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Abstract

The application of deep learning models to evaluate connectome data is gaining

interest in epilepsy research. Deep learning may be a useful initial tool to

partition connectome data into network subsets for further analysis. Few prior

works have used deep learning to examine structural connectomes from patients

with focal epilepsy. We evaluated whether a deep learning model applied to

whole-brain connectomes could classify 28 participants with focal epilepsy from

20 controls and identify nodal importance for each group. Participants with

epilepsy were further grouped based on whether they had focal seizures that

evolved into bilateral tonic-clonic seizures (17 with, 11 without). The trained

neural network classified patients from controls with an accuracy of 72.92%,

while the seizure subtype groups achieved a classification accuracy of 67.86%.

In the patient subgroups, the nodes and edges deemed important for accurate

classification were also clinically relevant, indicating the model’s interpretability.
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The current work expands the evidence for the potential of deep learning to

extract relevant markers from clinical datasets. Our findings offer a rationale

for further research interrogating structural connectomes to obtain features that

can be biomarkers and aid the diagnosis of seizure subtypes.

Keywords: focal epilepsy, focal to bilateral tonic-clonic seizure, connectome,

diffusion MRI, deep learning, neural network

1. Introduction

Focal to bilateral tonic-clonic seizures (FBTCS) are a perilous form of seizures

in focal epilepsy and are regarded as a primary factor in seizure-related injuries,

severe cardiac arrhythmias, and sudden unexpected death [1, 2, 3, 4, 5]. The

signature of FBTCS are seizures that begin in one brain hemisphere and spread5

rapidly without warning to the opposite hemisphere. The varying cortical and

subcortical propagation patterns [6] are often dependent on the seizure onset

zone [7]. The inherent limitations in prospectively identifying at-risk individuals

are associated with the increased morbidity and mortality risk of FBTCS. Quan-

tifying structural connectivity patterns may help distinguish patients likely to10

develop FBTCS from those who are not. A more precise diagnosis can inform

personalised treatment pathways, disease prognosis, and improve patient care.

Diffusion-weighted MRI (dMRI) is an in-vivo neuroimaging technique that

allows extraction of analytical features commonly used to examine the white

matter in the brain [8]. White matter abnormalities observed in dMRI-derived15

metrics (such as fractional anisotropy and mean diffusivity) and graph theory

measures have been linked to focal epilepsy and FBTCS [9, 10, 11, 12]. Struc-

tural connectomes derived from dMRI can be used to represent the presence

and strength of connections between two discrete brain regions (represented as

“nodes”) via the white matter tracts (represented as “edges”). The analysis of20

structural connectomes in focal epilepsy has yielded a range of network-based

biomarkers that may aid pre-surgical selection and pharmacological treatment

planning [6, 13, 14]. The combination of structural connectomes with functional
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data from electroencephalography (EEG) has revealed the influence of structure-

function coupling in seizure dynamics [15, 16], seizure propagation [17], and25

postoperative seizure freedom [18]. Importantly, phenomenologic models have

shown that structural alterations can give rise to FBTCS [19].

However, only one of the recent network-based analyses evaluated node ab-

normality in FBTCS [6]. Additionally, prior research predominantly focuses on

generalised or temporal lobe epilepsy (TLE) populations [20, 21, 22, 23], prompt-30

ing the need for further examination of FBTCS groups specifically. Moreover,

limited clinical adoption of network-based connectivity biomarkers has been

attributed to methodological inconsistencies and lack of clinician expertise in

network analysis [24]. Further evaluation of the structural connectome could

overcome such barriers by strengthening the evidence for clinically explainable35

connectivity biomarkers of specific seizure types.

