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Abstract 15 

Many mechanisms contribute to the variation in the incidence of influenza disease, such as 16 

strain evolution, the waning of immunity and changes in social mixing. Although machine 17 

learning methods have been developed for forecasting, these methods are used less 18 

commonly in influenza forecasts than statistical and mechanistic models. In this study, we 19 

applied a relatively new machine learning method, Extreme Gradient Boosting (XGBoost), to 20 

ordinal country-level influenza disease data. We developed a machine learning forecasting 21 

framework by adopting the XGBoost algorithm and training it with surveillance data for over 22 

30 countries between 2010 and 2018 from the World Health Organisation’s FluID platform. 23 

We then used the model to predict incidence 1- to 4-week ahead. We evaluated the 24 

performance of XGBoost forecast models by comparing them with a null model and a 25 

historical average model using mean-zero error (MZE) and macro-averaged mean absolute 26 

error (mMAE). The XGBoost models were consistently more accurate than the null and 27 

historical models for all forecast time horizons. For 1-week ahead predictions across test 28 

sets, the mMAE of the XGBoost model with an extending training window was reduced by 29 

78% on average compared to the null model. Although the mMAE increased with longer 30 

prediction horizons, XGBoost models showed a 62% reduction in mMAE compared to the 31 

null model for 4-week ahead predictions. Our results highlight the potential utility of machine 32 

learning methods in forecasting infectious disease incidence when that incidence is defined 33 

as an ordinal variable. In particular, the XGBoost model can be easily extended to include 34 

more features, thus capturing complex patterns and improving forecast accuracy. Given that 35 

many natural extreme phenomena, such as floods and earthquakes, are often described on 36 

an ordinal scale when informing planning and response, these results motivate further 37 

investigation of using similar scales for communicating risk from infectious diseases. 38 

 39 
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Author Summary 40 

Accurate and timely influenza forecasting is essential to help policymakers improve influenza 41 

preparedness and responses to potential outbreaks and allocate medical resources 42 

effectively. Here, we present a machine learning framework based on Extreme Gradient 43 

Boosting (XBoost) for forecast influenza activity. We used publicly available weekly 44 

influenza-like illness (ILI) incidence data in 32 countries. The predictive performance of the 45 

machine learning framework was evaluated using several accuracy metrics and compared 46 

with baseline models. XGBoost model was shown to be the most accurate prediction 47 

approach, and its accuracy remained stable with increasing prediction time horizons. Our 48 

results suggest that the machine learning framework for forecasting ILI has the potential to 49 

be adopted as a valuable public health tool globally in the future.50 
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Introduction 51 

Influenza forecasting plays a critical role in helping healthcare planners and policymakers to 52 

improve response to large seasonal epidemics and to mitigate their impact in terms of 53 

morbidity and mortality as well as social and economic impacts.  Before the COVID-19 54 

pandemic, a contagious respiratory illness caused by influenza viruses posed continual 55 

threats globally, causing an estimated 1 billion cases and up to 650000 deaths annually  56 

[1,2]. Accurate and timely forecasting of influenza epidemics in terms of the start of the 57 

epidemic, the time and size of the peak, and the duration of the epidemic enable 58 

policymakers to take effective interventions and optimise the allocation of healthcare 59 

resources. For example, to conduct the maximum number of elective surgical procedures 60 

prior to opening up space in intensive care wards for community-acquired pneumonia 61 

patients. However, reliable influenza forecasts remain a substantial challenge due to the 62 

variation of dominant influenza strains and environmental factors affecting the outbreak 63 

intensity. [3–5]. 64 

Different analytical methods have been used as the basis for forecast models of influenza 65 

disease. These methods can be classified into two broad categories: mechanistic models 66 

and statistical methods [5–7]. Mechanistic models attempt to reproduce key features of the 67 

underlying mechanism of transmission. Typical examples include classic compartmental 68 

models [8–11] and agent-based models (ABMs) [12–15]. Statistical approaches are 69 

phenomenological and do not attempt to reproduce the transmission mechanism, such as 70 

