1	Social deprivation and SARS-CoV-2 testing: a			
2	population-based analysis in a highly contrasted			
3	Southern France region			
4 5	Jordi Landier ¹ , Léa Bassez ¹ , Marc-Karim Bendiane ¹ , Pascal Chaud ² , Florian Franke ² , Steve Nauleau ³ , Fabrice Danjou ³ , Philippe Malfait ² , Stanislas Rebaudet ^{1,4} , Jean Gaudart ⁵			
6				
7 9 10 11 12 13	 Aix Marseille Univ, IRD, INSERM, SESSTIM, Aix Marseille Institute of Public Health, ISSPAM, Marseille, France Santé Publique France Cellule régionale Paca-Corse, Marseille, France Agence Régionale de la Santé Provence Alpes Côte d'Azur, Marseille, France Hôpital Européen Marseille, Marseille, France Aix Marseille Univ, APHM, Inserm, IRD, SESSTIM, ISSPAM, Hop Timone, BioSTIC, Marseille, France 			
14 15	Correspondence: Jordi Landier, jordi.landier@ird.fr			

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

16 Abstract

17 Background

Testing was the cornerstone of the COVID-19 epidemic response in most countries until vaccination became available for the general population. Social inequalities generally affect access to healthcare and health behaviours, and COVID-19 was rapidly shown to impact deprived population more drastically. In support of the regional health agency in Provence-Alpes-Côte d'Azur (PACA) in South-Eastern France, we analysed the relationship between testing rate and socio-demographic characteristics of the population, to identify gaps in testing coverage and improve targeting of response strategies.

25 Methods

- We conducted an ecological analysis of SARS-CoV-2/COVID-19 testing rate in the PACA region, based on data aggregated at the finest spatial resolution available in France (IRIS) and by periods defined by
- 28 public health implemented measures and major epidemiological changes. Using general census data,
- 29 population density, and specific deprivation indices, we used principal component analysis followed
- 30 by hierarchical clustering to define profiles describing local socio-demographic characteristics. We
- 31 analysed the association between these profiles and testing rates in a generalized additive multilevel
- 32 model, adjusting for access to healthcare, presence of a retirement home, and the age profile of the
- 33 population.

34 Results

- 35 We identified 6 socio-demographic profiles across the 2,306 analysed IRIS spatial units: privileged,
- 36 remote, intermediate, downtown, deprived and very deprived (ordered by increasing social
- deprivation index). Profiles also ranged from rural (remote) to high density urban areas (downtown,
- 38 very deprived). From July 2020 to December 2021, we analysed SARS-CoV-2/COVID-19 testing rate
- over 10 periods. Testing rates fluctuated strongly but were highest in privileged and downtown areas,
 and lowest in very deprived ones. The lowest adjusted testing rate ratios (aTRR) between privileged
- 40 and lowest in very deprived ones. The lowest adjusted testing rate ratios (ariti) between privileged 41 (reference) and other profiles occurred after implementation of a mandatory healthpass for many
- 42 leisure activities in July 2021. Periods of contextual testing near Christmas displayed the largest aTRR,
- 43 especially during the last periods of 2021 after the end of free convenience testing for unvaccinated
- 44 individuals.

45 Conclusions

- 46 We characterized in-depth local heterogeneity and temporal trends in testing rates and identified
- 47 areas and circumstances associated with low testing rates, which the regional health agency targeted
- 48 specifically for the deployment of health mediation activities.

All rights reserved. No reuse allowed without permission.

49 Introduction

50 In recent years, social epidemiology has made a significant contribution to showing and explaining 51 health inequalities. Some authors are now advocating an integrative approach based on 52 interdisciplinarity and integrating social science theory more deeply [1]. The role played by socio-53 economic status (SES) in access to care, use of care and health behaviors [2] must thus be taken into 54 account to study the disparities observed within the population in the recent COVID-19 pandemic, 55 especially in access and use of diagnostic tests. From the first months of the pandemic, COVID-19 was 56 rapidly shown to impact more dramatically populations who were already affected by socio-economic 57 deprivation in European countries [3, 4].

58

59 During the 18 months after the first hard lockdown in France, mass testing, tracking and isolating was 60 the only way to attempt controlling the spread until generalized vaccination became available. Testing 61 also provided knowledge on transmission dynamics and variant detection, as well as anticipating 62 surges in hospitalized cases. Testing was even more crucial in countries aiming for zero-COVID 63 strategies. In such contexts, ensuring access to testing for the population is paramount. However, the

64 distribution of tests can largely be heterogeneous in terms of time, space, but also population groups.

