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Abstract 43 

Background: Dysbiosis of gut microbial community is associated with the pathogenesis of CD and 44 

may serve as a promising non-invasive diagnostic tool. We aimed to compare the performances of 45 

the microbial markers of different biological levels by conducting a multidimensional analysis on 46 

the microbial metagenomes of CD. 47 

 48 

Methods: We collected fecal metagenomic datasets generated from eight cohorts that altogether 49 

include 870 CD patients and 548 healthy controls. The microbial alterations in CD patients were 50 

assessed at multidimensional levels including species-, gene- and SNV- level, and then diagnostic 51 

models were constructed using artificial intelligence algorithm. 52 

 53 

Results: A total of 227 species, 1047 microbial genes and 21877 microbial SNVs were identified 54 

that differed between CD and controls. The species-, gene- and SNV- models achieved an average 55 

AUC of 0.97, 0.95 and 0.77, respectively. Notably, the gene model exhibited superior diagnostic 56 

capability, achieving average AUCs of 0.89 and 0.91 in internal and external validations, 57 

respectively. Moreover, the gene model was specific for CD against other microbiome-related 58 

diseases. Further, we found that phosphotransferase system (PTS) contributed substantially to the 59 

diagnostic capability of the gene model. The outstanding performance of PTS was mainly explained 60 

by genes celB and manY, which demonstrated high predictabilities for CD with the metagenomic 61 

datasets and was validated in an independent cohort by qRT-PCR analysis. 62 

 63 
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Conclusions: Our global metagenomic analysis unravels the multidimensional alterations of the 64 

microbial communities in CD, and identifies microbial genes as robust diagnostic biomarkers across 65 

geographically and culturally distinct cohorts.  66 

 67 

Keywords: Crohn’s disease, microbiome biomarkers, non-invasive diagnosis, artificial intelligence, 68 

phosphotransferase system 69 

 70 

Introduction 71 

Crohn’s disease (CD), one of the two main forms of inflammatory bowel disease (IBD), is 72 

characterized by skip lesions and transmural inflammation of the gastrointestinal tract. The 73 

incidence of CD has risen globally in past two decades, causing substantial economic burdens for 74 

patients and societies [1, 2]. Currently diagnosis of CD is mainly based on the combined evaluation 75 

of endoscopic, radiographic and pathological findings [3, 4]. However, the diagnostic power of 76 

endoscopy is often limited by patient compliance, bowel preparation quality and other 77 

uncontrollable factors [5]. Therefore, a sensitive, specific and convenient non-invasive diagnostic 78 

tool for CD is urgently needed.  79 

 80 

Serologic and fecal biomarkers, such as C-reactive protein and fecal calprotectin, have been used 81 

as indicators to evaluate inflammatory activity in IBD [6, 7]. However, the accuracy and specificity 82 

of these biomarkers are not satisfactory. Recently, the diagnostic potential of the microbial 83 

signatures has emerged as potential diagnostic markers for IBD [8-12]. For instance, Pascal et al. 84 
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constructed a diagnostic model using microbial species abundance and achieved a sensitivity of 85 

81.8% for CD [11]. Similarly, Franzosa et al. reported a model that achieved an area under the ROC 86 

curve (AUC) of 0.92 [12]. Along this line, future effort is needed to conduct similar analysis 87 

incorporating multiple cohorts of distinct cultural and geographical background to identify markers 88 

of universal value. 89 

 90 

Notably, species abundance may not be an accurate representative of the microbial functions as 91 

reflected by the fact that the nomenclatures of many gut microbial species are currently and 92 

constantly being adjusted. In this regard, the diagnostic value of microbial genes and their 93 

polymorphisms has become popular subjects of investigation [13-16] (Fig. 1B). For example, 94 

microbial functional genes outperformed microbial species in distinguishing CRC from controls 95 

[14]. Similarly, a recent study demonstrated high accuracy of microbial SNVs for diagnosing CD 96 

[17]. Currently, an integrated investigation on multidimensional signatures of CD at species-, gene- 97 

and SNV-levels is missing and seems to be warranted in the clinic.  98 

 99 

In this study, with large numbers of whole metagenome sequencing (WMS) samples from 100 

multiple cohorts, we constructed diagnostic models for CD and systematically assessed the 101 

predictabilities of multidimensional signatures. Candidate biomarkers for CD diagnosis were 102 

identified and further validated by qRT-PCR with an independent cohort. Collectively, these results 103 

uncover the multidimensional alterations of the microbial communities in CD patients and provide 104 

unbiased and robust biomarkers for CD diagnosis. 105 
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 106 