autoregressive integrated moving average (ARIMA) [16,17] and Gaussian Process 71 

Regression (GPR) [18,19].  72 

Machine learning (ML) models have gained much attention in recent years and have 73 

gradually become the third category of models. Given that machine learning is sometimes 74 
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differentiated from traditional statistics for its focus on prediction, it is not surprising that 75 

these methods are being applied to forecasting influenza. Traditional statistical models have 76 

a longstanding emphasis on inference, which is achieved through creating and fitting project-77 

specific probability models. They are often less well-suited to data with large sample sizes 78 

and input variables [20]. By contrast, ML methods are data-driven and avoid making prior 79 

assumptions about underlying correlations and rather employ algorithms to identify patterns 80 

in the data  [21,22]. In addition, ML methods are flexible in taking different types of input 81 

variables and a huge number of observations into consideration to improve predictive 82 

performance. The usage of some popular machine learning and deep learning methods in 83 

influenza forecasting has been discussed, such as Long Short Term Memory (LSTM) [23], 84 

Support Vector Machine (SVM) [24–27], and neural networks [28–31]. These methods show 85 

consistent and high forecasting accuracy but also suffer from the risk of over-fitting.  86 

Many natural extreme phenomena, such as floods and earthquakes, are often described on 87 

an ordinal scale, but infectious disease incidence is usually described as a count or a 88 

percentage of a population. The use of the moving epidemic method is a notable exception, 89 

which is now routinely used to compare and communicate the current state of epidemics 90 

across nearby connected populations [32]. However, influenza forecasting has remained 91 

focused on non-ordinal target observations [33], limiting the range of analytical methods that 92 

can be applied.  93 

Extreme Gradient Boosting (XGboost) is a decision-tree-based ensemble machine learning 94 

method employing the gradient boosting algorithm [34]. It has demonstrated good prediction 95 

performance on a wide range of problems in different industries, including finance, physics 96 

and clinical research (e.g. patient diagnosis) [35–38]. 97 

In this paper, we aim to construct an XGBoost model to make short-term predictions of the 98 

weekly influenza incidence as an ordinal variable, ranging from 1- to 4-week ahead of the 99 
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current time. We also evaluate the performance of XGBoost by accuracy metrics and 100 

compare it with baseline models. 101 

Methods 102 

Data  103 

We used a global web-based collection tool for epidemiological indicators and data on 104 

influenza, Flu Informed Decisions (FluID) dataset from the World Health Organization (WHO) 105 

[39]. This platform collects weekly Influenza-Like Illness (ILI) incidence data from WHO 106 

member countries and regions, which is either submitted on a weekly basis or obtained by 107 

the WHO from regional networks such as EUROFlu [2].  108 

The FluID data was available from ISO year 2010 week 1 to 2017 week 52 and included 109 

data from 146 countries initially. To ensure sufficient data for model training, countries with 110 

less than 50% of the data were excluded. Further countries that did not have at least 10 111 

weeks of data for each year between 2010 and 2017 were also excluded. After applying 112 

these criteria were applied to the dataset, 32 countries remained, primarily in Europe and 113 

North America. 114 

The key field in the data was ILI incidence, which was an integer ranging from 0 to 44965 (in 115 

week 52 of 2017 in the USA). This field was transformed into an ordinal variable by 116 

discretizing into N different bins with equal intervals, using N = 10 as the default. The highest 117 

incidence data for each country was used to add 10% as the upper boundary. The range 118 

from 0 to the upper limit was then divided into ten equal ordinal intervals, each of which was 119 

mapped to an ordinal value from 1 to 10, 1 represented the lowest incidence level, while 10 120 

represented the highest level. Note that each country's classification was based on its own 121 
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influenza incidence level, so the same category in two different countries corresponded to 122 

different absolute levels of incidence.  123 

Models 124 

We used XGBoost to establish a model to predict short-term weekly influenza incidence 125 

levels [34]. XGBoost is an implementation of the gradient-boosted decision trees and has 126 