65 Recent studies analysed the link between deprivation and COVID-19 testing, incidence or morbidity-66 mortality at the national scale [5, 6]. These studies highlighted the combined role of deprivation and 67 population density to increase COVID-19 burden. Deprivation was also associated with lower testing 68 rates. However, these studies relied on deciles or quintiles of the national distribution of deprivation 69 indices. These categories may not reflect accurately local disparities, due to different standards of 70 living between regions (e.g. housing costs between Paris and Marseille, the two largest cities in France). 71 Limits inherent to building indices may also bias results when applied at large scale, when specific 72 situations are difficult to capture accurately. For example, well-off urban population may live without 73 a car, and conversely rural populations across a wide range of socio-economic conditions likely own at 74 least one car and live in a personal house. In addition, these studies only accounted for population 75 density and did not adjust for access to healthcare, nor for the age structure of the population. 76 Our objective was therefore to analyse the relationship between socio-economic profile and SARS-

CoV-2 testing and incidence rates during the different phases of the epidemic. We also aimed to support intervention allocation by the regional public health agency of the Provence Alpes Côtes d'Azur (PACA), a geographically heterogeneous region combining dense urban coastal regions and rural mountainous areas in South-Eastern France.

81

82 Material and methods

83 Study design

We conducted an ecological analysis of SARS-CoV-2/COVID-19 testing rate in the Provence-Alpes-Côte d'Azur (PACA) region in south-eastern France, at the highest spatial resolution available for aggregated epidemiological data in France: "regrouped islets for statistical information" (French acronym: IRIS used hereafter). IRIS correspond to contiguous geographical areas regrouping between 1000 and 5000 inhabitants. Municipalities (lowest local authority level) with a population <5000 inhabitants typically correspond to a single IRIS, while municipalities >5000 are divided into several IRIS. The PACA region

90 counts 946 municipalities and 2,446 IRIS, corresponding to 5.04 million inhabitants.

All rights reserved. No reuse allowed without permission.

91 Study period

92 We analysed COVID-19 testing rate from the start of the second wave in the PACA region on 21 July 93 2020 to the regional upsurge in incidence corresponding to the onset of the omicron wave on 23 94 December 2021. We combined dates of implementation of public health measures and local incidence 95 minima to account for the multiple distinct testing incentives or constraints faced by the population. 96 We distinguished 10 epidemic periods (Figure S1, Table S1). The delimitations were: the two 97 nationwide lockdowns starting dates (30 October 2020 and 24 March 2021) and first easing up dates 98 (28 November 2020 and 3 May 2021); the end of Christmas holidays (4 January 21); the lowest regional 99 incidence in June before delta-variant wave 4 (23 June 2021); the decree establishing a mandatory health pass for recreational and cultural events >50 participants (16 July 2021), which required a 100 101 complete vaccination or a negative test result of less than three days, or evidence of a COVID-19 102 infection for >10 days and ≤6 months; end of convenience test gratuity for unvaccinated individuals 103 (15 October 2021); the regional onset of the delta variant-associated fifth wave (8 November 2021).

104 COVID-19 tests and cases data

105 COVID-19 tests and confirmed cases were available as 7-day cumulative counts aggregated by IRIS 106 from the French National Public Health Agency (Santé Publique France) SI-DEP information system, 107 which aggregates results of all SARS-CoV-2 RT-PCR and antigenic tests performed in France. People 108 presenting for a test provided their home address systematically and a pre-processing algorithm 109 mapped them to the corresponding IRIS.

110 IRIS (spatial unit) selection

111 We excluded IRIS with ≤30 inhabitants because of incomplete covariate data due to non-disclosure of 112 local income statistics when the number of inhabitants is insufficient to preserve anonymity. In 113 addition, we excluded "activity" IRIS hosting >1000 workers during the day with twice as many workers 114 as inhabitants, as well as "diverse" IRIS corresponding to low population areas (e.g. a protected natural 115 area in the periphery of a city), because the resident population profile could be very different from 116 the actual population frequenting and influencing the transmission. We also excluded IRIS where the average monthly number of tests exceeded three times the actual population over multiple periods, 117 118 due to likely address errors in laboratories.

- 119 IRIS (spatial unit) descriptive data
- 120 Sources

We obtained data describing the population of each IRIS from the French National Institute of Statistics and Economic Studies (INSEE). We used the national census database, which provides descriptive data on the population by IRIS and the equipment public database, which provides an exhaustive list of equipment located in each unit, with geographical coordinates (Table S2).