Machine learning (ML) models may aid the adoption of network-based biomark-

ers in the clinical setting. Unsupervised machine learning algorithms have shown

great potential for producing a data-driven classification of patients into sub-

groups and predicting surgical treatment outcomes [25, 26]. Deep learning mod-40

els, considered a comprehensive iteration of machine learning [27], have recently

been applied to structural connectome data to predict Parkinson’s disease [28],

cognitive deficits [29] and epilepsy [30, 31], achieving promising outcomes. How-

ever, the relatively new approach of applying deep learning models to classify

patients using their connectomes has not been applied in the context of FBTCS.45

Additionally, though deep learning is a powerful ML technique, the search

space provided by connectomes can be significant. Brain parcellation atlases

contain anywhere from 84 regions in the Desikan-Killiany (DK) atlas [32] to 384

regions in the Atlas of Intrinsic Connectivity of Homotopic Areas (AICHA) [33].

Such a large number of regions results in over 3000 connections for the DK atlas50

and even more from other atlases. While fine parcellation atlases such as the

AICHA have their benefits, they may also increase the inherent effect of noise

per voxel in smaller regions (since one voxel in a smaller region is a greater

percentage of that region than one voxel in a larger region), amplifying the
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potential noise effects in the results. Therefore, it may be advantageous for55

the deep learning model to partition connectomes by extracting a data-driven

subset of nodes and edges that may be important to a given group.

Moreover, there is growing interest in multimodal image integration pipelines

suitably designed for the clinical workflow [34]. The value of connectomics in

unveiling network alterations in drug-resistant focal epilepsy was recently un-60

derscored [35]. Leveraging deep learning in combination with network neuro-

science presents opportunities to identify salient features in high-dimensional

imaging datasets [36]. A deep learning model which interrogates connectome

data might improve diagnosis if seamlessly incorporated into an imaging analysis

pipeline implemented directly in the clinical setting. However, the investment65

of resources in implementing such pipelines requires further initial evaluation

of deep learning models to determine their ability to reveal clinically relevant

information.

The aim of the current work was twofold. First, we sought to explore the fea-

sibility of a deep learning model to identify, with reasonable accuracy, nodes and70

edges from the structural connectomes that were most important in classifying

patients with and without FBTCS, and focal epilepsy from controls. Second,

we explored whether the model could select nodes and edges that held clinically

explainable characteristics of the patient subgroups that might guide further

analysis or aid diagnosis. This proof of concept study may help quantify the75

value of structural connectome data in prospectively distinguishing individuals

likely to have FBTCS from those who may not.

2. Methods

2.1. Participants and Data

Twenty-eight adults with focal epilepsy were recruited from the Compre-80

hensive Epilepsy Centre at the Royal Prince Alfred Hospital (RPAH, Sydney,

Australia). MRI was performed at the Brain and Mind Centre (Sydney, Aus-

tralia). Inclusion criteria were adults diagnosed with focal epilepsy, aged 18-

4
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60, presenting without surgery, who were willing and able to comply with the

study procedures for the duration of their participation. Exclusion criteria were85

pregnant women and individuals with intellectual disabilities. Twenty control

participants, who had no prior neurological diagnosis, were also included in the

study. Written informed consent was obtained from all participants before study

participation. Ethical approval was obtained from the RPAH Local Health Dis-

trict (RPAH-LHD) ethics committee (RPAH-LHD approval ID: X14-0347). All90

research and methods were performed in accordance with the Declaration of

Helsinki and the relevant guidelines and regulations prescribed by the RPAH-

LHD ethics committee.

2.2. Image acquisition

Image acquisition was described previously [12]. Briefly, all scans were ac-95

quired on the same GE DiscoveryTM MR750 3T scanner (GE Medical Systems,

Milwaukee, WI). The following sequences were acquired for each participant:

Pre-contrast 3D high-resolution T1-weighted image (0.7mm isotropic) using fast

spoiled gradient echo (SPGR) with magnetisation-prepared inversion recovery

pulse (TE/TI/TR=2.8/450/7.1ms, flip angle=12); and axial diffusion-weighted100

imaging (2mm isotropic, TE/TR=85/8325ms) with a uniform gradient load-

ing (b=1000s/mm2) in 64 directions and 2 b 0s. An additional b0 image with

reversed phase-encoding was also acquired for distortion correction [37].

