lead SNPs in terms of 329 
minor allele frequencies). Red bars denote time-bins of significant positive enrichment. B: Histogram showing 330 
comparative evolutionary enrichment effects for lead SNPs identified in a multivariate GWASs of 331 
cerebrocortical area (for cerebrocortical thickness, see Supplementary Figure 12), See Supplementary Data 332 
11-12 for full numerical results.     333 
 334 

Results revealed positive enrichment for cerebellar lead SNPs in the time bin ranging from 20-40,000 335 

years ago, i.e., overlapping the Upper Paleolithic, a period characterized by rapid cultural evolution 336 
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and the first evidence of several uniquely human behaviors (often referred to as behavioral 337 

modernity), such as the recording of information onto objects48.  338 

For comparison, Figure 4B also shows results from an analysis of  lead SNPs identified in a 339 

previous multivariate GWAS study of regional cerebrocortical surface area 44, while Supplementary 340 

Figure 12 shows the corresponding histogram for regional cerebrocortical thickness. As can be seen, 341 

both these cerebrocortical phenotypes also showed significant enrichment in overlapping time bins 342 

(i.e., 20-60,000 years ago). For full numerical results in Supplementary Data 12.   Given the relatively 343 

low number of independent lead SNPs (range: 548-862 SNPs across phenotypes) , we also ran 344 

validation analyses using all independent significant SNPs (LD-thesholded at r2 < 0.6, range: 1574-345 

2883 SNPs), which yielded very similar results (see Supplementary Figure 13 and Supplementary 346 

Table 13). 347 

 348 

Genes associated with cerebellar morphology show selective expression in cerebellar and 349 

prenatal brain tissue, as well as enrichment for genes linked to human accelerated regions. 350 

To functionally characterize the multivariate GWAS signal, we mapped the full set of GWAS p-values 351 

to 19,329 protein coding genes using MAGMA49 and used the resulting gene-level p-values to test 352 

for 1) GWS genes, 2) gene expression in brain tissue; and 3) enrichment for genes linked to human 353 

accelerated regions (HARs),  i.e. sections of DNA that have remained relatively conserved 354 

throughout mammalian evolution, before being subject to  a burst of changes in humans since 355 

divergence of humans from chimpanzees50,51. These analyses yielded a total of 534 GWS genes 356 

(i.e., 2.78% of all protein coding genes, see Figure 5A and Supplementary Data 14). Using the full 357 

set of 19,329 gene-level p-values in MAGMA gene property analyses revealed significant and 358 

specific gene expression in cerebellar and prenatal brain tissue (Figure 5B-C and Supplementary 359 

Data 15-16), with the selective cerebellar expression seen in two independent datasets (Allen 360 

Human Brain Atlas35 and The Genotype-Tissue Expression (GTEx) Project).  361 

The MAGMA gene set analysis of HAR-linked genes revealed significant enrichment (p = 362 

7.09e-08) for genes associated with cerebellar morphology (Figure 5D, Supplementary Data 17). Of 363 

note, running this same HAR gene set analysis on summary statistics from recent multivariate GWAS 364 

studies on cerebrocortical44 or hippocampal45 morphological features yielded similar (for cortical 365 

features) or significantly weaker (hippocampal features) enrichment effects (Figure 5d, see Online 366 

Methods for processing pipeline).  367 

 368 
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 369 
Figure 5: Gene mapping reveals selective enrichment for cerebellar and prenatal brain tissue, as well 370 
as for genes linked to human accelerated regions. A: MAGMA mapped the full range of SNPs from the 371 
multivariate GWAS to 19.329 protein-coding genes, 534 of which were genome-wide significant (Bonferroni 372 
corrected threshold marked with red line), with the 30 most significant genes labeled in the gene-based 373 
Manhattan plot. B-C: MAGMA gene-property analyses revealed selective brain expression in the cerebellum 374 
and during prenatal developmental stages. D: MAGMA gene-set analysis revealed significant enrichment for 375 
sets of genes previously linked to human accelerated regions (HARs). Figure 4d also shows results from 376 
comparative analyses using summary statistics from other multivariate GWASs of MRI-based brain, as well 377 
as significant results from statistical tests comparing beta-weights for HAR-linked genes across multivariate 378 
brain features. Horizontal red lines mark the Bonferroni-corrected significance threshold for each subplot. See 379 
Supplementary Data 14-17 for full results. 380 
 381 

Genes linked to human cerebellar morphology show enrichment for gene sets linked to 382 

selective cerebellar gene expression, altered cerebellar morphology in mouse models, 383 

human clinical/anthropometric traits, as well as specific biological processes and pathways. 384 

In line with the continuous brain tissue gene expression results described above, we also observed 385 

significant and relatively selective enrichment for smaller curated sets of genes previously found to 386 

be highly and selectively expressed in mouse (Figure 6A, Supplementary Data 18) and human 387 

(Figure 6C, Supplementary Data 20) cerebellar brain tissue, as well as for sets of genes previously 388 

shown to affect cerebellar morphology in mouse gene perturbation experiments (Figure 6B, 389 
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Supplementary Data 19) and various clinical conditions and anthropometric traits in humans (Figure 390 

6D, Supplementary Data 21). The most significant gene ontology and curated gene sets from the 391 

MSigDB52,53 database were related to brain development (e.g., neurogenesis, axon guidance and 392 

neuron differentiation, Figure 6E, Supplementary Data 22), and highlighted the reelin signaling 393 

pathway (Figure 6F, Supplementary Data 23). 394 

 395 

 396 
Figure 6: Gene mapping reveals selective enrichment across brain tissues and curated gene sets. 397 
MAGMA gene-set analyses revealed significant enrichment for sets of genes previously linked to preferential 398 
expression in human (A) and mouse (C) cerebellar tissue, as well as effects on cerebellar morphology (and 399 
other brain phenotypes) in mouse gene perturbation experiments (B) and human clinical disorders and 400 
phenotypes (D).  Significant gene ontology terms were related to neural development (E), while curated gene 401 
sets highlighted the Reelin signaling pathway (F). Across all subplots the x-axis shows the -log10 p-value, the 402 
y-axis marks the number of gene sets, and the top 10 most significant gene-sets are labelled. Red lines mark 403 
the Bonferroni-corrected significance threshold for each subplot. See Supplementary Data 18-23 for full 404 
results.  405 
 406 
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As can be seen in Figure 5A (and Supplementary Data 14), RELN (encoding the protein Reelin) was 407 

also the most significant gene mapped by MAGMA. See also Supplementary Figure 14 for a regional 408 

locus plot showing the 12 lead SNPs mapped to RELN and their associated z-score maps. 409 