been developed to improve computation speed and predictive performance for a variety of 127 

problems, including classification and regression [40]. Gradient boosting is an algorithm 128 

where new models are added in an adaptive way based on the residuals or errors of 129 

predictions from prior models and then combined to make the final prediction. Boosting is an 130 

ensemble method that creates a strong prediction model by iteratively combining a number 131 

of weak classifiers. New weak classifiers are added to correct the errors made by existing 132 

models, and every new model is added sequentially until no further improvements can be 133 

achieved or until a maximum number of models is added. Gradient boosting uses a gradient 134 

descent algorithm to minimize the loss when adding new models, i.e., at every optimization 135 

step, only models that reduce the residual or errors are added. XGBoost uses second-order 136 

Taylor expansion to minimize the loss function and added regularization terms to prevent 137 

overfitting.  138 

To further validate the effectiveness of XGBoost for influenza forecasting, we constructed 139 

two additional baseline models for comparison: 1) null model, in which the prediction of the 140 

target week is the same as the most recent available observation week, and 2) historical 141 

average model in which the prediction of the target week is the average of observations of 142 

the same weeks in other years. The usual definition for historical average models is to mean 143 

value over prior observations for that week of the year [41]. Here, we use a slightly different 144 

categorical definition of the incidence level with the highest frequency across the same week 145 

in the other years in the study. The aim of the historical average model is similar to that of 146 
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the null model, which is to provide a baseline for comparison with the accuracy of the 147 

XGBoost model, reflecting how users might informally forecast the incidence levels for the 148 

next 1 to 4 weeks. 149 

Forecast and features 150 

Our target was to predict ordinal categories for each week at the country level. We first did 151 

regular machine learning forecasting, in which we trained the model with a training set of 152 

fixed durations and then assessed the model's performance on a testing set. We designed 153 

our analysis to use 5 years of training data to predict one year of outcomes. The first training 154 

set used data from 2010 to 2014, the second training set used data from 2011 to 2015, and 155 

so on (S1 Table).  156 

For predictors in the short-term forecasting model we used: categorical incidence levels of 157 

the prior 𝑛 week and prior (𝑛 + 1) weeks, the month of the year (from January to December) 158 

and the season (spring, summer, autumn, and winter), where 𝑛 represents the n-week 159 

ahead forecast. In a 1-week ahead forecast, the model uses the incidence levels of the prior 160 

1 week and the prior 2 weeks; similarly, the incidence levels of the prior 4 weeks and prior 5 161 

weeks will be used as predictors in the 4-week ahead prediction. 162 

In addition to the fixed training window approach, we also trained the XGboost algorithm with 163 

an extending window. In the fixed window approach, we train the XGBoost model only once 164 

with the fixed training set and then predict the test set. Since the data were collected on a 165 

weekly basis, we are able to update our model by including the new coming data and 166 

retraining it to see if model performance can be improved. Thus we train the model with an 167 

extended training set for each week, which is called extending window approach in this 168 

paper. For example, if we are going to predict the week 𝑖 (𝑖 >  2) of the year 2015, our 169 

training set used data from 2010 until 2014 for all weeks and data from 2015 for weeks 1 to 170 

week (𝑖 − 1). Our test data were data in 2015 week 𝑖. The baseline models were trained with 171 
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the fixed window approach only. Weeks with missing values for predictors were removed 172 

from both the training set and the test set. 173 

XGBoost provides a large number of hyperparameters to help achieve optimal performance. 174 

They are mainly divided into three types, general parameters, booster parameters, and 175 

learning task parameters [42]. Booster parameters are closely related to the performance of 176 

the model, which is the focus of hyperparameter tuning. Grid search was used to final optimal 177 

values for hyperparameters max_depth, min_child_weight, subsample, colsample_bytree, 178 

learning rate and gamma. Grid search can be challenging and time-consuming due to the many 179 

parameters to optimize, even with XGBoost’s rapid convergence. Our gird search for 180 

hyperparameters was carried out as below: 181 

1) Firstly, find the optimal gamma and eta (learning rate) at the same time since they have 182 

an impact on the performance of the model. The values searched for gamma are 0.1, 183 