2.3. Image processing to obtain structural connectomes

The T1 images were processed and segmented according to the DK atlas [32],105

using a modified version of Freesurfer’s recon-all (v6.0) [38], alongside an in-

house skull-stripping tool (Sydney Neuroimaging Analysis Centre). The pro-

cessed data for each participant was visually inspected by a senior neuroimaging

analyst, and minor segmentation errors were manually corrected. A 5 tissue-

type (5TT) image [39] was generated using MRtrix3 [40]. The T1 image was110

registered to the mean b0 image and the resulting transformation matrix was

5
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used to transform the 5TT image to the diffusion image. A schematic of the

image processing pipeline is shown in Fig 1, a.

Diffusion image processing was conducted using MRtrix3 [40]. The diffusion

pre-processing included motion and distortion correction [37, 41], bias correc-115

tion using ANTs [42], and resizing to voxel size 1 mm isotropic. The dhollander

algorithm [43] was used to estimate the response functions of the white mat-

ter, grey matter, and cerebral spinal fluid, from which constrained spherical

deconvolution was used to estimate the fibre orientation distributions using

MRtrix3Tissue (https://3Tissue.github.io), a fork of MRtrix3 [40]. The inten-120

sity of the white matter fibre orientation distributions was normalised [40], and

used for anatomically constrained whole-brain tractography [44] (along with the

registered 5TT image). The tractography protocols were as follows: 15 million

tracks were generated, iFOD2 probabilistic fibre tracking [45], dynamic seed-

ing [46], maximum length 300 mm, backtrack selected and crop at grey-matter-125

white-matter interface selected. For quantitative analysis, the corresponding

weight for each streamline in the tractogram was derived using SIFT2 [46]. The

streamlines and corresponding SIFT2 weights were used to create a weighted-

undirected structural connectome using the registered DK parcellation image.

2.4. Experiment design130

Classification experiments were conducted based on the participants’ classi-

fication labels. Participants were first classified into ”All patients” and control

groups. The ”All patients” group was further split into those with (“FBTCS+”)

and without (“FBTCS-”) FBTCS. Due to the relatively small sample size, two

sets of experiments were separately designed for all participants (28 patients135

and 20 controls) and patient groups (17 FBTCS+ and 11 FBTCS-). For each

set of experiments, the participants were randomly split into five folds for cross-

validation to exploit the full dataset. Owing to the symmetric format of con-

nectomes and to avoid data redundancy [47], only the upper triangle (shown in

Fig. 1b) was used as input to the model, where each element represented the140

connection (“edge”) strength between two particular regions (“nodes”) in the

6
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Figure 1: Image processing pipeline and deep learning model. In (a), the images

were processed using our previously published pipeline[12], described in Sections 4.2 and

4.3. Next, the connectomes were fed into the deep learning model, shown in (b). The network

architecture is shown in b,i. The network was trained with Ftrain using standard feed-forward

and backpropagation (shown in b, ii). The network weights were then updated using the

gradients calculated by cross-entropy loss and gradient analysis was conducted.

DK atlas (total of 84 regions). The cross-validation was used to train and test

1000 experiments, each with randomised seeds for the initial network weights.

7
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Finally, the edge values were normalised between 0 and 1 and flattened into a

vector of 3486 values (with self-connections excluded).145

2.5. Deep learning model

A neural network was chosen over traditional machine learning methods

because it can learn more comprehensive non-linear feature representations from

the input data. However, complex models with many parameters might overfit

the data when given a small number of participants per group and render the150

interpretation meaningless. Therefore, to conduct an edge-wise and node-wise

analysis of the results, a simple multi-layer perceptron (MLP) was selected due

to its simplicity and suitability when using a flattened vector as input to the

classification problem. A four-layer MLP was constructed with 1024, 256, 64,

and 2 neurons (representing the two possible classes), respectively. The MLP155

was trained for 100 epochs with 1000 different seeds. The cross-entropy loss

function optimised the network weights according to the participant labels. The

network architecture is shown in Fig. 1, b, i.