Methods 107 

Study inclusion and data acquisition 108 

For discovery dataset, we used PubMed to search for studies that published fecal shotgun 109 

metagenomic data of CD patients and controls. Raw FASTQ files of 1241 fecal samples from four 110 

studies were downloaded from the European Nucleotide Archive (ENA) including datasets ‘D1-D4’ 111 

(Fig. 1A).  112 

 113 

For validation dataset, the raw data of 177 samples from three studies were collected from the 114 

ENA including datasets ‘V1-V3’ (Fig. 1A). The clinical characteristics of patients were shown in 115 

Table S1.  116 

 117 

To evaluate whether the prediction model is specific for CD rather than non-CD diseases, we 118 

further collected five cohorts of non-CD diseases including ulcerative colitis (UC), colorectal cancer 119 

(CRC), type-2 diabetes (T2D), liver cirrhosis (LC) and Parkinson's disease (PD). 120 

 121 

Patient recruitment and sample collection of Chinese cohorts 122 

The Chinese cohort D5 consisted of 40 CD and 53 control samples (Table S2). The CD patients 123 

and controls were enrolled at the Sixth Affiliated Hospital of the Sun Yat-sen University, 124 

Guangdong province, China.  125 

 126 
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For qRT-PCR validation, we enrolled CD patients and controls at the Shanghai Tenth People’s 127 

Hospital. Patients with diagnosis of CD were included in the study. Potential participants were 128 

excluded if they were pregnant, were diagnosed with indeterminate colitis, had an acute 129 

gastrointestinal infection, or had antibiotic therapy within 3 months. In total, we collected 73 fecal 130 

samples (N = 37 for CD and N = 36 for control, Table S3) that were then stored at −80 °C before 131 

DNA extraction. The study was approved by the Institutional Review Board at the Shanghai Tenth 132 

People’s Hospital, Tongji University, Shanghai (No. 20KT863), and each participant provided 133 

informed consent. 134 

 135 

Quality control of WMS sequencing data 136 

For preprocessing of the WMS sequencing data, quality control was performed using KneadData 137 

V0.6.0. Subsequently, reads with length lower than 50bp, or with low quality bases were filtered 138 

out by Trimmomatic software (V0.32). Furthermore, reads that mapped to the mammalian genome, 139 

bacterial plasmids, UNiVec sequences, and chimeric sequences were removed.  140 

 141 

Annotation and abundance estimation of microbial taxa, genes and SNVs 142 

For multi-kingdom species level analysis, The customized reference database was constructed with 143 

18756 bacterial, 359 archaeal, 9346 viral reference genomes from the NCBI Refseq database 144 

(accessed on January 2020), and 1094 fungal reference genomes from the NCBI Refseq database, 145 

FungiDB (http://fungidb.org) and Ensemble (http://fungi.ensembl.org) (all accessed on January 146 

2020). Quality-filtered reads were aligned and quantified by Kraken2 [18] and Bracken, respectively.  147 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.23285672doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.09.23285672


 8 

For microbial gene level analysis, we assembled the quality-filtered metagenomes into contigs 148 

with Megahit (v1.2.9) [19] using ‘meta-sensitive’ parameters. Contigs shorter than 500-bp were 149 

excluded for further analysis. Prodigal (v2.6.3) software [20] was used to predict genes at the 150 

metagenome mode (-p meta). A non-redundant microbial gene reference was constructed with CD-151 

HIT [21] using a sequence identity cut-off of 0.95, and a minimum coverage cut-off of 0.9 for the 152 

shorter sequences. The reference was annotated with EggNOG mapper (v2.0.1) based on EggNOG 153 

orthology data. Subsequently, CoverM (V4.0) was used to estimate gene abundances by mapping 154 

reads to the non-redundant reference and to calculate the coverage of genes in the original contigs. 155 

The abundance of KEGG orthologous (KOs) groups were calculated by summing the expression of 156 

genes annotated to the same KOs.  157 

For SNV level analysis, MIDAS was used to perform microbial SNV annotation [22]. A 158 

customized reference genome database was constructed to include 7 species with sufficient 159 

coverage (>3X) in at least 20% of all samples. Then, the WMS reads were mapped to the database 160 

for SNV calling. Subsequently, the SNV profiles of all samples were merged, with only bi-allelic 161 

positions chosen. Other parameters were identical with those of the preset option ‘—core_snps’ 162 