  410 
Gene mapping reveals sets of plausible causal genes. 411 

In addition to the gene-based mapping strategy using all SNPs described above (MAGMA), we also 412 

mapped candidate SNPs to genes using two complementary gene mapping strategies: 1) positional 413 

mapping of deleterious SNPs (defined as having a CADD-score54 > 12.37); and 2) mapping of SNPs 414 

previously shown to affect gene expression in cerebellar tissues (i.e., eQTL mapping). Across all 415 

three strategies, we mapped a total of 674 unique genes; 531 using MAGMA, 310 using positional 416 

and 197 using eQTL mapping (see Figure 7A and Supplementary Data 24). 298 genes were 417 

identified by at least two strategies, while 65 genes were mapped by all three strategies. Out of these 418 

674 genes, 61 have previously been associated with cerebellar pathology in humans and/or altered 419 

cerebellar morphology in mouse gene perturbation experiments, while 121 have been linked to 420 

human accelerated regions (Supplementary Data 24). As can be seen in Figure 7B and 421 

Supplementary Data 24, the 674 genes mapped to cerebellar morphology showed some overlap 422 

with genes mapped to hippocampal45 and cerebrocortical44 morphology using the same mapping 423 

strategies, but 264 genes (39%) appeared relatively specific to the cerebellum.   424 

Results from gene set analyses on the 674 mapped genes (Figure 7, Supplementary Data 425 

25-29) largely mirrored results from the MAGMA analyses described above, but in addition revealed 426 

that this set of 674 mapped genes was also enriched for gene sets associated with several complex 427 

clinical phenotypes and anthropometric traits in humans, including cognitive ability, neuroticism and 428 

schizophrenia (Figure 7F, Supplementary Data 29). 429 

Of note, while the full set of mapped genes showed significant enrichment for sets of genes 430 

known to alter cerebellar morphology in mouse mutation or knock-down experiments 431 

(Supplementary Data 27), we also note that 613 of the 674 mapped genes have not to our knowledge 432 

previously been linked to cerebellar development, anatomy or pathology in mice or humans 433 

(Supplementary Data 24), and thus constitute potential targets for future gene perturbation 434 

experiments in animal models. 435 

Restricting the above analyses to the 298 genes mapped across at least two strategies did 436 

not markedly affect the results (Supplementary Data 25-29, final columns). 437 

 438 

 439 
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440 
Figure 7: Mapping and functional characterization of plausible causal genes. The 674 plausible causal 441 
genes mapped using three complementary strategies (A) show partial overlap with genes mapped to 442 
hippocampal45 and cerebrocortical44 morphology (B); significant enrichment for sets of genes linked to human 443 
accelerated regions (HAR) (C); selective expression in the cerebellum in mice (D) and humans (E), as well as 444 
effects on cerebellar morphology in mouse gene perturbation studies (F) and human disorders and 445 
anthropometric phenotypes (G).  Across all subplots the x-axis shows the -log10 p-value, the y-axis marks the 446 
number of gene sets, and the top 10 most significant gene-sets are labelled. Red lines mark the Bonferroni-447 
corrected significance threshold for each subplot. See Supplementary Data 24-29 for full results. 448 
 449 
Cerebellar morphology shows significant genetic overlap with psychiatric disorders. 450 

We finally tested for overlap between the multivariate genetic profile for cerebellar morphology and 451 

genetic profiles for five major developmental/psychiatric disorders (attention deficit hyperactivity 452 

disorder: ADHD; autism spectrum disorder: ASD; bipolar disorder: BIP; major depressive disorder: 453 
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MDD; and schizophrenia: SCZ) using conditional/conjunctional FDR analysis55. As can be seen in 454 

the conditional QQ-plots in Figure 8, these analyses revealed clear patterns of enriched association 455 

with the clinical phenotypes when selecting subsets of SNPs with increasingly stronger association 456 

with cerebellar morphology (Fig. 8A and figure insets in (C-F). 457 

458 
Figure 8: Genetic variants influencing cerebellar morphology overlap with variants associated with 459 
five major mental disorders. Conditional QQ plots (A and figure insets in C-F) show an incremental 460 
incidence of association with five mental disorders (leftward deflection) as a function of the significance of 461 
association with cerebellar morphology. Manhattan plots show SNPs with significant association with both 462 
traits, thresholded at a conjunctional FDR threshold of p > .01 (red dotted line). SCZ: Schizophrenia; BIP: 463 
Bipolar Disorder; MDD: Major Depressive Disorder; ADHD: Attention Deficit Hyperactivity Disorder; ASD: 464 
Autism Spectrum Disorders. 465 
 466 
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See also Supplementary Figure 15 for QQ-plots depicting the reverse association, i.e., enriched 467 

association with cerebellar morphology when conditioning on the association with 468 

developmental/psychiatric disorders. Specific genetic variants jointly influencing the two phenotypes 469 

were identified using conjunctional FDR analyses at a conservative statistical threshold of p<.01. 470 

Results revealed shared genetic loci with all disorders; namely 48 with SCZ, 22 with BIP, 2 with 471 

MDD, 5 with ADHD and 5 with ASD (Figure 6; Supplementary Data 30-34). We mapped lead and 472 

candidate SNPs for each of these loci to genes using positional and eQTL mapping and checked for 473 

gene overlap across disorders (Supplementary Data 35). Of note, the LRP8 gene (a HAR-linked 474 

gene50,51 encoding a Reelin receptor) emerged from the conjunctional FDR analyses of both BIP and 475 

SCZ, thus again highlighting the Reelin signaling pathway.  476 

 To complement these multivariate analyses, we also conducted a set of univariate analyses, 477 

using LD-score regression32 to calculate the genetic correlations between each individual cerebellar 478 

feature and the five developmental/psychiatric disorders. 479 

 480 

 481 
Figure 9: Univariate genetic correlations between cerebellar morphological features and five 482 

major mental disorders are negative. The top row display unthresholded genetic correlations, 483 

while these are filtered at increasingly strict statistical thresholds in the following rows, i.e. nominal 484 

p-value < .05 (second row); Bonferroni correction for the 23 cerebellar features tested (third row); 485 

and Bonferroni correction for both 23 features and 5 clinical conditions (bottom row). Black dotted 486 

lines denote lobular boundaries. 487 

 488 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 24, 2024. ; https://doi.org/10.1101/2023.02.10.23285704doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285704
http://creativecommons.org/licenses/by/4.0/


 19 

As can be seen in the first row of Figure 9 (and Supplementary Data 36), genetic correlations with 489 

cerebellar morphological features were predominantly negative across diagnoses, indicating that 490 

genetic variants associated with a clinical diagnosis tended to also be associated with reduced 491 

cerebellar volumes (with 42 out of 115 tested associations showing nominally significant negative 492 

correlations; Fig 9, second row). However, all univariate genetic correlations were relatively weak, 493 

and only a few negative genetic correlations with BIP and SCZ survived Bonferroni correction for the 494 