125 *Socio-demographic variables*

We characterized the population inhabiting each IRIS using the following variables: (i) percentage of the population ≥15 years old in each social and professional categories (8-category job classification: agriculture, business owners/independent, white-collar, intermediate, employees, blue-collar, pensioned/retired, unemployed/other-including students); (ii) percentage of total IRIS population of foreign origin; (iii) percentage of immigrants in total IRIS population; (iv) four variables used to calculate the French deprivation index (percentage of high-school graduates in population ≥15 years

old not studying; percentage of unemployed in the active 15-64 years old population; percentage

All rights reserved. No reuse allowed without permission.

133 holding a blue-collar job in the active 15-64 years old population; median income) [7]; (v) proportion 134 of overcrowded main residences; (vi) European deprivation index (EDI), which combines ten census-135 based variables aggregated at the IRIS-level, and deprivation variables at the individual level 136 (proportion of individuals of foreign nationality, of households without a car, of individuals employed 137 as managers or intermediate professionals, of single-parent families, of households with at least two 138 individuals, of non-owner-occupied households, of unemployed individuals, of individuals without 139 post-secondary school education, of overcrowded dwellings, and of non-married individuals) [8]; (vii) 140 population density; and (viii) percentage of inhabitants belonging to 4 age groups: <18, 18-39, 40-64, 141 >65.

142 Access to healthcare variables

143 We separately considered the general access to healthcare and the specific access to SAR-CoV-2 tests.

We characterized the general access to healthcare at IRIS level as the number of primary healthcare practitioners (medical doctor (MD), nurse, physiotherapist...) present in the IRIS. We also used localized potential accessibility (LPA), an indicator defined at municipal level corresponding to the number of MD consultations available per year for each person based on their residence (Table S2). This composite indicator takes into account the number of MDs relative to the population in the corresponding catchment area, population expected needs and the travel time to the nearest MD.

150 We considered the specific access to SAR-CoV-2 tests following two main options available for general 151 population testing: medical laboratories, which conducted RT-PCR-based tests throughout all periods; 152 and pharmacies, which deployed antigenic testing from period 3 onwards. We considered distance 153 from a IRIS to the nearest facility and the number of facilities in the IRIS. Preliminary analysis showed 154 a strong correlation between distance to pharmacies and distance to laboratories (Spearman 155 correlation coefficient=0.6); and the minimal distance to either facility corresponded to the distance 156 to a pharmacy (Spearman correlation coefficient=1) (Figure S2). Numbers of pharmacies and 157 laboratories were also correlated (Spearman correlation coefficient=0.4).

Exploratory analysis of all variables by Spearman correlation confirmed by principal component analysis (PCA) indicated strong positive correlations between general access to healthcare and specific access to testing: a negative correlation between distance to testing facilities and LPA, and strong correlations between the numbers of primary healthcare practitioners and laboratories or pharmacies in IRIS. There was only limited correlation between number of equipment and LPA or distances to testing facilities (Figure S2). As a result, we used LPA and number of primary healthcare practitioners

164 in our main analyses, and replaced LPA with distance to pharmacy in the sensitivity analysis.

165 Statistical analysis

Statistical analyses were performed using R software (version 4.0.5., R Core Team 2020. R Foundation
 for Statistical Computing, Vienna, Austria) and packages {mgcv}, {factominer} and {sf}.

168 *Socio-demographic and age profiles*

169 In order to evaluate socio-demographic characteristics of, we grouped IRIS into one age- and one socio-

170 demographic profile using an unsupervised clustering method based on PCA followed by hierarchical

171 clustering on principal components (HCPC) [9, 10]. We defined socio-demographic profile using all

- socio-demographic variables except age variables, and we generated age profiles separately using the
- 173 4 age variables. We studied direct effects of EDI, proportion of inhabitants older than 65 years and
- 174 population density in a sensitivity analysis.

All rights reserved. No reuse allowed without permission.

175 Variable selection

176 Variable selection in the multivariable model was done based on prior assumptions using a directed

acyclic graph (Dagitty v3.0, Figure S3) [11]. For testing rate, we considered that two main factors could

explain the testing rate in a IRIS in the different periods: first, characteristics of general accessibility to

tests in the IRIS, due to its geographical location and pre-epidemic access to healthcare and second,

180 elements related to individual testing behaviour of IRIS population, such as age, presence of a

181 retirement home, and socio-demographic characteristics.