(merge_midas.py snps –core_snps).  163 

 164 

Diagnostic model construction and evaluation 165 

Model construction 166 

Artificial intelligence (AI) algorithm called feedforward neural network (FNN) was employed to 167 

construct the diagnostic model. In detail, the hidden layers were activated by rectified linear unit 168 
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(ReLU) activation function and the output layer was activated by sigmoid function. Subsequently, 169 

we performed stratified ten-fold cross-validation to avoid overfitting issue and model estimation 170 

using Scikit-learn 1.1.0. Finally, we trained the diagnostic model with well-optimized 171 

hyperparameter combinations with TensorFlow 2.8.0. The feature importance was evaluated with 172 

SHapley Additive exPlanations (SHAP) [23] to explain the output of machine learning model. 173 

 174 

Model interpretation  175 

To better interpret the compositions and corresponding contributions of features in model, we 176 

grouped KO genes by gene sets based on the priori knowledge of KEGG database. Subsequently, 177 

we randomly shuffled the abundance values of KO genes of a gene set in validation dataset, and 178 

performed predictions using the constructed diagnostic model. The decrease of AUC was 179 

considered as the importance of gene set to the diagnostic model. The above procedure was repeated 180 

for 50 times.  181 

 182 

Evaluation of the model’s robustness and generalization 183 

To test the robustness and generalization of selected optimal model among distinct cohorts, we 184 

performed cohort-to-cohort transfer and leave-one-cohort-out (LOCO) validation as described in 185 

our previous studies [24, 25]. For cohort-to-cohort transfer, diagnostic models were trained on one 186 

single cohort and validated on each of the remaining cohorts. For LOCO validation, one single 187 

cohort was set as the validation dataset while all other cohorts were pooled together as the discovery 188 

dataset.  189 
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 190 

Disease specificity assessment of prediction model 191 

Using non-CD diseases samples of UC, CRC, T2D, LC and PD, we evaluated the disease specificity 192 

of the predictive model for CD, following the method described by Thomas et al [26]. In detail, we 193 

randomly selected 10 control samples and 10 case samples from non-CD external data and added 194 

them into the control group in the validation dataset. If the model is specific for CD, the model 195 

would not perform worse with the addition of a case relative to the addition of the controls, because 196 

the model does not cover the characteristics of non-CD diseases. We repeated the procedure for 50 197 

times.  198 

 199 

Validation of microbial genes by qRT-PCR 200 

The gDNA was extracted with the TIANamp Stool DNA Kit (Cat# 4992205, TIANGEN) according 201 

to the manufacturer’s instructions. The primers used for validation are listed in Table S4. To 202 

perform the qRT-PCR analysis, the reaction mixture contained the primer pair with concentrations 203 

diluted to 0.2 μM and 10 ng gDNA in a 10 μl final volume with the SYBR Green qPCR Mix 204 

(Thermo Fisher Scientific). The cycling program was set as indicated: pre-denaturation at 95 °C for 205 

10 min; denaturation at 95 °C for 15 s and annealing at 60 °C for 60 s for 40 cycles, followed by 206 

melting curve analysis. The qRT-PCR results were quantitated by calculating −ΔΔCt values 207 

between candidate genes and the 16S gene. The significance of the comparison between CD and 208 

control samples was tested by a two- sided Wilcoxon rank-sum test (P < 0.05).  209 

 210 
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Statistical analysis 211 

Alpha and beta diversity analysis 212 

Alpha diversity of taxonomic profiles including Shannon, ACE, Simpson and Chao1 index were 213 

calculated based on Bray-Curtis distance using R (V4.0.5) “vegan” (V2.5.7) package. Beta diversity 214 

between groups were calculated by permutational multivariate analysis of variance (PERMANOVA) 215 

called adonis test, and significance was evaluated with 999 permutations.  216 

 217 

Co-abundance analysis 218 

Firstly, we generated species abundance profiles of CD and controls, respectively. Then we 219 

employed SparCC [27] to perform co-abundance analysis of differential multi-kingdom species. 220 

Correlations between differential multi-kingdom species were determined with 50 iterations. Then 221 

SparCC resampled the original dataset through bootstrap method to obtain random datasets. Later, 222 

pseudo-p-values are calculated from these random data sets to assess the significance of the initial 223 

observation scores. The statistical significance was calculated with 999 permutations. The network 224 

was visualized with Gephi (V0.9.5). 225 

 226 

Multidimensional signatures association analysis 227 

To further explore the potential associations between multi-dimensional signatures, Hierarchical 228 