0.2, 0.5, 1, 1.5, 2, and 10, while those for eta are 0.01, 0.02, 0.03, 0.06, 0.1, 0.2, and 0.3. 184 

We ran all possible combinations of these two hyperparameter values to tune, and the 185 

one with the best performance was selected as the optimal value for gamma and eta, 186 

respectively.  187 

2) With the optimal values of gamma and eta obtained in the previous step, a grid search 188 

was conducted for max_depth, and min_child_weight range from 0.1 to 1. 189 

3) Made a grid-search over subsample and colsample_bytree simultaneously range from 190 

0.1 to 1. 191 

K-fold cross-validation is used during the tuning process to assess the model's performance with 192 

different combinations of hyperparameter values. Since there is a dependency between weekly 193 

ILI incidence and future values that cannot be used to forecast past values, the traditional K-fold 194 

method that randomly splits the training set into K folds is not applicable to our data. Instead, we 195 

used cross-validation on an extending basis  (S1 Fig). We selected data from 2010 to 2014 as 196 

the overall training set for the cross-validation, but during the process of rolling cross-validation, 197 
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we started with data from 2010 as the first fold of the training set and checked the accuracy of 198 

prediction for the data from 2011. Data from 2010 and 2011 then formed the second fold of the 199 

training set, and data from 2012 became the test for accuracy check. The accuracy metric used 200 

in the tuning process is macro-averaged mean absolute error (mMAE) which will be defined in 201 

detail later. This process was repeated until 2014 became the last test set. The final optimal 202 

values of the hyperparameter were given in S2 Table. 203 

Accuracy metrics 204 

We used two of the most commonly used metrics in ordinal classification problems [43], 205 

macro-averaged mean absolute error (mMAE) and mean zero-one error (MZE) ) to evaluate 206 

the model performance. Both metrics are defined as negatively oriented penalties that we 207 

aim to minimize: the lower the score, the better the forecast is considered.  208 

Macro-averaged mean absolute error  209 

Macro-averaged mean absolute error (mMAE) measure is adapted from the traditional class-210 

based metric mean absolute error (MAE) which assesses the average deviation of the 211 

predicted class from the actual class, and it is defined as 212 

 213 

where 𝑦𝑖 and 𝑦𝑖
∗  denotes the true class and the predicted class respectively. However, MAE 214 

averages effectiveness across individual observations, which does not reflect the 215 

imbalanced distribution of classes in our datasets if many observations are in the lowest 216 

class and very few are in higher classes. Instead, we used macro-averaged mean absolute 217 

error (mMAE) as one of our metrics to assess the performance of our models in terms of 218 

predicting ordered outcomes. mMAE is obtained by first computing the MAE on a per-class 219 
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basis and then averaging the results across the classes so that mMAE is insensitive to class 220 

imbalance. Let 𝑦𝑖  be the true class and 𝑦𝑖
∗ be the predicted class of 𝑖-th week in the test set. 221 

Let 𝑁𝑘 be the number of true cases with the class 𝑘 where 𝑘 ∈  {1, 2, . . . , 9, 10}. There are 10 222 

classes in our classification problem, i.e., 𝑁𝑘  = ∑𝑁
𝑖=1 𝐼𝑦𝑖 = 𝑘 and 𝑁 =  ∑10

𝑘=1 𝑁𝑘.  The 223 

Macro-averaged mean absolute error is calculated with the following formula: 224 

 225 

, where 226 

. 227 

Mean zero-one error 228 

Our second metric is the mean zero-one error (MZE) which is more frequently known as the 229 

error rate of classifiers and is, essentially, the proportion of time that a correct prediction is 230 

made  231 

 232 

where  233 

 234 
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𝑦𝑖 and 𝑦𝑖
∗  denotes the true class and the predicted class respectively. Acc is the accuracy of 235 

the model, i.e., the number of correctly predicted categories divided by the total number of 236 