Model analysis The analysis was conducted only on the correctly pre-

dicted participants for each class of all 1000 5-fold cross-validation experiments160

to explore the region and connection importance in distinguishing the groups

with different classification labels. The detailed analysis pipeline is shown

in Fig. 1, b. Specifically, the back-propagation was applied to the correctly-

predicted label for each participant with regard to their input values (i.e. the

unique edges of the connectome). The corresponding gradients, representing the165

effect of a strong connection in the class prediction, were recorded and averaged

for all the input node connections. Lastly, the corresponding connection weights

for each node were summed to obtain the average gradient for each node (i.e.

the strength of the node).

8

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.23285681doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.09.23285681


3. Results170

3.1. Demographics

Twenty-eight patients (12 males, mean age and SD 40.32±12.38) were in-

cluded in this study after meeting the inclusion criteria. Twenty age-matched

healthy controls (5 males, mean age and SD 37.65±11.16) were also included.

Participant characteristics are in Table 1.175

3.2. All patients versus Controls

The best model from the trained network reached an accuracy of 72.92%.

The model stratified important nodes and edges for each group by applying a

gradient score which reflected the average overall probability of a node being

important for classifying an individual to a given group. A positive gradient180

score indicated the positive contribution of a given node or edge to classifying a

participant into a given group, with a higher score indicating more importance.

Conversely, a negative gradient score indicated the negative contribution of a

node or edge towards a participant’s classification into a group.

Notably, where a node or edge was assigned a positive gradient score for185

a given group, a negative gradient score was applied for that same node or

edge for the opposite group, indicating the model’s ability to stratify each node

or edge into only one of the two groups. The bar graphs in Fig 2 show the

gradient score for the top 20 nodes and edges for the “All patients” group

(edges: a, nodes: b). Here, the top 20 nodes and edges for the “All patients”190

group had a positive gradient score, yet the corresponding score for those same

nodes or edges in the control group was negative. Although the model was first

tested for classification accuracy between the “All patients” and control groups,

the FBTCS subgroup classification results may bear more value for the field.

Consequently, the following sections elaborate on the findings from the FBTCS195

groups’ analysis and the potential clinical implications.

9
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Table 1: Participants’ demographic and clinical characteristics

FBTCS+ (17) FBTCS- (11) Controls (20)

Age (Mean ±SD) 37.58 ±12.38 44.54 ±12.38 37.65 ±11.16

Sex (M / F) 6 / 11 6 / 5 5 / 15

Onset side (L / R / U) 6 / 8 / 3 5 / 4 / 2 NA

Onset Age (Mean ±SD) 21 ±16.04 25.18 ±15.84 NA

Drug resistance (Y / N / U) 14 / 2 / 1 8 / 3 / 0 NA

Disease duration (Mean ±SD) 16.58 ±13.02 19.36 ±13.28 NA

MRI findings

Normal 10 6 NA

MCD 3 1 NA

CD/FCD 2 1 NA

Hippocampal cyst/sclerosis 1 2 NA

Various (PVH, DNET) 4 1 NA

Epilepsy classification

Frontal (L / R) 2 / 1 0 / 1 NA

Temporal (L / R) 1 / 2 0 NA

Parietal (L / R) 0 / 1 0 / 2 NA

Occipital (L / R) 1 / 1 1 / 0 NA

Frontotemporal (L / R / U) 3 / 2 3 / 1 / 1 NA

Frontocentral (L / R) 0 / 1 1 / 0 NA

Unknown 3 1 NA

Key: L: left, R: right, U: unknown, CD: cortical dysplasia

DNET: dysembryoplastic neuroepithelial tumor, FCD: focal cortical dysplasia

MCD: malformations of cortical development, PVH: periventricular heterotopia.