All-against-All association testing (HALLA, V 0.8.20) [28] was performed. We generated species-, 229 

gene-, and SNV-profiles of CD patients and controls, respectively. Subsequently, the associations 230 

between the species-, gene-, SNV-signatures were calculated in pairs by HALLA. After that, we 231 
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merged the output correlation matrices. Correlations with |cor| > 0.4 and P-values < 0.05 were used 232 

to constructed the network and visualized with Gephi (V0.9.5). 233 

 234 

Results  235 

Characterization of multicohort WMS data and study design 236 

In this study, we collected eight fecal shotgun metagenomics datasets from published studies to 237 

characterize the gut microbiome in CD patients compared to healthy controls (Fig. 1A). Patients 238 

treated with antibiotics were excluded. In total, we included 785 samples from CD patients and 456 239 

healthy control samples across geographically distinct regions from U.S. and China as the discovery 240 

dataset. In addition, 85 CD samples and 92 controls from three independent cohorts from U.S., 241 

Spain and Netherlands were included as the validation dataset. The overall protocol for this study 242 

(Fig. 1C) was based on the workflow of a previous study [24] with modifications. 243 

   244 

Multidimensional alterations in gut microbial profiles in CD patients 245 

At species level, we found that alpha and beta diversities were significantly differed between CD 246 

patients and controls (Fig. 2A-B). A total of 80 bacterial species were identified with significantly 247 

different abundances between CD and control, such as Escherichia coli, Flavonifractor plautii, 248 

Klebsiella pneumoniae and Bacteroides intestinalis. (Fig. 2C; Table S5). Besides, 147 non-249 

bacterial species including 70 fungus, 42 viruses and 35 archaea exhibited differential abundances 250 

between CD and controls, such as Aspergillus rambellii, Capronia epimyces, Bacteroides phage 251 

B124-14, Klebsiella virus KpV80 and DPANN group archaeon LC1Nh (Fig. S1 and Table S5). 252 
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Further, we investigated the differences in microbial interactions between CD and controls by 253 

performing co-abundance analysis via SparCC. Interestingly, interactions among intra-kingdom 254 

species were more frequently observed in the network of CD, compared to the network of controls 255 

(Fig. S2), indicating large scale alterations in the structure and function of the gut microbiome in 256 

CD. 257 

 258 

Next, we assessed the microbial alterations at KO gene level, and identified 497 genes with 259 

increased abundance and 1043 genes with decreased abundance in CD patients, such as the genes 260 

encoding peptide/nickel transport system permease protein (ABC.PE.P), mannose PTS system EIIC 261 

component (manY), flagellin (fliC) and cellobiose PTS system EIIC component (celB) (Fig. 2E; 262 

Table S6). For better understanding of these differential KO genes, we performed gene set 263 

enrichment analysis (GSEA). 59 enriched pathways, including 18 pathways with increased 264 

abundances and 41 with decreased abundances in CD patients, were identified (Fig. S3A and Table 265 

S7). Propanoate metabolism, quorum sensing, phosphotransferase system (PTS) and purine 266 

metabolism exhibited increased abundances in CD, while biosynthesis of secondary metabolites, 267 

pantothenate and CoA biosynthesis exhibited decreased abundances in CD.  268 

 269 

For microbial SNV level analysis, a total of 7 commonly observed species that have sufficient 270 

coverage (> 3X) in at least 20% of the samples were annotated, with the number of SNVs ranging 271 

from 74 with Bacteroides rodentium to 99305 with Bacteroides vulgatus (Fig. S3B and Fig. S4). 272 

A total of 21877 differential SNVs were identified in the seven annotated species (Fig. S3C). For 273 
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instance, Bacteroides vulgatus, belonging to the most commonly encountered Bacteroides species 274 

in the human colon, had 11134 significantly differential SNVs that located on genes such as panC, 275 

rodA and ruvB. (Fig. 2D; Table S8). These differential SNVs are potential candidates of risk factors 276 

mediating abnormal gene functions. Collectively, we systemically assessed the multidimensional 277 

microbial alterations in CD patients compared to controls, and identified differential signatures for 278 

diagnostic model construction. 279 

 280 

Diagnostic models for CD based on microbial multidimensional signatures  281 

Based on all of the differential signatures at species-, gene- and microbial SNV-levels, we 282 

constructed models using deep learning algorithm. At species level, we firstly evaluated the 283 

capability of single-kingdom species for distinguishing CD from controls. The average AUCs of 284 

cross-validation based on fungal, viral, archaeal signatures were 0.89, 0.81 and 0.76, respectively. 285 