182 Statistical model

183 We used a generalized additive multilevel model (GAMM, [12]) with a random-effect at municipality 184 level to account for similarities in IRIS of the same municipality and for the LPA variable definition 185 available at municipality-level only. As appropriate for count variables, we used a negative binomial distribution to take into account overdispersion, with a log link and included IRIS census-defined log 186 187 population as an offset. We also included a Gaussian kriging smoother based on the geographical 188 coordinates of each IRIS to account for spatial autocorrelation. Continuous variables were first tested 189 without linear assumption (as splines) in univariate analysis. Sensitivity analyses were conducted by 190 substituting distance to the nearest pharmacy to LPA, as these indicators were too correlated for all to 191 be included in the same model (see supplement). In a second sensitivity analysis, we adjusted for 192 population density and proportion of population above 65 years as spline individual predictors (not 193 requiring linear approximation), and studied the effect of the social deprivation directly including EDI 194 as a linear predictor or as a spline.

195 Ethics

196 Access to information was controlled and SI-DEP data were obtained in accordance with privacy laws

197 (General Data Protection Regulation [EU] 2016/679). Clearance was obtained through a specific

- 198 convention (number 22DIRA41-0) between Aix-Marseille University and Santé Publique France, from
- 199 the Aix-Marseille University Ethic committee (number 2022-10-20-006), and from the Aix-Marseille
- 200 University Data Protection Officer (number 513087).
- 201 Role of the funding source
- 202 The funding source had no role in the design, analysis, result interpretation and reporting for this study.

203 Results

204 Spatial unit selection

Out of the 2,446 IRIS in the Provence-Alpes-Cote d'Azur region, we analysed 2,306 after excluding 74 activity IRIS, 40 diverse IRIS, 25 residential IRIS with population <30 inhabitants, and one single unit corresponding to a rural municipality with 36 inhabitants with monthly test rates >3 times larger than

the IRIS population (Figure 1).

209

210 Figure 1: IRIS (spatial units) selection flow chart.

211

212 IRIS (spatial unit) profiles

213 IRIS classification for socio-demographic variables identified 6 profiles ordered by increasing 214 deprivation and exhibiting strong contrasts in terms of population density (Figure 2A, 2B). An intermediate-density profile corresponded to the lowest EDI, high income, high proportion of white 215 216 collar and densities ranging from peri-urban to urban (profile 1, "privileged"). A very low-density profile 217 included an important proportion of agriculture workers (profile 2, "remote") and a second 218 intermediate-density profile ranged from rural to peri-urban IRIS (profile 3, "intermediate"). A high-219 density urban profile corresponding to young adults, intermediate income with a high proportion of 220 white collars (profile 4, "downtown"). Another high-density urban profile corresponded to areas with 221 a high proportion of blue collar, lower income and intermediate density (profile 5, "deprived"). The 222 third and last urban profile corresponded to very deprived urban areas with highest EDI, highest densities i.e. neighbourhoods of large social housing projects (profile 6, "very deprived"). IRIS profiles 223 224 presented less heterogeneity in terms of age, with only two profiles displaying higher (remote) or lower 225 proportion (very deprived) of population \geq 65 (Figure 2F). Access to healthcare variables by profiles 226 generally reflected the urban vs rural accessibility issue, access to healthcare being highly variable for rural IRIS ("remote" + "intermediate") profiles (Figure 2G). 227

IRIS classification in age profiles identified 4 profiles. The three profiles "families", "young adults", and
 "elderly" were characterized respectively by a higher proportion of <18 years old; 18-39 years old, and
 <u>></u>65 years old. The fourth profile, "balanced" exhibited similar proportions of inhabitants for each age
 category.

233 Figure 2: Characteristics of the socio-demographic profiles of the spatial units (IRIS). (A) population density (log scale); (B) European Deprivation Index (EDI); (C) proportion of white collars among aged 234 \geq 15 years; (D) proportion of blue collar among the \geq 15-year old population; (E) median income; (F) 235 236 proportion of population aged >65 years; (G) localized potential accessibility (LPA) to healthcare 237 indicator based on the average number of potential medical doctor visits available per inhabitant 238 (defined at municipality level); and (H) number of primary healthcare professionals active in the

All rights reserved. No reuse allowed without permission.

census unit. Socio-demographic profiles: (1) "privileged" (red); (2) "remote" (green); (3) "intermediate"
 (yellow); (4) "downtown" (cyan); (5) "deprived" (light purple); (6) "very deprived" (dark purple).