10
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Figure 2: Gradient scores for the top 20 nodes and edges in the “All patients”

group. The pyramid bar charts in (a) and (b) show the overall average gradient scores

for the top 20 nodes and edges that demonstrated the greatest contribution to classification

accuracy for the “All patients” group. Nodes were defined as per the DK atlas [32]. Where a

node or edge was positive for the “All patient” group, the corresponding score was negative

for the control group. Key: L: Left, R: Right.

3.3. Patient subgroups: FBTCS+ and FBTCS-

The best model trained and tested on the FBTCS+ and FBTCS- groups

achieved a 67.86% accuracy score. To place the focus on the important nodes,

only the top five nodes for each group are shown in Fig 3. Similar to the first200

classification test (“All patients” versus controls), a positive gradient score was

assigned to nodes and edges consistently associated with accurate classifica-

tion into a given group. Since FBTCS involves the propagation of a seizure

from one hemisphere to another, the top edges (which imply strongly connected

nodes) were of particular interest. The gradient scores for the top five edges205

for each group are illustrated in the bar charts in Fig. 4 (c and e). The top

10 edges for each group are illustrated in the brain images and chord dia-

grams in Fig 4, highlighting the key edge-based differences between the groups.

Specifically, the model identified two edges (L.InferiorParietal-R.ParaCentral

and L.IsthmusCingulate-R.Lingual) in the FBTCS+ group’s top 10 edges that210

11
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Figure 3: Top nodes for each FBTCS group. Nodes were defined as per the DK atlas [32].

The bar charts in (a) and (b) show the average gradient scores of the top five nodes that

consistently demonstrated the greatest contribution to classification accuracy for each FBTCS

group. Key: L: Left, R: Right.

crossed from one hemisphere to the other (illustrated in Fig. 4, a and b). In

comparison, the FBTCS- group did not have any cross-hemisphere edges in the

top 10 (illustrated in Fig. 4, d and f).

To assess the model’s utility in identifying meaningful patient subgroup con-

nections, the top 100 positive gradient scores for both grouping conditions were215

plotted according to nodal connections based in the left hemisphere (left to left),

right hemisphere (right to right) and cross-hemisphere (left to right or right to

left), as shown in Fig. 5. In the top 20 ranked edges for the “All patients”

and control groups, the number of cross-hemisphere edges was relatively similar

(shown Fig. 5, a, “Gradient rank - CR”). However, the top 20 ranked edges220

in the FBTCS+ group contained four cross-hemisphere edges (shown Fig. 5, b,

“Gradient rank - CR”), compared to only one in the FBTCS- group.

4. Discussion

In this feasibility study, we applied a deep learning model to whole brain

structural connectomes from controls and patients with focal epilepsy, who were225

further grouped by seizure type (FBTCS+ and FBTCS-). The model parti-

tioned connectomes by assigning a gradient score to nodes and edges considered

12
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Figure 4: Top edges for each FBTCS group. The brain images and chord diagrams in (a

and b) and (d and f) illustrate the main connectome differences between the FBTCS+ and

FBTCS- groups. The bar charts in (c) and (e) show the top five edges for each group, which

were also clinically relevant. Nodes were defined as per the DK atlas [32]. Specifically, the

chord diagram in (b) shows that the FBTCS+ group had two cross-hemisphere edges its top

10 important edges, whereas the FBTCS- group did not. Key: L: Left, R: Right, AC: accum-

bens, AM: amygdala, CaCG: caudal anterior cingulate, CER: cerebellum, CU: cuneus, FG:

fusiform, HI: hippocampus, ICG: isthmus cingulate, IN: insula, IPG: inferior parietal, ITG:

inferior temporal, LG: lingual, LOG: lateral occipital, LOFG: lateral orbito frontal, MTG:

middle temporal, PHIG: parahippocampal, PaCG: paracentral, PrCG: precentral, POR: pars

orbitalis, PoCG: postcentral, PCAL: pericalcarine, PCU: precuneus, PTR: parstriangularis,

RMFG: rostral middle frontal, SFG: superior frontal, SPG: superior parietal, STG: superior

temporal.
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Figure 5: Top 100 edges for each group comparison. The top 100 ranked edges for

each group were plotted as described in Methods Section 2.3. The “Gradient rank-CR” chart

in (b) demonstrates the four cross-hemisphere edges in the FBTCS+ group compared to one

cross-hemisphere edge in the FBTCS- group. Key: LL: left to left hemisphere, RR: right to

right hemisphere, CR: cross-hemisphere.