Compared to non-bacterial species, bacterial species demonstrated a better performance in disease 286 

prediction (average AUC=0.94) (Fig. S5A-D). Furthermore, we merged single-kingdom signatures 287 

together, and found that the species model based on multi-kingdom signatures had higher diagnostic 288 

accuracy with an average AUC of 0.97 (Fig. 3A; Fig. S5E). Interestingly, we noticed that several 289 

fungal species including A. rambellii and A. ochraceoroseus were top-ranking features of the model 290 

with high SHAP values, suggesting their close association with CD pathology (Fig. S6A and Table 291 

S9).  292 

 293 
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Subsequently, we constructed a diagnostic model based on 1047 differential KO genes. The gene 294 

model achieved an average AUC of 0.95 in 10-fold cross-validation, slightly lower than that of the 295 

multi-kingdom species model (Fig. 3A). From feature importance evaluation, we found that CDP-296 

abequose synthase (rfbJ), type VI secretion system protein ImpB (impB), nitrite reductase (NO-297 

forming) (nirK), and celB were the most important KO genes with SHAP values ranged from 0.006 298 

to 0.008 (Table S10). Notably, the KO gene celB was found to be significantly increased in CD 299 

patients of each dataset (Fig. S6B), suggesting an outstanding contribution of celB gene to the 300 

diagnostic power of the model. 301 

 302 

Furthermore, we explored the diagnostic potentials of microbial SNVs. The SNV model achieved 303 

an average AUCs of 0.77 in cross-validation (Fig. 3A). The most important SNVs were mainly from 304 

Bacteroides species including B. ovatus, vulgatus and uniformis (Fig. S7A and Table S11). As the 305 

most widely colonized microbes in the gut [29], Bacteroides species contributes to the major 306 

diagnostic power of the SNV model in our results.  307 

 308 

Finally, we constructed a model with the combination of species-, gene- and SNV-signatures (Fig. 309 

S8D). The combined model achieved an average AUC of 0.95. Interestingly, the performance of 310 

combined model was not significantly improved compared to species- and gene- models, and most 311 

of the top-ranking features were from KO genes (Fig. 3A; Fig. S7B). These results suggest that the 312 

gene signatures are the most powerful biomarkers for CD. 313 

 314 
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Gene model achieves superior robustness and generalization 315 

To assessed the robustness and generalization of species-, gene-, SNV- and combined models, we 316 

performed internal and external validations. With the internal validation cohorts, the gene model 317 

achieved the highest average AUCs of 0.87 and 0.89 in cohort-to-cohort transfer and LOCO 318 

validation, respectively (Fig. 3C-D), compared to other diagnostic models (Fig. S9A-G). In external 319 

validation, the gene model also exhibited the best performance with an average AUC of 0.91 in 320 

three independent cohorts (Fig. 3B). Taken together, the gene model demonstrated superior 321 

robustness compared to the species-, SNV-model and even the combined model.  322 

 323 

Gene model is highly specific for CD 324 

To ascertain the discriminative power of the gene model, that is, the model is specific for CD but 325 

not other microbiome-related diseases, we chose five microbiome-related diseases including UC, 326 

CRC, PD, T2D and LC to evaluate the disease specificity of the gene model. Adding UC samples 327 

into three independent validation cohorts decreased the AUC by 6.6, 10.1 and 12.9%, respectively 328 

(Fig. 3E). These changes were not significant considering the baseline values of the altered AUCs 329 

when adding CD samples in the validation dataset (decreased AUCs by 10.7, 17.5 and 20.5%, 330 

respectively, Fig. S9H). With CRC cohorts, slight and insignificant changes of AUCs in validation 331 

(decreased by 0.7, 1.1 and 1.3%, respectively) were observed. Similarly, slight and insignificant 332 

changes of AUC were observed in validations with T2D (increased by 2.0, 3.4 and 4.0%, 333 

respectively), liver cirrhosis (increased by 1.5, 2.5 and 3.0%, respectively) and PD (increased by 334 

1.6, 2.6 and 3.1%, respectively). Altogether, the slight changes in AUCs suggest limited effects of 335 
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the samples with non-CD diseases on the CD model, indicating that our diagnostic model is specific 336 

for CD. 337 

 338 

Outstanding contributions of phosphotransferase system to the diagnostic capability of the 339 

gene model 340 

To evaluate the respective contributions of each gene set and of key gene feature in the gene model, 341 

the KO gene features were grouped by gene set and the importance of each gene set was evaluated 342 

as described in Methods section. Relative to the baseline AUC of 0.91, the abundance disturbance 343 

of the gene sets quorum sensing, PTS and ABC transporters caused the greatest decrease of AUC 344 

in the predictive model by 1.09 to 1.70 percent (Fig. 4A). Further, we performed recursive feature 345 