predictions. Therefore, MZE ranges between 0 and 1, and the lower the MZE, the higher 237 

accuracy indicates better predictive performance. 238 

Results 239 

Country-level forecasts were performed using ILI data from 32 countries, located in northern 240 

temperate regions (S2 Fig). Due to the incompleteness of data, countries located outside of  241 

temperate regions were excluded from the analysis. The countries in the northern 242 

hemisphere's temperate regions demonstrated a similar trend in influenza activity, with ILI 243 

incidence typically rising at the end of the year and reaching a peak level at the beginning of 244 

the following year (Fig 1B). During the 2010 - 2017 surveillance, after excluding weeks with 245 

missing values, the data availability ranged between 229 and 417 weeks, with each country 246 

contributing an average of 337 weeks of data (median = 391 weeks). Of these weeks, over 247 

60% fell into level 1, while 0.76% of the total weeks fell into levels 9 and 10 (Fig 1A).  248 
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 249 

Fig 1. Distribution of categorical incidence levels for weekly influenza-like illness for 250 

countries included in the study. A. overall frequency of every level appearing in 32 251 

countries. B. The heat map shows of incidence level in each country by time. Grey-shaded 252 

areas indicate that no available were data for those weeks.  253 
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Predictive performance  254 

Overall, the XGBoost model with an extended window generated fewer errors and 255 

demonstrated more stable predictive performance than the XGBoost model with a fixed 256 

training window or the baseline models. The short-term prediction errors of different models 257 

are summarized in Table 1, by averaging the mMAE is averaged across countries, and 258 

presented for each prediction horizon (1-week ahead, 2-week ahead, etc. ). We separately 259 

compare the mMAEs of three test periods (2015 to 2017). From Table 1, for these three test 260 

periods, we show that prediction accuracy measured by mMAEs decreases with the 261 

increasing forecast length (i.e. one to four-week in advance), but both XGBoost models (with 262 

extending window and fixed window) uniformly outperform the two baseline models (Fig 2, 263 

Table 1). In particular, the mMAEs of the XGBoost model with an extended window remain 264 

below 1, on average across all countries, even as the forecast length increases, indicating 265 

that, on average, the predicted classes are either correct or only one class away from the 266 

true class. This XGBoost model has the lowest average MZEs for all prediction horizons 267 

compared to the XGBoost model with a fixed window and baseline models (S3 Fig, S3 268 

Table).  269 
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 270 

Fig 2. Differences in macro-averaged mean absolute error (mMAE) by model. 271 

Comparison of mMAE for XGBoost (with an extended window) and baseline models while 272 

forecasting 1 to 4 weeks ahead. A. 2015, B. 2016, C. 2017. 273 

 274 

 275 

 276 

 277 

 278 
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Table 1. Overall macro-averaged mean absolute error (mMAE) of XGboost compared 280 

with baseline models.  Overall mMAEs of 1- to 4-week ahead forecasts for each model are 281 

calculated as the average of 32 countries’ mMAEs by year. 282 

 283 

The mMAEs for the extending window approach were consistently lower compared to the 284 

XGBoost model with a fixed window (Fig 3, Table 1). The mMAEs for the fixed window 285 

approach only remained below 1 for 1- to 4-week forecasts in 2016, but exceeded 1 for 3- 286 

and 4-week ahead forecasts in 2015 and 2017. Although the two XGBoost models had 287 

similar MZEs, the extending window approach still resulted in a lower MZE for each 288 

prediction horizon (S4 Fig, S3 Table). The better performance of the extending window 289 

approach can be attributed to its continuous addition of the predicted weeks' observations to 290 

the training set, allowing the model to learn more data, resulting in smaller prediction errors. 291 
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 292 

Fig 3. Macro-averaged mean absolute error (mMAE) of XGBoost models. Comparison 293 

of mMAEs for weekly forecasting ranging from 1-to 4-week ahead for the years  2015 to 294 