14
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influential for classifying a participant into a given group. Results from the pa-

tient subgroups test identified connectome differences, disclosing unique nodes

and edges relevant to each group’s clinical characteristics. This study provides230

initial evidence of the utility of our deep learning model as a tool to evaluate

structural connectomes from patient subgroups. The clinical implications of

the results are now discussed in the context of improving diagnosis with deep

learning solutions.

First, our multi-layer perceptron model classified participants into their re-235

spective groups with similar accuracy to prior focal epilepsy research that ap-

plied different models and clinical questions. A recent work applied a supervised

learning algorithm to classify the whole brain structural connectomes of controls

and patients with TLE who were grouped according to seizure laterality, surgi-

cal outcome, and seizure freedom [31]. The DK atlas-based connectomes were240

combined with the fractional anisotropy (FA) diffusion metric, and MATLAB’s

reconstruction independent components analysis algorithm [48] applied to re-

duce dimensionality [31]. The classification model achieved a receiver operating

characteristic curve of 0.745 for the patients versus controls, 0.662 for left vs.

right seizure onset, and between 0.77-0.80 post-surgical seizure freedom.245

In a comparative work, Gleichgerrcht and colleagues [30] trained a deep

network on whole brain structural connectomes and used 5-fold cross-validation

to predict the postoperative seizure outcomes of 50 patients with mesial TLE.

Unlike the current study, the authors introduced a binary ‘masking’ element

to overcome the large number of parameters introduced by their chosen atlas250

(384-region AICHA atlas [33]). By feeding only the nodes above an arbitrary

pre-specified into the deep learning model, the group achieved a classification

accuracy with an 88±7 % positive predictive value for seizure freedom and a

mean negative predictive value of 79 ± 8% for seizure refractoriness.

By applying the deep learning approach to a different classification prob-255

lem in another epilepsy cohort, our findings expand the earlier evidence of the

potential of deep learning solutions to probe connectomes and reveal clinically

relevant information. Our “All patients” versus controls comparison resulted in

15
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a best model classification accuracy of 72.92% after 1000 repeated experiments.

The subsequent training and testing of the model on our patient subgroups260

(FBTCS+ and FBTCS-) also yielded a better than random chance accuracy

of 67.86% in the best model. The findings provide a proof of concept for our

deep learning model as a preemptive tool to extract a subset of nodes and edges

from large structural connectomes. In a clinical pipeline, the subset of nodes

and edges could subsequently guide further connectome, tractography or graph265

metric analysis.

A second key result was our model’s disclosure of several nodes and edges

known to be involved in focal epilepsy and FBTCS [9, 10]. The top five nodes

and top 10 edges for each group were aligned to each group’s clinical character-

istics in terms of the seizure onset zone and the structural and functional role of270

the region in seizure manifestation. Interestingly, since each group’s top nodes

and edges were both ipsilateral and contralateral, they primarily represented

the ratio of left versus right onset zones for each group.

Structurally, the top five nodes and edges in the FBTCS+ group contained

primarily adjacent mesial structures, some anatomically closer to the lower sub-275

cortical regions. For instance, the fusiform gyrus borders the hippocampal gyrus

and parahippocampal structures; the insula, amygdala, and inferior temporal

regions are neighbouring regions, as are the parietal, occipital and cerebellum

structures. The anatomical arrangement of structures in the FBTCS- group

followed a similar proximity pattern. The frontal lobe houses the rostral middle280

and superior frontal structures adjacent to the pars orbitalis, while the tem-

poral lobe houses the superior temporal and temporal pole nodes. The caudal

anterior cingulate, precuneus, paracentral lobule, and postcentral gyrus are all

neighbouring structures.