elimination by gene sets and reconstructed diagnostic models. We found that the AUC of cross-346 

validation did not decrease significantly until the glycerolipid metabolism gene set was eliminated, 347 

which confirmed the important contribution of quorum sensing, PTS, ABC transporters, fructose 348 

and mannose metabolism and glycerolipid metabolism to the diagnostic model (Fig. S10A). To 349 

further strengthen these results, we constructed a sub-model with genes of these five gene sets, 350 

which achieved an AUC of 0.89 in cross-validation (Fig. S10B). The sub-model displayed decent 351 

robustness in internal validations and achieved an average AUC of 0.81 in external validation (Fig. 352 

S10C). Notably, we found that celB was the most important feature in the sub-model (Table S12). 353 

These results suggest that the above identified gene sets are the key contributors to diagnostic 354 

capabilities of the gene model. 355 

 356 
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Next, we assessed the prediction power of representative KO genes of each gene set (Table S13). 357 

Notably, celB and manY displayed excellent diagnostic capabilities with AUCs of 0.74 and 0.71, 358 

respectively (Fig. 4B). Since celB and manY (also a member of fructose and mannose metabolism) 359 

are both members of PTS, the above results indicate that PTS gene set mediated the most significant 360 

functional alterations of gut microbiome in CD patients. Finally, we validated the abundances of 361 

celB and manY with an independent cohort of CD patients and controls by qRT-PCR. Consistent 362 

with the metagenomic data (Fig. 4C), both celB and manY were significantly more abundant in CD 363 

patients (Fig. 4D). Additionally, we validated the abundances of those genes that belong to 364 

important pathways and with high feature importance by qRT-PCR (Fig. S11). These results 365 

revealed the respective contributions of individual gene feature to the diagnostic capability of the 366 

gene model, and identified celB and manY as the individual biomarkers with the highest predictive 367 

power for diagnosing CD. 368 

 369 

Altered interactions within and between each level of microbial signatures in CD  370 

For a global understanding of the interactions among all the microbial signatures in CD, we 371 

investigated the associations among all the microbial signatures via HALLA (Fig. 5A-B). In both 372 

CD and control networks, considerable associations were observed between KO genes and species, 373 

but few observed between SNVs and the other two levels (|correlation| > 0.4) (Fig. 5B, E). More 374 

associations were observed in the network of CD (206 associations) (Fig. 5D), than in the network 375 

of controls (163 associations) (Fig. 5G; Table S14-15). Interestingly, there were more negative 376 

associations between the gene- and the species-signatures in the control network than that in the CD 377 
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network. For example, D-nopaline dehydrogenase (nos), type IV secretion system protein TrbJ (trbJ) 378 

genes were negatively associated with R. hominis, R. bassiana, and C. aerofaciens. Notably, we 379 

found that KO genes had stronger degree centrality than species in the CD network (Fig. 5C). 380 

Moreover, compared to the control network, these KO genes in CD tended to form isolated clusters, 381 

as exemplified by the independent module consisting celB and manY in the CD network (Fig. 5A).  382 

  383 

Discussion 384 

Here, for the first time, multidimensional microbial signatures of CD were systematically analyzed 385 

with multiple cohorts of distinct cultural and geographical backgrounds. In comparison of the 386 

diagnostic capabilities of the microbial signatures including differential species, genes and SNVs, 387 

the gene model achieved superior accuracy and robustness in distinguishing CD from controls, and 388 

the gene model was specific for CD against other microbiome-related diseases. Finally, the major 389 

contributing genes in the gene model were identified and validated.  390 

 391 

The multidimensional alterations of the gut microbiome in CD patients contain massive 392 

information that could predict the disease state. Therefore, we employed deep learning method to 393 

fit the underlying characteristics of gut microbiome in CD. With the microbial species models, while 394 

bacterial species achieved the best performance among single-kingdom models, multi-kingdom 395 

model with both bacteria and non-bacterial species achieved better accuracy than the single-396 

kingdom models, which is similar to our observations with the microbial models for colorectal 397 

cancer [14].  398 
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Comparing models of three different types, the gene model demonstrated the best generalization 399 

and robustness in model evaluations compared to the species-, SNV- and combined models. This is 400 

reasonable, considering that the homologous genes of different microorganisms may contribute to 401 

the same abnormalities in the gut microbiome in connection to specific pathological processes [30, 402 