23 features tested. When also correcting for the five clinical conditions, only the negative correlation 495 

between BIP and cerebellar feature 23 (primarily overlapping vermal lobules VIIIa and VIIIb) 496 

remained significant.             497 

Supplementary Data 37 show genetic correlations between the five disorders and the ten 498 

comparison brain phenotypes, as well as total cerebellar volume. In general agreement with the 499 

observed pattern for regional cerebellar features, total cerebellar grey matter volume showed 500 

nominally significant negative genetic correlations with BIP (rg: -.10; p = 0.0052) and SCZ (rg: -.09; 501 

p = 0.0133). Pallidal volume also showed nominally significant negative genetic correlations with 502 

these two disorders (BIP: rg: -.10; p = 0.0087; SCZ: rg: -.08; p = 0.0172, while ADHD displayed 503 

negative genetic correlations with estimated total intracranial volume (rg: -.15; p = 0.0003) and total 504 

cortical surface area (rg:-.14 ; p = 0.0065), as well as a positive genetic correlation with hippocampal 505 

volume (rg: .13; p = 0.0164). Finally, MDD showed nominally significant negative genetic correlations 506 

with volumes of the hippocampus (rg -.08: p = 0.025) and thalamus (rg: -.09; p = 0.0258). Only the 507 

negative genetic correlation between ADHD and estimated total intracranial volume survived 508 

Bonferroni correction across the 55 tests performed. 509 

  510 
 511 
Discussion 512 
  513 

The current study identified novel features of the genetic architecture of cerebellar morphology, 514 

supported the notion of recent changes over human evolution, implicated specific neurobiological 515 

pathways, and demonstrated genetic overlap with major mental disorders. 516 

With respect to the main features of cerebellar morphology, it is worth noting that results from 517 

our data-driven decomposition of cerebellar grey matter maps (which was not informed by genetic 518 

data), the genetic correlation analyses of the chosen 23-feature solution and gene expression data 519 

from the Allen Human Brain Atlas all converge on a similar general pattern. The first boundary to 520 

emerge in the data-driven decompositions ran along the horizontal fissure separating Crus I and II 521 

of lobule VII, reflecting its centrality in characterizing phenotypic variability in cerebellar morphology 522 

at the population level. Of note, this boundary also emerged from clustering of the 23 cerebellar 523 

morphological features based on their bivariate genetic correlations or gene expression profiles 524 

(based on the Allen Human Brain Atlas). This latter finding essentially mirrors results from a recent 525 

report using a different analysis strategy on the same gene expression data56. Interestingly, the 526 

horizontal fissure has been suggested to mark the border between two separate cerebellar 527 
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representations of the cerebral cortex, with a possible third representation in lobules IX-X57. The 528 

current cerebellar results thus complement previous work on the hierarchical genetic organization of 529 

the cerebral cortex, which has identified the Rolandic fissure (separating the frontal and parietal 530 

lobes) as a main boundary with respect to genetic effects of effects of surface area58, as well as a 531 

superior-inferior gradient for genetic influences on cortical thickness59 532 

         Our multivariate GWAS using MOSTest identified 351 independent GWS loci associated with 533 

cerebellar morphology, increasing the yield ~35-fold relative to analyzing total cerebellar volume and 534 

~6-fold relative to performing a set of univariate analyses on the same regional features in our current 535 

sample. 329 (94%) loci from the multivariate analyses were replicated in an independent sample, 536 

indicating robust results. After applying a liberal threshold to summary statistics from previous well-537 

powered studies, we find that 228 (65%) of our reported loci are novel. Importantly, among the genes 538 

mapped to these novel loci we find several that are known to play important roles in cerebellar 539 

development in mice (e.g., RORA60, FGF861 and BAHRL162, see Supplementary Data 23). While 540 

candidate SNPs associated with cerebellar morphology partially overlap with SNPs previously 541 

mapped to other multivariate brain phenotypes, we note that a substantial number of SNPs appear 542 

to be relatively selectively linked to cerebellar morphology, a finding that is in in line with the distinct 543 

gene expression profile found for the cerebellum35.  544 

 SNP- and gene-level results from the current study also bolster – and refine –  the notion of 545 

relatively recent changes in cerebellar morphology over human evolution2,4,15,16. Specifically, we 546 

found that lead SNPs associated with cerebellar morphology were enriched for SNPs with an 547 

estimated age of 20-40 thousand years. This overlaps the Upper Paleolithic (10-50k years ago), a 548 

period characterized by rapid cultural evolution, and coinciding with the first evidence of several 549 

uniquely human behaviors (often referred to as behavioral modernity), such as the recording of 550 

information onto objects48. Converging evidence for changes in brain anatomy around this 551 

evolutionary period comes from the fossil scull record, where only fossils dated less than 35.000 552 

years old fall within the range of shape-variation seen in modern humans63,64. Of note, one key 553 

feature of modern skulls is their “globular” shape, in part characterized by an enlarged posterior 554 

fossa (the cranial compartment housing the cerebellum)63,64. A similar pattern of enrichment for 555 

recent evolutionary time bins (20-60 thousand years ago) was also found when analyzing lead SNPs 556 

derived from previous studies on multivariate cerebro-cortical44 morphology.  557 

Gene level analyses further showed that genes associated with inter-individual variation in 558 

cerebellar morphology are enriched for genes linked to human accelerated regions (HARs)50 of the 559 

genome. HARs denote previously conserved regions of the genome that were subject to a burst of 560 

changes in humans after the divergence of humans from chimpanzees about 6-8 million years ago50. 561 

Of note, a recent GWAS on total cerebellar volume found no enrichment for HAR-linked genes14, 562 

suggesting that SNPs associated with regional cerebellar variation may be driving this effect. When 563 

comparing this finding with results from other multivariate brain phenotypes, we observed that HAR 564 

gene enrichment was nominally stronger for cerebellar morphology than for vertex-wise 565 
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cerebrocortical thickness and area, and significantly stronger than for hippocampal regional volumes 566 

(Figure 5D). 567 

Together, these SNP- and gene-level results suggest that genetic variants influencing 568 

cerebellar morphology in modern humans have been subject to selection over relatively recent 569 

human evolution, and that cerebellar changes – in concert with other brain regions – may thus have 570 

played a central part in the emergence of uniquely human cognitive abilities.  571 

Results from the MAGMA gene property and gene set analyses bolster our confidence in the 572 

genetic signal by showing selective gene expression in human cerebellar brain tissue across two 573 

independent datasets (Allen Human Brain Atlas and GTEx.8) and significant enrichment for sets of 574 

genes which have previously been shown to affect cerebellar morphology in mouse gene 575 

perturbation experiments. The MAGMA results further show significant enrichment for sets of genes 576 

known to play key roles in neurodevelopment (e.g., neurogenesis & axon guidance) and preferential 577 

expression in prenatal brain tissue, thus supporting a primarily developmental origin of genetically 578 

determined effects on adult cerebellar morphology. Of note, our MAGMA enrichment analysis of 579 

curated gene sets strongly implicated the Reelin signaling pathway. Indeed, both the gene coding 580 

for the Reelin protein (RELN) and genes coding for its two receptors (LRP8 & VLDLR) were identified 581 

across at least two gene mapping strategies, with RELN emerging as the single most significant 582 

gene by MAGMA. The Reelin pathway is known to play important roles in neurodevelopment (e.g. 583 

neuronal migration), and mutations in the RELN and VLDLR65 (and to a lesser extent LRP8; also 584 

known as ApoER266) have been associated with cerebellar malformations and/or dysfunction. LRP8 585 

is also among the genes linked to human accelerated regions (HARs) of the genome.  586 