- 241 Corresponding histograms are presented in Figure S4.
- 242

The geographical distribution of IRIS profiles matched expected patterns based on descriptive variables. "Remote" IRIS were mostly located in the mountainous areas of the region. "Privileged" IRIS mostly clustered in a vast area comprising and around Aix-en-Provence city, in the south and east of Marseille city, in along the coast between Marseille and Toulon city, along the coast between Cannes and Nice city. Lastly, "deprived" and "very deprived" IRIS concentrated in the northern part of Marseille city, or particular neighbourhoods of Toulon and Nice (Figure 3).

- 249
- 250

251

Figure 3: Spatial distribution of the socio-demographic profiles. (A) Provence Alpes Côte d'Azur (PACA) region; (B to E) main cities. Socio-demographic profiles: (1) privileged (red); (2) remote (green); (3) intermediate (yellow); (4) downtown (cyan); (5) deprived (light purple); (6) very deprived (dark purple).

256

257 SARS-CoV-2/COVID-19 testing and incidence rates from July 2020 to December 2021 258 by socio-demographic profile

From July 2020 to December 2021, 5 peaks of SARS-CoV-2 testing rate were observed, in parallel with 4 waves of incidence (Figure 4). Testing peaks generally responded to increasing transmission periods, except for the 5th testing rate peak that occurred during Christmas 2020. "Privileged" and "downtown" IRIS exhibited the highest testing rate overall, whereas the "very deprived" IRIS exhibited the lowest test rate, except during summer 2021 (after the health pass establishment) (Figure 4A). During that period, urban profiles ("downtown", "deprived" and "very deprived") displayed a general increase and "remote" or "intermediate" profiles showed the lowest testing rates.

All rights reserved. No reuse allowed without permission.

266 In comparison, COVID-19 incidence rates were highest in the "very deprived", "downtown" and 267 "privileged" units, despite contrasted testing rates (Figure 4B). The dynamics in these profiles were 268 also different. In 2020, the "privileged" and "downtown" IRIS reached their maximum incidence rate one week before the October lockdown (period 1), while "very deprived" IRIS reached their peak 269 270 during the week after the lockdown (period 2). Likewise, in July 2021 (period 8), "privileged" and 271 "downtown" IRIS reached a maximum incidence rate at the end of July, compared to early August for 272 "deprived" and mid-August for "very deprived" profiles, in a context of general high testing rates in 273 these largely urban IRIS.

274

278

279 Factors associated with COVID-19/SARS-CoV-2 testing rates during period 1

280 We analysed each period separately to identify factors associated with testing rate at IRIS level.

During period 1 (wave 2 rising), "privileged" IRIS showed a higher testing rate than all others and were chosen as a reference class. The adjusted testing rate ratio (aTRR) ranged from a 5% difference for "downtown" IRIS (aTRR=0.95, 95% confidence interval=[0.91-0.97]) to a 21% difference for "very deprived" IRIS (aTRR=0.79 [0.79-0.74]) (Table 1). The presence of elderly population also played a role, with an independent effect of the presence of a retirement home (aTRR=1.07 [1.04-1.09]) and of the elderly age profile (aTRR=1.11 [1.06 to 1.15], with "families" age profile as the reference class) (Table 1). LPA and number of primary healthcare professionals showed non-linear relationships with testing

- 288 rate ratio (Table 1). For lower values of both variables, an increase was associate with a strong increase
- 289 in aTRR. For LPA above 3 general practitioner consultations per inhabitant and per year, no additional
- effect on the aTRR was observed, while for IRIS with >10 primary healthcare practitioners, the increase 290
- 291 of aTRR associated with supplementary practitioners was limited.

292 Table 1: Adjusted factors associated with SARS-CoV-2/COVID-19 cumulative testing rate between 22

293 July and 29 October 2020: multivariate model results for period 1. See Table S3 for univariate results.

Variable	Adjusted testing rate ratio (aTRR)	95% confidence interval	p-value
Retirement home presence	1.07	1.04-1.09	<10 ⁻⁶
IRIS sociodemographic profile			
Privileged	1	reference	
Remote	0.92	0.87-0.96	0.00035
Intermediate	0.94	0.91-0.97	0.000145
Downtown	0.95	0.91-1	0.044
Deprived	0.9	0.87-0.93	<10 ⁻⁶
Very deprived	0.79	0.74-0.83	<10 ⁻⁶
IRIS age profile			
Families	1	reference	
Young adults	1.03	0.99-1.07	0.151
Balanced	1.06	1.03-1.1	5.10 ⁻⁵
Elderly	1.11	1.06-1.15	<10 ⁻⁶
LPA (municipality level)	Log (a I RR)	6 8 10 APL	6.10"
Number of primary healthcare professionals (IRIS level)	ec	<10 ⁻⁶	

All rights reserved. No reuse allowed without permission.