2017. A. The XGBoost model with an extended window approach. B. The XGBoost model 295 

with a fixed window approach. 296 

There is substantial variation in the prediction accuracy, as indicated by mMAE, among the 297 

countries  (Fig 4, S4 – S6 Table). For instance, Moldova, had remarkably low mMAEs from 298 

2015 to 2017, even achieving 0 in 2016 and 2017. Conversely, certain countries, such as 299 

Hungary and Norway, consistently exhibit much higher mMAEs compared to other countries. 300 

Similar results were found for MZEs (S5 Fig, S7 – S9 Table). The performance of XGBoost 301 

on the test set can be affected mainly by the quality of training data. By checking the missing 302 

data for countries, we discover that countries with high mMAEs often have more incomplete 303 

data than better-performing countries, implying that they have a smaller sample size of 304 

training sets, failing to capture complex epidemic patterns of influenza (Fig 2B).  305 
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 306 

Fig 4. Macro-averaged mean absolute error (mMAE) for 32 countries. mMAEs of 307 

predictions by the XGBoost model with an extended window for the year A. 2015. B. 2016. 308 

and C. 2017.  309 

We investigated the influenza distribution and forecasts over a 3-year period in four 310 

countries selected based on their mMAEs and data completeness and found different 311 

qualitative drivers of accuracy. The plots in Fig 5 compare the predicted values from four 312 

models with actual data for 1 to 4-week-ahead forecasts in Moldova, Switzerland, Estonia 313 

and Hungary separately. Moldova had the lowest mMAE, but its influenza activity barely 314 

fluctuated with 97.5% (390 out of 400 weeks) of the weeks remaining at level 1. Conversely, 315 

Switzerland and Estonia had 25.3% (82 out of 406 weeks) and 72.5% (290 out of 400 316 

weeks) of the weeks, respectively, above the baseline level. All four models successfully 317 

predict peak influenza season for 1-week and 2-week ahead forecasts in 2015 and 2016 in 318 
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Switzerland Estonia, but the historical average model failed to identify peaks for 3-week and 319 

4-week ahead forecasts. The other three models could identify peaks up to 4-week ahead of 320 

forecasts, with the XGboost with extending approach being the most accurate. The deviation 321 

between actual observation and prediction is typically high when there is a sudden increase 322 

or decrease in flu incidence levels. In Hungary, due to the limited sample size of the training 323 

set and the complexities of influenza activity, a large deviation between actual observation 324 

and prediction even for the 1-week forward forecast. The prediction of XGboost with an 325 

extending window provided the closest prediction to the observed peak (Fig 6).  326 

 327 

 328 
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Fig 5. Comparison of Actual and predicted incidence by country. Countries Moldova, 329 

Switzerland, Estonia and Hungary are selected. Models include the two XGBoost models, 330 

the historical average model and the null model while forecasting 1- to 4-week ahead for the 331 

test period year 2015 to 2017. 332 

 333 

 334 

Fig 6. Comparison of actual and predicted incidence. Predicted incidences are 335 

generated by the XGBoost model with an extended window for Moldova, Switzerland, 336 

Estonia and Hungry; for forecasts 1 to 4 weeks ahead for the test period year 2015 to 2017. 337 
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Discussion 338 

In this work, we have proposed a potential machine learning model for influenza forecasting 339 

using a 10-unit ordinal variable to describe the case incidence. We evaluated two XGBoost 340 

machine learning models, one with a fixed window training set and the other with an 341 

extended window training set, and compared them to baseline models.  We measured their 342 

accuracy using the mean zero-one error (MZE) and macro-averaged mean absolute error 343 

(mMAE). Our results showed that both XGBoost models outperformed the baseline models, 344 

with the extended window XGBoost model consistently achieving the highest accuracy.  345 

This framework is novel because we defined the outcome on an ordinal scale, which is often 346 

how influenza incidence is communicated[32]. However, our results are not directly 347 

comparable to other forecasting studies, and the XGBoost model has not been validated 348 

against other data sources. This highlights the need to test its applicability in real-world 349 

public health practice. 350 

The use of a categorical outcome enabled us to apply machine learning algorithms. Although 351 

the XGBoost has advantages, it has not been tested against other data sources. Machine 352 

learning algorithms’ performance can be limited by the quality of the training and testing 353 

data, and inconsistencies between different databases may reduce the generalisability of the 354 