The sets of genes mapped by the three complementary mapping strategies provide a 587 

database for future studies investigating the genetic architecture of cerebellar morphology. For 588 

instance, we mapped 616 genes associated with inter-individual variability in human cerebellar 589 

morphology that have not yet to our knowledge been examined in mouse gene perturbation 590 

experiments and/or associated with cerebellar pathology in humans. Among these, we highlight 591 

MAP2K5 and GRB14, two HAR-linked genes mapped across all strategies and associated with lead 592 

SNP p-values <1e-50, but whose functions in the brain are largely unknown. 593 

The reported results for previously discovered variants, loci and genes add important 594 

information regarding regional effects on cerebellar morphology. For instance, while genetic variants 595 

linked to the RELN gene have previously been associated with volumes of cerebellar vermal lobules 596 

VI-X and hemispheric lobule IX42,43, we here mapped 12 lead SNPs to RELN showing heterogeneous 597 

effects across the entire cerebellar cortex (but with peak effects overlapping previously described 598 

midline and posterior cerebellar regions, see Supplementary Figure 13). 599 

The observed genetic overlap between cerebellar morphology and the five mental disorders 600 

reinforces the recent notion of the cerebellum as a key brain structure in complex clinical traits and 601 

disorders6-10. Across the five diagnoses, the strongest evidence for genetic overlap with cerebellar 602 

morphology was found for SCZ and BIP, likely at least in part because these disorder GWASs were 603 
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relatively well-powered. While an in-depth discussion of genetic loci jointly influencing psychiatric 604 

disorders and cerebellar morphology is beyond the scope of this report, we note that the Reelin 605 

pathway again emerges in the genetic overlap analyses for SCZ and BIP. Specifically, the current 606 

finding of LRP8 (a reelin receptor, and HAR-linked gene) as one of the genes jointly associated with 607 

cerebellar morphology and the aforementioned severe mental disorders points towards a potential 608 

molecular pathway involved in the cerebellar abnormalities previously reported in SCZ10,67,68 and 609 

BIP67,68. Indeed, in line with its key importance for brain development and function, the Reelin 610 

pathway is also increasingly seen as relevant for a wide range of neurodevelopmental, psychiatric 611 

and neurodegenerative disorders69. Of particular relevance to the current findings, converging 612 

evidence supports LRP8 as a key susceptibility gene for psychosis70. 613 

The main limitations of the current study concern the ancestral homogeneity of the sample, 614 

the sample size, the exclusion of very rare genetic variants and the limitations on follow-up analyses 615 

placed by multivariate (relative to univariate) test-statistics. Limiting the sample to participants of 616 

European ancestry was deemed necessary considering the current state of the multivariate GWAS 617 

methods used but may limit the generalizability of our findings. Second, while the current sample 618 

size is large in comparison with previous imaging genetics studies, it is still relatively small in 619 

comparison to GWASs of other complex human phenotypes (e.g., intelligence, with a current n of > 620 

3 million71). Moreover, very rare genetic variants (MAF < 0.005) were excluded from the current 621 

multivariate GWAS, but are likely to include a number of variants with relatively large effect sizes on 622 

complex human traits 72. Thus, future studies using larger and more diverse samples – as well as 623 

whole exome and/or genome sequencing – are likely to discover more of the genetic variants 624 

associated with cerebellar structure. Finally, while multivariate GWAS increases the power to detect 625 

genetic variants associated with brain phenotypes relative to univariate approaches, it also places 626 

important limitations on the possible follow-up analyses (e.g., genetic correlations or Mendelian 627 

randomization), which require directional effects. Although comprehensive follow-up analyses of 628 

univariate GWAS results fall beyond the scope of the current report, we have made all summary 629 

statistics (univariate and multivariate) publicly available for the research community. 630 

In conclusion, the current results enhance our understanding of the genetic architecture of 631 

human cerebellar morphology, provide supporting evidence for cerebellar morphological changes 632 

during the last ∼6-8 million years of human evolution, and reinforce the notion of cerebellar 633 

involvement in several mental disorders by demonstrating significant genetic overlap. 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 
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Materials and Methods:  642 

 643 

Participants 644 

For our main analyses, T1-weighted MR images, demographic and genetic data from 39,178 UK 645 

Biobank participants were accessed using access number 27412. After removing 1043 participants 646 

who either had missing genetic data or had withdrawn consent (as of 19.11.2019), data from 38,135 647 

participants remained for the main analysis (age range: 44.6-82.1; mean age: 64.1, 51.9% female). 648 

Following quality control procedures (QC, see below), 28,212 UK Biobank participants of European 649 

descent remained for the main analyses (age range: 45.1-82.1; mean age: 64.1, 55.1% female), 910 650 

of which were identified as close relatives and removed prior to genetic analyses (see below), leaving 651 

a final sample for the primary analyses of 27,302 (age range: 45.1-82.1; mean age: 64.1, 54.9% 652 

female). For the replication sample, we accessed a newer release of UK Biobank participants (n = 653 

48,045) and removed the 27,302 participants included in the primary analyses.  After running through 654 

identical QC procedures as for the main sample (although applied only to the cerebellar features of 655 

primary interest and covariates included when analyzing these), the replication sample consisted of 656 

11,264 unrelated UK Biobank participants of European descent (age range: 46.1-83.7; mean age: 657 

66.8, 46.9% female). The UK Biobank was approved by the National Health Service National 658 

Research Ethics Service (ref. 11/NW/0382),  659 

 660 

Initial MR image processing 661 

MRI data was first processed using the recon-all pipeline in Freesurfer 5.373, yielding a large number 662 

of brain features. Of these, we retained measures of estimated total intracranial volume (eTIV), total 663 

cerebro-cortical surface area, average cerebro-cortical thickness as well as the volumes of seven 664 

subcortical structures (hippocampus, amygdala, thalamus, pallidum, putamen, caudate nucleus and 665 

nucleus accumbens) as cerebral (or global, in the case of eTICV) comparison regions for our main 666 

cerebellar analyses. These anatomical features were averaged across hemispheres, yielding a total 667 

of ten comparison phenotypes.  668 

Next, the bias-field corrected T1-images from the FreeSurfer analyses were analyzed using 669 

the cerebellum-optimized SUIT-toolbox74. In brief, SUIT isolates the cerebellum and brain stem from 670 

T1-images, segments cropped images into grey and white matter, and normalizes these tissue 671 

probability maps to a cerebellum-specific anatomical template. After multiplying the grey matter 672 

maps with the Jacobian of the transformation matrix (i.e. preserving information about absolute 673 

volumes), we extracted grey matter intensity values overlapping the 28 cerebellar lobular labels in 674 

the probabilistic SUIT-atlas. Since cerebellar volumetric indices showed high correlations across the 675 

two hemispheres (range: .87-.96; mean: .94), we created mean volumetric measures by averaging 676 

across hemispheres. Finally, we also combined the two smallest regions in the SUIT-atlas (Vermis 677 