The contribution of the important nodes and edges to each group is buoyed285

by recent work exploring the influence of node abnormality in individuals with

FBTCS. Sinha and colleagues reported that individuals with FBTCS+ had

structural node abnormalities in subnetworks spatially correlated with their

seizure onset zone [6]. The group showed that the node abnormalities in in-
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dividuals without FBTCS tended to be localised to the temporal and frontal290

regions. In contrast, the significantly higher number of node abnormalities in

the group with FBTCS group was more widespread and included the subcortical

and parietal areas. A similar pattern was observed in our groups, as illustrated

in Fig 3. Further, the five top-ranked nodes and edges in the FBTCS- group

were consistent with prior findings of structural abnormalities in focal epilepsies295

without FBTCS [49, 10].

The functional perspective prompts several conceivable interpretations con-

cerning the patient subgroups. First, prior works have linked several top nodes

from the FBTCS+ group to secondarily generalised seizures using alternative

imaging analysis techniques [50, 51]. In a study comparing 16 individuals with300

FBTCS to controls, voxel-based morphometry and resting-state functional MRI

(rs-fMRI) were used to explore differences in structural and functional connec-

tivity [50]. Compared to controls, the FBTCS group showed significantly in-

creased functional connectivity from the left inferior temporal gyrus and left

middle frontal gyrus to the thalamus. In contrast, decreased functional connec-305

tivity values were found between the thalamus and the right insula.

The mediating role of the thalamus in cortico-cortical communication in

seizures that secondarily generalise has been analysed in rodent [52] and hu-

man [53, 11] studies. Reduced basal ganglia–thalamus network interaction is

suggested to increase the propensity for secondary generalisation [53, 54]. These310

works suggest an impaired or reduced thalamo-cortical interaction, which may

explain why the thalamus region did not receive a positive gradient score for

classification into the FBTCS+ group. On the other hand, the thalamus re-

ceived a positive gradient score for the FBTCS- group suggesting it may have

an active role in inhibiting seizure propagation.315

Second, the locale of the right pars orbitalis as a subregion of the inferior

frontal gyrus offers the prospect of an electrophysiological inhibition mechanism

in the FBTCS- group. The involvement of the right inferior frontal gyrus (rIFG)

subregions in the basal ganglia and subthalamic nucleus response inhibition net-

works was evaluated in 31 participants using dMRI and rs-fMRI [55]. Reliable320
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connections were identified between the pars orbitalis and the insula, putamen,

caudate, and subthalamic nucleus, all regions involved in the stopping network.

However, the current study design and data do not permit the unravelling of

such mechanisms; this is an avenue for future research.

Third, the hippocampus and parahippocampal structures comprised one-325

half of the top 10 edges in both groups, a finding that may be explained by

the groups’ clinical profile, as both had individuals with TLE. Hippocampal

sclerosis is the most frequently observed pathology in drug-resistant TLE [56,

57]. Therefore, an alternative interpretation might consider the role of the

hippocampus in individual variability of interhemispheric connectivity [58].330

An operational hippocampal commissure has been shown in human epilepsy

studies using depth EEG [59, 60]. Seminal work by Spencer and colleagues

identified that in seizures arising in the hippocampus, contralateral neocortical

involvement occurred with or after the contralateral hippocampus but never

before [59]. In another study, the same group proposed the concept of a hip-335

pocampus that is initially functionally symmetric yet then directly or indirectly

sustains an asymmetrical injury, i.e. one side is more damaged than the other.

In recordings of the bidirectional interhippocampal seizure propagation time

(ISHPT) from 50 individuals with TLE, a consistently longer ISHPT was emit-

ted from the more affected hippocampus rather than to it [60]. The authors340

proffer that functional deterioration from neuronal cell loss can result in pref-

erential propagation along the surviving efferent pathways unaffected by cell

loss [60].