XGBoost prediction model [44]. Further testing is needed to determine the applicability of the 355 

in real-world public health practice.  356 

Our baseline models provide a basic framework for assessing the potential of machine 357 

learning forecasts. The baseline models are intended to reflect the most basic of implicit 358 

forecast assumptions: they assume that incidence will remain unchanged and revert to its 359 

historical average. Our methods offer improvements over these assumptions, for example, 360 

the 4-week forecast horizon XGBoost model with an extended window being more accurate 361 
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than assuming the incidence would follow the historical average and more accurate than the 362 

default 1-week ahead model with no change assumption. 363 

This work has several limitations. One of the challenges in working with infectious disease 364 

datasets is the limited period of data available for model estimation and evaluation, 365 

compared to other datasets used in machine learning. For each country in the study, only 5 366 

years of data were used for model training, leaving only 3 years for testing. Cross-validation 367 

was used to find the optimal hyperparameters instead of using an independent validation 368 

set.  Additionally, countries with fewer weeks of data in the training set tend to have higher 369 

prediction errors, which suggests that accuracy will improve as more data becomes 370 

available. Furthermore, the results should be interpreted with caution, given the disruption to 371 

influenza transmission during the COVID-19 pandemic, as patterns may change as the 372 

transmission is re-established. 373 

Our forecasts showed reduced accuracy in predicting turning points of the epidemic (Fig 7). 374 

When there is a sudden increase in incidence levels, they are often underestimated. On the 375 

other hand, a sudden decrease in incidence levels results in them being easily 376 

overestimated. This is especially important in a public health context where accurately 377 

predicting rare cases of much higher than usual incidence levels or earlier or later ends of 378 

the epidemic is crucial. Thus, improving the prediction stability at the extreme points of 379 

season patterns remains a priority in ongoing forecasting work.  380 
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 381 

Fig 7. Distribution of predictions against each decile of observation for the XGBoost 382 

model with an extended window. Rows of heat maps are ordered from 1 week ahead (top) 383 

to 4 weeks ahead (bottom). Columns of heat maps are ordered from 2015 (left) to 2017 384 
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(right). Values on the diagonal are the accuracy of forecasts, while other values represent 385 

the frequency at each level that was incorrectly predicted to be the other level. 386 

Conclusion 387 

Forecasting influenza as an ordinal outcome is a feasible task for machine learning. The 388 

widely used XGBoost model, even with a limited set of features, provides significantly more 389 

accurate predictions than the standard baseline models. With datasets that have longer 390 

history and comprehensive spatial coverage, it is possible to achieve more accurate 391 

forecasts. Similar to other epidemiological models, the framework can easily be expanded to 392 

include population serology and population mobility [45] or other relevant features as more 393 

data become available [46].394 
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 419 

S1 Fig. Time series split cross-validation.  420 
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 421 

S2 Fig. World map. 32 Countries included in this study are marked in red. Samples are 422 

mainly from North America and Europe.  423 
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 424 

S3 Fig. Differences in mean-zero error (MZE) by model. Comparison of mean-zero error 425 

(MZE) for XGBoost (with an extended window approach) and baseline models while 426 

forecasting 1 to 4 weeks ahead for the test period year 2015 to 2017. 427 

428 
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 429 

S4 Fig. Mean-zero error (MZE) of XGBoost models. Comparison of MZEs for weekly 430 

forecasting ranging from 1- to 4-week ahead in 2015 to 2017. A. The XGBoost model with 431 

an extended approach. B. The XGBoost model with a fixed window approach. 432 
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 433 

S5 Fig. Mean-zero error (MZE) for 32 countries. MZEs of predictions by the XGBoost 434 

model with an extended window for the year A. 2015. B. 2016. and C. 2017. 435 
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