Crus I and II located in the midline, average volumes: 2.9 and 293.4 mm2, respectively) to create a 678 

new Vermis Crus region (average volume: 296.2 mm2). This procedure reduced the 28 cerebellar 679 
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lobular volumes to 16 morphological indices. Total cerebellar grey matter volume was defined as the 680 

sum of all 28 lobular labels in the SUIT-atlas. 681 

 682 

Quality control procedures 683 

After excluding 4,818 UKBB participants of non-European origin, anatomical indices from the 684 

remaining 33,317 participants went through an iterative quality control (QC) procedure. First, we 685 

excluded 639 subjects with a mean Euler number below -217, indicating poor MRI quality31, as well 686 

as 12 subjects with missing and 90 subjects with zero values for any of the key cerebellar or cerebral 687 

brain measures of interest. Next, we used general additive models (GAM, implemented in the R-688 

package “mgcv”) in order to model the effects of age (estimated as smooth functions for males and 689 

females separately, using cubic splines with 10 knots), sex, and scanner site on estimated total 690 

intracranial volume (eTIV) and mean thickness of the cerebral cortex. Specifically, we used the 691 

following formula: 692 

 693 

GAM_model<-gam(Anatomical feature ~ s(Age, bs = “cs”, by = Sex, k = 10) + as.factor(Sex) 694 

+ as.factor(Scanner), data = UKBB_cerebellum_GWAS, select = TRUE, method = “REML”) 695 

 696 

Adjusted eTIV and mean cortical thickness indices were then created by reconstructing the data 697 

using the intercept and residuals from this model (i.e., removing effects of age, sex and scanner), 698 

before identifying and rejecting potential outliers, defined as +/- 3 median absolute deviations 699 

(MAD)75  from the median of these adjusted values. Data from 350 subjects were rejected based on 700 

these criteria.  701 

For the remaining cerebral anatomical measures, as well as total cerebellar volume, this 702 

procedure was then repeated, with scaled eTIV as an additional predictor. Since previous studies 703 

have demonstrated that the relationship between regional brain volumes and intracranial volume is 704 

not strictly allometric76,77, we estimated the effect of eTIV using cubic splines with 10 knots. 705 

Specifically, we used the following formula: 706 

 707 

GAM_model<-gam(Anatomical feature ~ s(Age, bs = “cs”, by = Sex, k = 10) + as.factor(Sex) 708 

+ as.factor(Scanner) + s(eTIV_scaled, bs = “cs”, k = 10), data = UKBB_cerebellum_GWAS, 709 

select = TRUE, method = “REML”) 710 

 711 

In order to be maximally sensitive to outliers in relative cerebellar volumes, we replaced eTIV with 712 

total cerebellar volume in the GAM models of cerebellar regions of interest (i.e., SUIT atlas regions), 713 

using the following formula: 714 

 715 
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GAM_model<-gam(Anatomical feature ~ s(Age, bs = “cs”, by = Sex, k = 10) + as.factor(Sex) 716 

+ as.factor(Scanner) + total cerebellar volume, data = UKBB_cerebellum_GWAS, select = 717 

TRUE, method = “REML”) 718 

 719 

Adjusted cerebral and cerebellar indices were then created by reconstructing the data using the 720 

intercept and residuals from these models (i.e., removing estimated effects of age, sex and eTIV or 721 

total cerebellar volume), before rejecting 1792 participants with potential outlier cerebral indices and 722 

2222 participants with potential outlier cerebellar indices (MAD > +/- 3).  723 

 724 

This iterative QC procedure resulted in the rejection of 5,105 (i.e., 15.3%) of the original 33,317 725 

datasets, leaving 28,212 datasets for further analysis. 726 

 727 

Non-negative matrix factorization 728 

Cerebellar grey matter maps from 28,212 subjects passing the iterative QC procedure were 729 

smoothed with a 4mm full-with-half-maximum gaussian kernel in SPM1278, concatenated across all 730 

subjects and multiplied with a binary mask to isolate voxels located in the cerebellar cortex. This 731 

cerebellar cortical mask was constructed by multiplying a binary mask containing all 28 cerebellar 732 

lobules of the SUIT-atlas with the thresholded (at a value of 0.1) mean (unsmoothed) grey matter 733 

segmentation across all 28,212 participants.  734 

The smoothed, concatenated and masked grey matter maps were then subjected to 735 

orthogonal projective non-negative matrix-factorization (OPNMF)26, in order to derive data-driven 736 

parcellations of regional cerebellar grey matter volume.  737 

Non-negative matrix factorization (NNMF) is a blind source separation technique that allows 738 

structural brain networks to be described in a hypothesis-free, data-driven way by identifying patterns 739 

of covariation in the data. In contrast to alternative techniques, such as principal component analysis 740 

and independent component analysis, which yield components with both positive and negative 741 

weights that are often difficult to interpret, NNMF produces a sparse, positive-only, parts-based 742 

representation of the data. Importantly, NNMF has previously been proven effective in estimating 743 

covariance patterns in neuroimaging data while providing an easier interpretation of the results than 744 

other matrix decomposition techniques such as principal component analysis (PCA) or independent 745 

component analysis (ICA)26-30.  746 

Briefly, NNMF decomposes an input matrix (voxels×subjects) into two matrices; a component 747 

matrix W (voxels×k) and a weight matrix H (k×subjects) where k is the number of components that 748 

needs to be specified by the user. Here, we used an implementation of orthogolnal projective non-749 

negative matrix factorization previously used in a number of publications26-30 and downloaded from 750 

https://github.com/asotiras/brainparts. Given the large number of participants, we used the 751 

opnmf_mem.m function, which has been optimized for high-dimensional data. The function was run 752 
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with default parameter settings, exept for maximal number of iterations, which was increased to 753 

200k, in order to ensure full convergence across all tested model orders.  754 

 755 

Model order selection 756 

Since the resulting parcellations are highly dependent on the requested number of components (or 757 

model order) specified, we tested model orders ranging from 2 to 30 in steps of 1, as well as from 758 

30 to 100 in steps of 10. Binarized winner-winner-takes-all (i.e. assigning each voxel to the NNMF 759 

component with the highest loading) maps of the resulting decompositions projected onto a flattened 760 

representation of the cerebellar cortex are shown in Supplementary Figure 1. 761 

Resulting NNMF decompositions were then evaluated based on two criteria; 1) how much of the 762 

variance in the original input data a given NNMF solution (i.e., component maps and subject weights) 763 

could explain and on 2) how reproducible the component maps were. As a metric of change in 764 

explained variance we used the change of the Frobenius norm of the reconstruction error. With 765 

increasing model orders the variance explained will always increase and the reconstruction error 766 

decrease, but if the decrease in the reconstruction error (or gradient) levels off, this indicates that 767 

the intrinsic dimensionality of the data might have been approximated (and that the subsequent 768 

increase in explained variance can largely be attributed to fitting random noise in the input data). In 769 

order to assess reproducibility, we split the full dataset into two equal sets (matched with respect to 770 

scanner site, n = 14,105 and 14,107, respectively), and ran NNMF on each split-half sample. For 771 

each set of independent NNMF parcellations, we computed two reproducibility indices. First, for each 772 

model order we matched components across split-half runs using the Hungarian algorithm79, before 773 

computing the spatial correlations between matched component maps, and extracting the median 774 

correlation across all matched components as our first reproducibility index. For our second 775 

reproducibility index, we first computed one overall – and categorical – component map using a 776 