31].  403 

 404 

In examining the contributions of individual gene set and gene to the diagnostic capabilities of 405 

the gene model, we found that genes that belong to PTS gene set had great impacts on the model 406 

accuracy in abundance disturbance analysis. The importance of the PTS gene set in the diagnosis 407 

model was also demonstrated in recursive feature elimination analysis and in cross-validation of the 408 

sub-model. In gut bacteria, the PTS is known as a system that catalyze sugar transport as well as 409 

sugar phosphorylation [32, 33]. In addition, the PTS regulates a wide variety of transport, metabolic 410 

processes, biofilm formation and virulence [34], thus it is considered as a comprehensive regulation 411 

and coordination system. We observed that the CD patients exhibited increased abundance in PTS , 412 

and that the KO genes in PTS were associated with the differential species in CD (Fig. S12A), such 413 

as Streptococcus pneumoniae and A. ochraceoroseus that are associated with gut diseases [35-37]. 414 

That is, PTS may participate in the pathogenesis of CD.  415 

More importantly, the KO gene celB that encodes the enzyme IIC component (EIIC) of cellobiose 416 

PTS, exhibited the top-ranking predictability among all the gene markers and an increased 417 

abundance in CD patients. These observations support an outstanding potential for the microbial 418 

gene celB of PTS to be used as a biomarker for non-invasive CD diagnosis. Moreover, celB was 419 
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associated with K. pneumonia (Fig. S12B), which is in line with the roles of celB component of 420 

PTS in biofilm formation and the virulence of K. pneumoniae [38], and the roles of K. pneumoniae 421 

in the initiation and perpetuation of the pathological damage of CD were also demonstrated [39]. 422 

We also observed a significant increase of K. pneumoniae in CD patients (Fig. S12C and Table 423 

S5). Therefore, it is reasonable to hypothesize that the interaction between celB and K. pneumoniae 424 

may contribute to the development of CD.  425 

Another microbial gene manY was also identified as a biomarker for CD diagnosis. manY encodes 426 

the EIIC component of mannose PTS system (man-PTS) that is a part of the PTS regulatory network. 427 

The hairpin tips of IIC in man-PTS is coordinated with mannose and mediates the mannose transport 428 

[40]. Interestingly, previous studies found that man-PTS and cellobiose-PTS were upregulated in 429 

gut microbes by changing from a low-fat diet to a high-fat, high-sugar diet [40, 41], suggesting that 430 

the PTS of gut microbes is sensitive to the nutritional environment of mucosal surfaces. Thus, the 431 

up-regulations of celB and manY in CD likely indicate the up-regulation in the biological activities 432 

of cellobiose-PTS and man-PTS in association with CD pathology. That is, manY may also 433 

participate in the pathogenesis of CD. However, the cause of these alterations in CD is not clear and 434 

requires further investigation.  435 

 436 

Our work takes advantages of excellent adaptability and learning ability of AI in large dataset 437 

and provides an effective non-invasive diagnostic tool with improved discrimination power for CD. 438 

However, the interpretability of the AI model is limited, which could be improved with a causal 439 

analysis in the future.  440 
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 441 

Conclusions 442 

Our global metagenomic analysis unravels the multidimensional alterations of the microbial 443 

communities in CD and identifies microbial genes as robust diagnostic biomarkers across cohorts. 444 

These genes are functionally related to the pathogenesis of CD. Future study on these genes may 445 

lead to an effective non-invasive diagnostic tool for CD. 446 
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 599 

Figure Legends 600 

 601 

Fig. 1. Overview of the fecal samples included in this study and the analysis protocol. A We 602 

collected a total of 1418 samples from 8 cohorts with fecal shotgun metagenomic data. The 603 

discovery dataset included D1, D2, D3, D4 and D5. The validation dataset included V1, V2 and V3. 604 
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B Three levels of analysis were conducted in this study: species-, gene- and microbial SNV- levels. 605 

C The overall workflow of the study: Firstly, the microbial alterations were identified to retrieve 606 

the differential multidimensional signatures of gut microbiome. Subsequently, diagnostic models 607 

were constructed and the optimal model was selected according to the performances of the models 608 

in internal and external validations. Finally, disease specificity of model was evaluated and model 609 

interpretation was conducted for final determination of the microbial biomarker, and then 610 

biomarkers were validated by qRT-PCR analysis.   611 

 612 

 613 

Fig. 2. Multidimensional alterations in the gut microbiome of CD patients at species-, gene- 614 

and SNV-levels. A Alpha diversity measured by Shannon, ACE, Simpson and Chao1 index of 615 

patients with CD (orange, n = 785) and control individuals (blue, n = 456); *P < 0.05, **P < 0.01, 616 