294

295

296 Comparison of COVID-19/SARS-CoV-2 testing rates across socio-demographic profiles297 and periods

After adjusting for structural indicators of access to healthcare (LPA and number of primary healthcare practitioners) and spatial autocorrelation, "remote" and "intermediate" IRIS exhibited only limited gaps in SARS-CoV-2 testing rates compared to "privileged" IRIS (Figure 5A). "Intermediate" IRIS had higher testing rates compared to "remote" IRIS, with a parallel dynamic.

Likewise, "downtown" IRIS did not have significantly lower aTRR except during period 3 and 10, corresponding to Christmas 2020 and 2021 periods (Figure 5A). On the other hand, aTRR were consistently lower for "deprived" IRIS (except during lockdown period 2) and for "very deprived" Sus (during all periods). The lowest differences (approximately 15%) between "privileged" and "very deprived" profiles were observed for periods 7 and 8 after health pass implementation. But in spite of massively available tests, periods 9 and 10 exhibited a sharp drop of testing in "deprived" and "very deprived" as compared to the "privileged" IRIS (Figure 5A).

309 The effect of the presence of a retirement home waned over the different periods (Figure 5B). The

effect of age profile also changed gradually from early periods: elderly profile IRIS had higher testing

than the family IRIS reference during early periods, and young adults profile IRIS had lower testing rate

- in the last two periods (Figure 5C).
- 313 The effect of LPA remained similar across periods, reaching a plateau around 2.5-3 available consults
- per inhabitant and per year (Figure S5). The effects associated to the number of primary healthcare
- professionals were more heterogeneous, with strongly non-linear shapes during the three "rising
- 316 wave" periods 1, 7, 10 (Figure S6).

All rights reserved. No reuse allowed without permission.

Figure 5: Forest plots of adjusted testing rate ratios (aTRR) across all 10 periods: (A) changing patterns between socio-demographic profiles (reference class, "privileged" profile); (B) decreasing effect of retirement homes over time; and (C) changing patterns according to age profiles (reference class, "family" profile).

We conducted a sensitivity analysis replacing municipality-level LPA by IRIS-level distance to nearest pharmacy, which did not change the results (Figure S7). The direct analysis of EDI indicated that increasing deprivation was consistently associated with lower testing rates, but that this relationship was not linear for all periods. It also confirmed the periods of highest disparity between privileged

and deprived profiles (Figures S8 and S9).

327 Discussion

317

328 This geo-epidemiological study analysed factors associated with SARS-CoV-2 testing rates at the finest 329 spatial scale available in the south-eastern French region across 10 periods spanning 18 months and 330 corresponding to political measures (lockdowns, health pass), contextual events (Christmas) and 331 epidemic waves. Our analysis showed strong contrasts in terms of socio-demographic profiles, access 332 to healthcare, and population structure across the different periods analysed. It suggests that individuals living in "privileged" and "downtown" spatial units (IRIS) of the main regional cities 333 334 sustained high testing rates. In contrast, individuals living in "remote" and "intermediate" IRIS 335 displayed stable, slightly lower testing levels, after taking into account their more limited access to healthcare. 336

Looking away from large metropolitan areas, "remote" and "intermediate" IRIS presented parallel dynamics. While they exhibited only marginal differences in terms of income or EDI, and largely corresponded to rural areas, "intermediate" IRIS extended from rural to suburban areas with a higher population density and a better access to care (LPA and basic care professionals), whereas "remote" IRIS corresponded to smaller villages with low density, aging population, far from health services. 342 IRIS in "deprived" and "very deprived" profiles exhibited lower testing rates compared to "privileged" 343 IRIS. Contextual testing periods (Christmas, periods 3 and 10) led to increasingly large testing gaps. 344 Requirement of a health pass to access specific activities led to drastic testing increases in urban 345 populations. However, the following period ending convenience test gratuity for unvaccinated 346 asymptomatic individuals was associated with a dramatic drop in testing rates, mainly within 347 "deprived" and "very deprived" areas, aggravating the underestimation of incidence rates.