“winner-takes-all”-approach, i.e., assigning each voxel to the NNMF component with the highest 777 

loading. Next, we calculated the adjusted Rand index (ranging from 0 to 1, with higher values 778 

indicating greater similarity80, across the two categorical parcellation maps for each model order as 779 

our second metric of reproducibility.  780 

As can be seen in Supplementary Figure 2A, for lower model orders, increasing the model 781 

order resulted in a sharp decrease in the reconstruction error, indicating that models with more 782 

components resulted in a significantly better fit to the data. However, after reaching model orders 783 

between 15 and 30, the incremental improvement in fit from adding another component appeared to 784 

level off. As expected, the reproducibility results showed a largely inverse pattern, with both 785 

reproducibility indices decreasing with increasing model orders (Supplementary Figure 2B). Of note, 786 

for model orders up to 8, median spatial correlations across all matched components was above .99, 787 

indicating almost identical parcellations derived from the two independent samples. However, even 788 

for a model order of 100, the median pairwise correlation was still pretty high (.85), with 60% of 789 

components showing pairwise spatial correlations above 0.8, suggesting a reasonable level of 790 
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reproducibility even for the most fine-grained parcellation. Our reproducibility index for the 791 

categorical parcellations showed very similar results; the adjusted Rand index remained above .9 792 

for model orders up to 8, and then decreased to 0.56 at a model order of 100.  793 

Given that the change in reconstruction error appeared to stabilize between 15 and 30 794 

components, indicating that the intrinsic dimensionality of the data had been approximated, we 795 

searched for the most reproducible parcellations within this range. Since the reliability estimates for 796 

model orders of 16 and 23 were very similar, with the 23-component solution explaining more of the 797 

variance in the original data, we used the 23-component parcellation for all further analyses.  798 

 799 

Adjustment and rank-order normalization of anatomical indices  800 

Prior to being subjected to genome-wide association analyses, we adjusted all anatomical indices 801 

for effects of age, sex, estimated total intracranial volume, scanner site, 40 genetic population 802 

components, genetic batch and mean Euler number (i.e, an index of MRI image quality31, averaged 803 

across hemispheres), using general additive models. Finally, all adjusted anatomical indices were 804 

inverse rank normalized81.  805 

 806 

Pre-processing of genetic data 807 

For all genetic analyses we made use of the UKB v3 imputed data, which has undergone extensive 808 

quality control procedures as described by the UKB genetics team82. After converting the BGEN 809 

format to PLINK binary format, we additionally carried out standard quality check procedures. We 810 

first selected White Europeans, as determined by a combination of self-identification as ‘White 811 

British’ and similar genetic ancestry based on genetic principal components, that had undergone the 812 

neuroimaging protocol. We then filtered out individuals with more than 10% missingness, removed 813 

SNPs with low imputation quality scores (INFO <.5), SNPs with more than 10% missingness, and 814 

SNPs failing the Hardy-Weinberg equilibrium test at p=1*10-9. We further set a minor allele 815 

frequency threshold of 0.005 leaving 9,061,238 SNPs. After estimating the genetic relationship 816 

matrix (GRM) using genetic complex trait analysis (GCTA33), we finally removed 910 participants 817 

defined as close relatives using a threshold of 0.05 (approximately corresponding to 3rd cousins).   818 

 819 

Heritability estimation and genetic correlation analyses 820 

SNP-based heritability estimates for all morphological features – as well as the pairwise genetic 821 

correlations between cerebellar features - were estimated using genetic complex trait analysis 822 

(GCTA33).  823 

 824 

Univariate genome-wide association analyses 825 

Univariate analyses of total cerebellar grey matter volume and the ten cerebral comparison 826 

phenotypes were conducted using Plink v1.9.  827 

 828 
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Genetic correlation analyses across discovery and replication samples and with previous 829 

published GWASs 830 

Genetic correlation analyses across different samples were conducted using LD-score 831 

regression32.  832 

 833 

Multivariate genome-wide association analyses 834 

For our main analysis, we used a recently developed multivariate analysis method (MOSTest36), to 835 

conduct a multivariate genome-wide association (GWA) analysis on cerebellar morphological 836 

features. MOSTest identifies genetic effects across multiple phenotypes, yielding a multivariate 837 

GWAS summary statistic across all 23 features, and provides robust (permutation based) test 838 

statistics. For mathematical details of the implementation, see van der Meer et al. (2020)36, for details 839 

on the software implementation see github.com/precimed/mostest. MOSTest has been extensively 840 

validated in the original methods paper, including simulations and comparisons with other methods 841 

that have confirmed its solid discovery performance as well as an order of magnitude shorter runtime 842 

compared to other tools36. For comparison to standard univariate approaches, we also performed 843 

univariate GWASs (extracted from the univariate stream of MOSTest36 and identical to results from 844 

analyses using Plink).  845 

 846 

Multivariate replication analysis 847 

To ensure that not only single locus lead SNP associations replicate, but that also the multivariate 848 

pattern of these associations are consistent in the discovery and replication sample, we implemented 849 

a multivariate replication procedure established in Loughnan et al.39. In brief, for each locus lead 850 

SNP identified in the multivariate analysis in the discovery sample, this procedure derives a 851 

composite score from the mass-univariate z-statistics and tests for associations of the composite 852 

score with the genotype in the replication sample (for mathematical formulation see Loughnan et 853 

al.39). 12 of the 351 locus lead SNPs could not be tested as they were not available in the replication 854 

sample after QC. For the remaining SNPs we report the percent of loci replicating at P < 0.05, the 855 

percent remaining significant after Bonferroni correction for 339 conducted tests, and the percent of 856 

lead SNPs showing the same effect direction.  857 

 858 

Multivariate cerebral comparison phenotypes  859 

To compare key multivariate cerebellar results with other multivariate brain phenotypes, we 860 

downloaded summary statistics from two recent studies on cerebrocortical44 and hippocampal45 861 

regional morphology. These comparison summary statistics were next analyzed using FUMA37 as 862 

described for the main cerebellar results below.  863 

 864 

Locus identification and SNP annotation 865 
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To identify genetic loci we uploaded summary statistics to the FUMA platform v1.4.137 Using the 866 

1000GPhase3 EUR as reference panel, we identified independent SNPs as SNPs below the 867 

significance threshold of P < 5e−8 that were also in linkage equilibrium with each other at r2 < 0.6. 868 