***P < 0.001 and ****P < 0.0001. B Principal coordinate analysis (PCoA) of samples from all five 617 

cohorts based on Bray–Curtis distance, which shows that microbial compositions were different 618 

between groups (R2 = 0.0265, P = 0.001). P values of beta diversity based on Bray–Curtis distance 619 

were calculated with PERMANOVA by 999 permutations (two-sided test). C Phylogenetic tree 620 

showing the differential bacteria species, grouped by the phyla. The differential species in each 621 

dataset are shown in each circle ‘D1-D5’ (P < 0.05, two-sided test); the meta-analysis results in 622 

integrated dataset were marked by ‘All’. Increased and decreased abundances are indicated by red 623 

and blue, respectively. D The chord diagram shows the distributions of annotated SNVs in 624 

Bacteroides vulgatus genome. The outer circle represents the genome of B. vulgatus; the inner 625 
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circles represent the GC-content (cyan indigo lines), sequencing depth (purple lines) and sites of 626 

differential SNVs (brown points) in the genome, respectively. E UpSet plot showing the number of 627 

differential KO genes identified via MaAsLin2 in each dataset and those shared by the datasets. 628 

The number above each column represents the intersection size of differential KO genes. The 629 

connected dots represent the common differential genes across connected cohorts. The set size on 630 

the right represents the number of differential genes in each cohort. 631 

 632 

Fig. 3. The performance of diagnostic models constructed with multidimensional signatures. 633 

A The ROC curves from ten-fold cross-validation of species-, gene-, SNV- and combined diagnostic 634 

models. B The AUCs of species-, gene-, SNV- and combined diagnostic models in external 635 

validation dataset. C The AUCs of each model in cohort-to-cohort validation. Each number 636 

represents the average AUC of validation with the cohort specified by its column tag as the training 637 

cohort, and all other cohorts as the validation cohorts. D The AUC of each model in LOCO 638 

validation. Each number represents the resulting AUC of validation with the cohort specified by its 639 

column tag as the validation cohort while the other cohorts combined as training cohort. E 640 

Prediction performances as AUC values on the validation cohorts when adding an external set of 641 

control and case samples from non-CD disease cohorts (ulcerative colitis (UC), colorectal cancer 642 

(CRC), type-2 diabetes (T2D), liver cirrhosis (LC) and Parkinson’s disease (PD)). Gray and colored 643 

bars are the AUCs after adding control and case samples from the non-CD disease cohorts, 644 

respectively.  645 

 646 
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Fig. 4. The model interpretation of the gene model. A The left column lists the average percent 647 

change of AUC after shuffling the abundance values of the genes in each gene set in validation 648 

dataset with the background color indicating the degrees of AUC change; the center left column 649 

lists the number of KO genes in each gene set with the background color indicating the set size; the 650 

center right column is the representative signature of each gene set; and the right column lists the 651 

cross-validation AUC of the representative microbial gene with the background color indicating an 652 

increased (red) or decreased (blue) AUC. The line plot shows the values of feature importance of 653 

the representative signatures (upper horizontal axis); the box plot shows the AUCs of each gene set 654 

in validation dataset with the dotted line representing the baseline AUC of 0.91 (lower horizontal 655 

axis). B The ROC curve shows diagnostic performance of microbial gene celB and manY, 656 

respectively. C-D The box plot shows the abundances of celB (upper) and manY (lower) in 657 

metagenomic data (C) and qRT-PCR data (D) (N=37, CD; N=36, control), respectively. Data are 658 

presented as mean ± standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001. 659 

 660 

Fig. 5. The cross-talk between multidimensional signatures. A-B Correlations among species-, 661 

gene- and SNV- signatures in the control (A) and the CD (B) networks. The colors of nodes indicate 662 

signatures of different levels: species (green), KO genes (yellow), and SNVs (brown). Red line 663 

indicates positive interaction; and blue line indicates negative interaction (|correlation|>0.4, FDR < 664 

0.05). C Density distribution of correlations between different levels of signatures (FDR < 0.05) in 665 

the control network. D Density distribution of node degrees for different levels of signatures 666 

((|correlation|>0.4, FDR < 0.05) in the control network. E Numbers of edges (|correlation|>0.4, FDR 667 
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< 0.05) in the control network. F Density distribution of correlations between different levels of 668 

signatures (FDR < 0.05) in the CD network. G Density distribution of node degrees for different 669 

levels of signatures ((|correlation|>0.4, FDR < 0.05) in the CD network. H Number of edges 670 

(|correlation|>0.4, FDR < 0.05) in the CD network.  671 

 672 
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