348 Indeed, our results underline how testing disparities could affect the local monitoring of the epidemic: 349 the highest incidence rates were recorded in "deprived", "very deprived" and "privileged" profiles, 350 however the epidemic situation could only be interpreted in the light of the much larger 351 underestimation of cases in IRIS with higher levels of deprivation.

We studied drivers of SARS-CoV-2 testing at the finest spatial scale available in France, IRIS (or "IRIS" in French). We benefited from a wealth of contextual data provided by the French national census. Combining multiple data sources to characterize IRIS beyond population density, we could adjust for the general access to healthcare using different variables, and for the presence of elderly populations most likely to receive tests in the first periods before generalized vaccination. Presence of elderly populations was associated with a specific risk increase until the vaccination campaign reached sufficient coverage (period 5, ending in April 2021).

359 Access to healthcare is difficult to estimate at the IRIS level. Using a municipality-level localized 360 potential accessibility (LPA) indicator may overestimate access in "very deprived" areas of 361 metropolitan cities, where gaps in public transportation may isolate specific 362 populations/neighbourhoods. On the other hand, many rural areas usually rely on the primary 363 healthcare practitioners of the nearest town. Our strategy was thus to combine a distance-driven 364 indicator (LPA or distance to pharmacy) and a presence-driven indicator (number of primary healthcare 365 practitioners). This approach also allowed us to differentiate "remote" IRIS and "intermediate" IRIS, 366 the latter showing a better access to care.

367 The IRIS-level vaccine coverage data was not available for our study, which precluded the analysis of factors associated with SARS-CoV-2 incidence rate after the onset of the vaccination campaign during 368 the first guarter 2021. As a result, we could only show distinct incidence dynamics according to the 369 370 IRIS profile, without quantifying the contribution of respective factors. We hypothesize that higher 371 testing rates, better isolation abilities in more spacious housing, and enhanced ability to work remotely 372 could explain the earlier incidence peak in "privileged" versus "very deprived" IRIS during period 2 and 373 5. In period 8, the different dynamics for the august peak are probably linked to differential vaccine 374 coverage matching deprivation.

375 Based on our ecological approach, results excluded all individual components involved in population 376 health behaviours. The decision whether or not to get screened stems from a particular psychological 377 mechanism whose theoretical models are numerous [13] and whose determinants are not only 378 associated with social characteristics, even if they play a certain role [14]. The simple economic 379 dimension cannot by itself account for the complexity of health behaviours in the multiple dimensions 380 in which they are deployed [15]; other elements must be considered in order to better understand 381 them [16]. For example, some international studies have shown the influence of socio-cultural factors on health behaviours, and argue for further exploration of these [17]. Identified barriers to COVID-19 382 383 testing thus also include low health literacy, low trust in the healthcare system, or stigma and 384 consequences of testing positive [18].

Our analysis displays stronger contrasts between most deprived and privileged areas compared to the
 analysis conducted at national level in France during comparable periods or in Switzerland [5, 6]. It also

All rights reserved. No reuse allowed without permission.

highlights the important contribution of elderly testing until April 2021. Our regional scale analysis based on socio-demographic profiles rather than national quintiles (France) or deciles (Switzerland) of deprivation indices allowed a precise characterization of local specific aspects : indeed, in our study region >30% of IRIS belonged to the highest deprivation quintile defined at French national level, respectively only 10% to the lowest quintile (Figure S10).

392 Conclusion

We initiated this study in support of the regional public health agency of the PACA region (South-393 Eastern France) during the fourth guarter of 2020 to document the main drivers and inequalities in 394 395 testing rate in the region and to identify areas with structurally low testing rates. Specific interventions 396 (community engagement, home-visits for testing and supporting isolation efforts...) targeted these 397 areas specifically. The "very deprived" IRIS profile was included as a contextual indicator in addition to 398 weekly epidemic trends to prioritize health mediation interventions deployed by the regional health agency from October 2020 to June 2022 [19]. This fine spatial scale local profiling (infra-399 400 neighbourhood) is now included for general health mediation intervention projects in the city of Marseille. 401

402 Author's contributions

403 JL and JG designed the study with contributions of SR. LB and JL collected and analysed the data with

404 support of PC, FF and SN. All authors interpreted the results. JL, SR, MKBD, and JG drafted the first

405 version of the manuscript. All authors contributed to the manuscript and reviewed the final version.