For each independent SNP, all candidate variants are identified as variants with LD r2≥ 0.6 with the 869 

independent SNP. A fraction of the independent significant SNPs in approximate linkage equilibrium 870 

with each other at r2 < 0.1 were considered as lead SNPs. For a given lead SNP, the borders of the 871 

genomic locus are defined as min/max positional coordinates over all corresponding candidate 872 

SNPs. Finally, loci are merged if they are separated by less than 250kb. 873 

FUMA further annotates associated SNPs based on functional categories, Combined 874 

Annotation Dependent Depletion (CADD) scores which predicts the deleteriousness of SNPs on 875 

protein structure/function54, RegulomeDB scores which predicts regulatory functions83; and 876 

chromatin states that shows the transcription/regulation effects of chromatin states at the SNP 877 

locus84. For all these analyses, we used default FUMA parameters.  878 

 879 

Genome-wide gene-based association and gene-set analyses  880 

We conducted genome-wide gene-based association and gene-set analyses using MAGMA v.1.1049 881 

(http://ctg.cncr.nl/software/magma). MAGMA performs multiple linear regression to map the input 882 

SNPs to 19,190 protein coding genes and estimates the significance value of that gene. Genes were 883 

considered significant if the P value was <0.05 after Bonferroni correction for 19,190 genes. The 884 

same procedure was used for MAGMA analysis of summary statistics for the three multivariate 885 

cerebral comparison phenotypes (cerebrocortical thickness and surface area44 and regional 886 

hippocampal volumes45).  887 

MAGMA gene-level statistics were next used as input to gene-property and gene-set 888 

analyses in MAGMA. Gene-property analyses test for associations between tissue specific gene 889 

expression profiles and disease-gene associations. The gene-property analysis is based on the 890 

regression model: Z ∼ β0 + EtβE + AβA + BβB + ϵ, where Z  is a gene-based Z-score converted from 891 

the gene-based P-value, B is a matrix of several technical confounders included by default (e.g., 892 

gene size, gene density, sample size), Et is the gene expression value of a testing tissue type and A 893 

is the average expression across all tissue types in a data set (ensuring a test of expression 894 

specificity). We performed a one-sided test (βE > 0) which is essentially testing the positive 895 

relationship between tissue specificity and genetic association of genes. 896 

We tested associations with two regional brain gene expression datasets (Allen Human 897 

Brain Atlas35 and GTEx) and one developmental brain gene expression dataset (BrainSpan). For 898 

extraction and processing of gene expression data, see below.  899 

 900 

Extraction and processing of gene expression data 901 

Allen Human Brain Atlas: Regional microarray expression data were obtained from 6 post-mortem 902 

brains (1 female, ages 24.0--57.0, 42.50 +/- 13.38) provided by the Allen Human Brain Atlas35. Data 903 
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were processed with the abagen toolbox (version 0.1.3) 34 using two volumetric atlases; 1) the 904 

binarized 23-region NNMF-derived parcellation of the cerebellar cortex; and 2) a modified version of 905 

the Desikan atlas were ROIs were merged to construct 9 bilateral regions: cerebellum, cerebral 906 

cortex, pallidum, caudate, putamen, thalamus, amygdala, nucleus accumbens and hippocampus.  907 

First, microarray probes were reannotated using data provided by Arnatkeviciute, Fulcher 908 

and Fornito85; probes not matched to a valid Entrez ID were discarded. Next, probes were filtered 909 

based on their expression intensity relative to background noise86, such that probes with intensity 910 

less than the background in >=50.00% of samples across donors were discarded, yielding 31,569 911 

probes. When multiple probes indexed the expression of the same gene, we selected and used the 912 

probe with the most consistent pattern of regional variation across donors (i.e., differential stability87), 913 

calculated with: 914 

 915 
where p is Spearman's rank correlation of the expression of a single probe, p, across regions 916 

in two donors Bi and Bj, and N is the total number of donors.  917 

Here, regions correspond to the structural designations provided in the ontology from the 918 

AHBA. The MNI coordinates of tissue samples were updated to those generated via non-linear 919 

registration using the Advanced Normalization Tools (ANTs; https://github.com/chrisfilo/alleninf). 920 

Samples were assigned to brain regions in the provided atlas if their MNI coordinates were within 2 921 

mm of a given parcel. To reduce the potential for misassignment, sample-to-region matching was 922 

constrained by hemisphere and gross structural divisions (i.e., cortex, subcortex/ brainstem, and 923 

cerebellum, such that e.g., a sample in the left cortex could only be assigned to an atlas parcel in 924 

the left cortex85). All tissue samples not assigned to a brain region in the provided atlas were 925 

discarded. \n\nInter-subject variation was addressed by normalizing tissue sample expression 926 

values across genes using a robust sigmoid function88:  927 

 928 
where (x) is the median and IQRz is the normalized interquartile range of the expression of a 929 

single tissue sample across genes. Normalized expression values were then rescaled to the unit 930 

interval:  931 

 932 
Gene expression values were then normalized across tissue samples using an identical 933 

procedure. Samples assigned to the same brain region were averaged separately for each donor 934 
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and then across donors, yielding two regional expression matrices with 23 and 9 rows, corresponding 935 

to brain regions, and 15,631 and 15,633 columns, corresponding to the retained genes. Prior to 936 

inclusion in MAGMA gene property analyses, we converted gene names for the modified Desikan 937 

atlas to ENSMBL IDs, and calculated the mean expression value across tissue types (in order to 938 

include this as a covariate in MAGMA analyses testing for gene expression specificity), resulting in 939 

a 10 (regions) by (15,490) gene expression matrix.     940 

 941 

GTeX: Text files containing median transcript per millimeter (TPM) values for 53 tissue types 942 

(GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz) were down-loaded 943 

from the GTEx portal (https://gtexportal.org/home/datasets/). After selecting only expression data 944 

from the seven (out of nine) comparison brain regions present in the GTEx dataset (i.e., amygdala, 945 

caudate, cerebellum, cortex, hippocampus, nucleus accumbens and putamen), we filtered the data 946 

by only including genes with median TPM values above 1 for at least one of these tissue type 947 

(retaining 19,578 of 56,200 annotated genes). Following the procedure used by FUMA37, we next 948 

winsorized median TPM values at 50 (i.e., replaced TPM>50 with 50), before log transforming TPM 949 

with pseudocount 1 (log2(RPKM+1)). Finally, we calculated the mean expression value across tissue 950 

types (in order to include this as a covariate in MAGMA analyses testing for gene expression 951 

specificity). 952 

 953 

BrainSpan data: The analysis of BrainSpan data testing for developmentally specific brain 954 

expression was performed entirely within FUMA v1.4.1., using default parameters. 955 

 956 

Analysis of Human Dating Genome Data. The Atlas of Variant Age for chromosomes 1-22 was 957 

downloaded from the Human Genome Dating (HGD) website: https://human.genome.dating/. This 958 

atlas contains more than 45 million SNPs which has been assigned dates of origin based on a 959 

recombination clock and mutation clock applied to two large-scale sequencing datasets (1000 960 