Returning to our patient groups, it is feasible that the degree of hippocampal

aberration in the FBTCS- group creates a sufficient obstacle to neuronal recruit-345

ment and propagation of the abnormal electrical activity, such that it does not

propagate contralaterally. Therefore, the engagement of the parahippocampal

structure and its connection to the accumbens may be a preferential pathway

in this group. In contrast, perhaps the relevance of the hippocampus to the

FBTCS+ classification signals a level of cooperation between the hippocampus,350

amygdala, and cerebellum structures, which in turn supports a hypothesis of
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preferential commissural pathways in this group. In combination with prior sem-

inal works, our findings support the theory of the structure-function relationship

in FBTCS and highlight the value of a deep learning model in augmenting the

clinical repertoire to improve diagnosis accuracy.355

From a technical standpoint, our model may appeal to clinicians seeking

turnkey solutions that utilise deep learning. The structural connectomes were

generated using open-source software packages such as FreeSurfer [38] and MR-

trix3 [40], and our deep learning model was developed in python code, removing

the requirement for licensed software such as MATLAB. Therefore, one can en-360

visage the entire pipeline (connectome generation and model deployment) seam-

lessly implemented in a hospital ward, enabling the prospective assessment and

classification of new patients. Prospective evaluation of patients could inform

clinical decision-making and feed into longitudinal studies.

Currently, diagnosing seizures such as FBTCS is a complex process requiring365

extensive observation and clinical and medical information. A clinician relies

on patient and eyewitness descriptions if such seizures do not occur during

the initial standard ward observation period. However, patient-reported histo-

ries have yielded inconsistent seizure classification at a rate of approximately

25% [61] due to onset signs being missed by the patient’s carer or the patient’s370

capacity to describe their seizure [62]. The benefits of a prospective classifi-

cation into the FBTCS group include warning clinicians and carers to monitor

precisely for such seizures, the potential to reduce instances of delayed diagnosis

or misdiagnosis, and allowing tailored treatment that considers the possibility

of such seizures. As evidenced by prior work, classification results could also375

inform patients’ presurgical candidature, including the likelihood of achieving

postoperative seizure freedom. In that sense, fitting deep learning models into

automated software that can be a precursor to further clinical investigation

would enable an efficient and comprehensive diagnosis journey for the patient.

With additional verification, the highest-scoring nodes could potentially act as380

a predictive biomarker, indicating regions requiring greater examination.

As with any deep learning approach, our results demonstrate the optimal

19

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.23285681doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.09.23285681


level of accuracy attainable from the dataset and network architecture and must

be interpreted as such. The modest sample size of some groups introduces the

potential for overfitting and may restrict the generalisability of the findings, a385

concern shared by previous works [30, 31]. Additionally, the study and model

design did not account for clinical variables like onset, node or edge hemisphere,

which may limit the extent of interpretation. However, increasing the variables

in a modest sample size may not be statistically valid. Further, our results

must be considered in light of the DK atlas parcellations, which govern the390

extrapolations made from the top-ranking connections. The exploration and

comparison of different atlases were beyond the scope of the current work, yet

this is an important direction for future research. Our data collection is ongoing,

with the view to address the dataset-related limitations and further validate the

model. Future research will improve the model’s generalisability and accuracy395

by prospectively classifying new patients and comparing that classification with

follow-up data in a longitudinal study design.

In conclusion, we applied a deep learning model to structural connectomes

to classify patients from controls and individuals with and without FBTCS. The

model identified important nodes and edges for classifying patients into a given400

group with a promising degree of accuracy given the modest sample size. The

results from the patient subgroup classification were explainable from both the

structural and functional perspectives, suggesting such a model would be valu-

able in improving the prospective diagnosis of FBTCS. The subsets of nodes and

edges could also guide further patient-specific analysis. This work emphasises405

the potential of deep learning models designed to be clinically implemented as a

tool to aid patient diagnosis. There is an opportunity to conduct a prospective

classification of new patients, with a follow-up to determine whether the predic-

tion was correct. Future research could focus on improving the model accuracy

through training from a larger dataset and possibly including additional clinical410

variables.
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