406

407 Funding source

408 This publication was supported by the grant n°22DIRA41-0 on 28 october 2022 from 2. Santé

409 Publique France (the French National Public Health agency).

410 References

- 411 1. Diez Roux A V. Social Epidemiology: Past, Present, and Future. Annu Rev Public Health.
- 412 2022;43:79–98.
- 2. Phelan JC, Link BG, Tehranifar P. Social Conditions as Fundamental Causes of Health Inequalities :
 Theory , Evidence , and Policy Implications. 2010.
- 415 3. Warszawski J, Beaumont AL, Seng R, Lamballerie X De, Rahib D, Lydié N, et al. Prevalence of SARS -
- 416 Cov 2 antibodies and living conditions : the French national random population based EPICOV
 417 cohort. BMC Infect Dis. 2022;22:1–13.
- 418 4. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, et al.
- 419 Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological
 420 study. Lancet. 2020;396:535–44.
- 5. Riou J, Panczak R, Althaus CL, Junker C, Perisa D, Schneider K, et al. Articles Socioeconomic position
 and the COVID-19 care cascade from testing to mortality in Switzerland : a population-based analysis.
 Lancet Public Heal. 2021;6:e683–91.
- 424 6. Vandentorren S, Smaïli S, Chatignoux E, Maurel M, Alleaume C, Neufcourt L, et al. Articles The
 425 effect of social deprivation on the dynamic of SARS-CoV-2 infection in France : a population-based
 426 analysis.
- 427 7. Rey G, Jougla E, Fouillet A, Hémon D. Ecological association between a deprivation index and
- 428 mortality in France over the period 1997 2001 : variations with spatial scale , degree of urbanicity ,
 429 age , gender and cause of death. BMC Public Health. 2009;9:1–12.
- 8. Pornet C, Delpierre C, Dejardin O, Grosclaude P, Launay L, Guittet L, et al. Construction of an
 adaptable European transnational ecological deprivation index : the French version. J Epidemiol
- 432 Community Heal. 2012;:982–9.
- 9. Gaudart J, Landier J, Huiart L, Legendre E, Lehot L, Bendiane MK, et al. Factors associated with the
 spatial heterogeneity of the first wave of COVID-19 in France: a nationwide geo-epidemiological
 study. Lancet Public Heal. 2021;6:e222–31.
- 436 10. Lê S, Josse J, Husson F. FactoMineR: An R Package for Multivariate Analysis. J Stat Softw.
 437 2008;25:1–18.
- 11. Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GT. Robust causal inference using
 directed acyclic graphs: The R package "dagitty." Int J Epidemiol. 2016;45:1887–94.
- 440 12. Wood SN. Generalized Additive Models: An Introduction with R, Second Edition. CRC Press.441 Chapman & Hall; 2017.
- 442 13. Saulle R, Sinopoli A, De Paula Baer A, Mannocci A, Marino M, de Belvis AG, et al. The precede443 proceed model as a tool in public health screening: A systematic review. Clin Ter. 2020;171:E167–77.
- 444 14. Chorley AJ, Marlow LAV, Forster AS, Haddrell JB, Waller J. Experiences of cervical screening and
 445 barriers to participation in the context of an organised programme: a systematic review and thematic
 446 synthesis. Psychooncology. 2017;26:161–72.
- 447 15. Travert AS, Annerstedt K, Daivadanam M. Built environment and health behaviors:
- 448 Deconstructing the black box of interactions—a review of reviews. Int J Environ Res Public Health.449 2019;16.
- 450 16. Assari S, Khoshpouri P, Chalian H. Combined effects of race and socioeconomic status on cancer
 451 beliefs, cognitions, and emotions. Healthc. 2019;7:30–6.

- 452 17. Milstein G, Palitsky R, Cuevas A. The religion variable in community health promotion and illness prevention. https://doi.org/101080/1085235220191617519. 2019;48:1-6. 453
- 454 18. Embrett M, Sim SM, Caldwell HAT, Boulos L, Yu Z, Agarwal G, et al. Barriers to and strategies to address COVID-19 testing hesitancy: a rapid scoping review. BMC Public Health. 2022;22:1–10. 455
- 456 19. Franke F, Nauleau S, Landier J, Chaud P, Ramdani A, Gravier R, et al. [COVID-19 hotspots project:
- designing epidemiological surveillance for targeted intervention](french). Rev Epidemiol Sante 457 Publique. 2022;70:S168. 458