Genomes Project89 and The Simons Genome Diversity Project90), with no assumptions made about 961 

demographic or selective processes46. The current study used the median joint age estimates from 962 

both clocks when analyzing SNPs present in both datasets in combination (i.e., 13,694,493 SNPs). 963 

 After merging dated SNPs with the 40,405,505 SNPs also present in the Haplotype 964 

Reference Consortium reference data (to add minor allele frequencies, MAF) and removing 715,083 965 

(5.2%) SNPs with missing MAF values as well as the very few (14,549, 0.1%) SNPs dated older 966 

than 2 million years, 12,960,066 SNPs remained.  967 

548 of these dated SNPs were matched to lead SNPs linked to cerebellar morphology 968 

(defined as being in mutual LD at an r2 threshold < 0.1), hereafter referred to as cerebellar-SNPs. 969 

Partially because very rare variants (Minor Allele Frequency/MAF < 0.005) had been removed prior 970 

to the multivariate GWAS analysis, MAF was not equally distributed between these cerebellar-SNPs 971 

and the full range of dated SNPs in the HGD dataset. Importantly, MAF has been shown to be 972 
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systematically related to the estimated age of SNPs, with a higher proportion of low-MAF SNPs in 973 

more recent than in older time-bins46,47. Consequently, following the analysis approach established 974 

by Libedinsky et al. 47, we first determined the MAF-distribution of cerebellar-SNPs (across eight 975 

bins: <0.0001; 0.0001-0.001; 0.001-0.01; 0.01-0.1; 0.1-0.2; 0.2-0.3; 0.3-0.4; 0.4-0.5) and selected 976 

random set of 2,892,270 SNPs from the HGD dataset that were matched to the cerebellar-SNPs in 977 

terms of MAF-bin distribution. Similar MAF-matched HDG subsets were created for lead SNPs 978 

asociated with the two cerebrocortical comparison phenotypes, i.e., regional cerebrocortical surface 979 

area and thickness (862 and 714 lead SNPs, respectively).  980 

For statistical inference we constructed null models (separate for each brain phenotype) by 981 

randomly drawing sets of SNPs (of equal size to the number of phenotype-linked lead SNPs) from 982 

the MAF-matched HGD-datasets and computing the histograms of estimated dates from 0 to 2 983 

million years ago (divided into 100 bins of 20.000 years) over 10,000 iterations. From these null 984 

models we extracted bin means as well as significance thresholds (defined as the upper and lower 985 

99.95th percentile of the null model (i.e. corresponding to a two-tailed threshold of 0.05 Bonferroni 986 

corrected across 100 bins). 987 

For the validation analyses, we ran the same analyses based on the larger number (range 988 

across phenotypes: 1574-2883) of individual significant SNPs (defined as being in mutual LD at an 989 

r2 threshold < 0.6).  990 

 991 

Positional and eQTL mapping of SNPs to plausible causal genes 992 

In addition to using MAGMA, we also mapped candidate SNPs to plausible causal genes using two 993 

complementary gene mapping strategies implemented ion FUMA37: 1) Positional mapping of 994 

deleterious SNPs (defined as having a CADD-score > 12.37) and 2) eQTL-mapping of SNPs 995 

previously shown to alter gene expression in cerebellar tissue (from the BRAINEAC and GTEx v8 996 

databases). These analyses were run with default FUMA parameters. For the three multivariate 997 

cerebral comparison phenotypes (i.e., cerebrocortical thickness, cerebrocortical surface area and 998 

hippocampal regional volumes), we employed identical gene mapping procedures to our cerebellar 999 

morphology results, except for the tissues chosen for eQTL mapping (cerebrocortical and 1000 

hippocampal, respectively). 1001 

 1002 

Gene set analyses using lists of mapped genes 1003 

All gene set analyses using mapped genes were conducted using the hypeR R-package 91. This 1004 

package implements the hypergeometric test (also known as Fisher’s exact test), which assigns a 1005 

p-value to gene-set overlaps given gene set sizes and the number of background genes. This R-1006 

package also contains functions for downloading and/or formatting gene sets. The following gene 1007 

sets were accessed using hypeR: “Allen_Brain_Atlas_up” (regional overexpression in the Allen 1008 

Muse Brain Atlas), “MGI_Mammalian_Phenotype_Level_4_2021”, "DisGeNet" (all from the enrichR 1009 

platform. In addition, we downloaded sets of genes with regional overexpression in the Allen Human 1010 
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Brain Atlas from the Harmonizome platform92 and accessed a list of genes mapped to human 1011 

accelerated regions93. For all gene-set analyses we employed Bonferroni-correction by dividing the 1012 

p-value threshold of 0.05 by the number of gene sets included in each analysis. 1013 

 1014 

Genetic overlap between cerebellar morphology and brain disorders 1015 

We accessed GWAS summary statistics for attention deficit hyperactivity disorder (ADHD)94, autism 1016 

spectrum disorder (ASD)95, bipolar disorder (BIP)96 and major depressive disorder (MDD)97 from the 1017 

Psychiatric Genomics Consortium. In order to avoid sample overlap, for MDD we used summary 1018 

statistics based on a sample with the UK Biobank participants removed. 23&me participants included 1019 

in the original MDDGWAS were also excluded, since these data are not freely available).  Finally, 1020 

we included data from a recent study of schizophrenia (SCZ)98. Shared variants associated with 1021 

cerebellar morphology and each of the above-mentioned brain disorders were identified using 1022 

conjunctional FDR statistics (FDR < 0.05)99,100. In contrast to genetic correlation analysis, 1023 

conjunctional FDR does not require effect directions and can therefore be applied to summary 1024 

statistics from multivariate GWAS, which do not contain effect directions. Two genomic regions, the 1025 

extended major histocompatibility complex genes region (hg19 location Chr 6: 25119106–33854733) 1026 

and chromosome 8p23.1 (hg19 location Chr 8: 7242715–12483982) for all cases and APOE region 1027 

for ASD, were excluded from the FDR-fitting procedures because complex correlations in regions 1028 

with intricate LD can bias FDR estimation. We further controlled for spurious enrichment by 1029 

calculating all conditional Q-Q plots after random pruning averaged over 500 iterations. At each 1030 

iteration, one SNP in every LD block (defined by an r2 >0.1) was randomly selected and the empirical 1031 

cumulative distributions were computed using the corresponding p-values. Finally, we submitted 1032 

the results from conjunctional FDR to FUMA v1.3.737 to annotate the genomic loci with conjFDR 1033 

value < 0.10 having an r2 ≥ 0.6 with one of the independent significant lead SNPs. Genetic 1034 

correlations between univariate results for the 23 cerebellar features, the 10 comparison brain 1035 

phenotypes, and each of the five mental disorders were computed using LD-score regression as 1036 

described above.  1037 

 1038 
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