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Abstract 

Background: Labeling error may restrict radiography-based deep learning 

algorithms in screening lung cancer using chest radiography. Physicians also need 

precise location information for small nodules. We hypothesized that a deep learning 

approach using chest radiography data with pixel-level labels referencing computed 

tomography enhances nodule detection and localization compared to a data with 

only image-level labels. 

Methods: National Institute Health dataset, chest radiograph-based labeling dataset, 

and AI-HUB dataset, computed tomography-based labeling dataset were used. As a 

deep learning algorithm, we employed Densenet with Squeeze-and-Excitation blocks. 

We constructed four models to examine whether labeling based on chest computed 

tomography versus chest X-ray and pixel-level labeling versus image-level labeling 

improves the performance of deep learning in nodule detection. Using two external 

datasets, models were evaluated and compared. 

Results: Externally validated, the model trained with AI-HUB data (area under curve 

[AUC] 0.88 and 0.78) outperformed the model trained with NIH (AUC 0.71 and 0.73). 

In external datasets, the model trained with pixel-level AI-HUB data performed the 

best (AUC 0.91 and 0.86). In terms of nodule localization, the model trained with AI-

HUB data annotated at the pixel level demonstrated dice coefficient greater than 

0.60 across all validation datasets, outperforming models trained with image-level 

annotation data, whose dice coefficient ranged from 0.36-0.58. 

Conclusion: Our findings imply that precise labeled data are required for 

constructing robust and reliable deep learning nodule detection models on chest 

radiograph. In addition, it is anticipated that the deep learning model trained with 

pixel-level data will provide nodule location information.  
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Introduction 

Pulmonary disorders are the top global causes of morbidity, mortality, and utilization 

of health services.1 Due to its accessibility, relative affordability, and widespread 

availability in outpatient clinics, chest radiography is the most widely performed 

diagnostic test in everyday medical practice.2 It is also widely used to screen lung 

cancer, the leading cause of cancer-related death for both men and women in the 

United States.3 Because missed pulmonary nodule or mass at chest radiography can 

result in delayed diagnoses and management for benign and malignant conditions, 

every image should be promptly reported by a radiologist. However, this is not 

always possible due to the high volume of work in many large healthcare facilities or 

the lack of experienced radiologists in less developed regions.4-6 

Deep learning has shown a remarkable success in recent years.7 Using deep 

learning with convolutional neural networks in radiography has yielded excellent 

results in the diagnosis of numerous pulmonary disorders, such as pulmonary 

tuberculosis, pneumonia, and lung nodule.8-11 Prior research in deep learning for 

lung nodule detection were trained on large datasets, including National Institute of 

Health (NIH) Chest X-ray 14,12 CheXpert,13 and MIMIC-CXR.14 However, the 

performance of these algorithms are likely constrained by the dataset's class 

imbalance and label noise resulting from disease label extraction process.15, 16 

Incorrect labels hinder the generalization of predictive models and the validity of 

model evaluation during training and testing, respectively.17 Hence, label cleaning is 

therefore crucial to improve both model training and evaluation. In addition, in terms 

of pulmonary nodule detection, these algorithms offered limited information on the 

precise location, which is crucial due to the small and localized nature of pulmonary 

nodules.18 Consequently, high-quality data referenced to chest computed 

tomography (CT) with pixel-level label is desired in pulmonary nodule detection using 

deep learning algorithm.19 

In the present study, we hypothesized that a deep learning algorithm utilizing chest 

radiography data with pixel-level labels referencing to chest CT improves nodule 

detection and localization performance when compared to a dataset containing only 
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image-level labels.

 

Methods 

Our study was conducted with approval from the institutional review boards (IRB) of 

all participating centers (JLK Inc., and Gil medical center), and exemption from IRB 

review for AI-HUB datasets. The requirement for informed consent was waived. 

 

Datasets 

Using two distinct datasets, we compared the nodule classification and localization 

performance between data with a noisy label and data with a clean label based on 

chest computed tomography. Randomly, the datasets were divided into train (70%), 

tune (10%), and validation (20%) sets. We utilized NIH Chest X-ray 14 dataset12 as 

big data with a noisy label. In Chest X-ray 14 dataset, a total of 112,120 frontal chest 

radiographs and their accompanying text reports were retrospectively retrieved from 

the PACS database of the NIH Clinical Center. As abnormal cases, we extracted 

3,609 chest radiographs labeled only with nodule or mass. In addition, an equal 

number of normal cases were selected at random to match the number of abnormal 

cases. We used chest X-ray data from AI-HUB, a public dataset from the Republic of 

Korea, as a dataset with clean labels. The AI-HUB data set was retrospectively 

collected from a university hospital. The presence of a nodule on a chest radiograph 

was confirmed by experienced thoracic radiologists using chest CT as a reference 

standard. In addition, the location of the nodule was marked with a bounding box 

with referencing to CT. We created a pixel-level mask image for model training by 

drawing an ellipse within the bounding box. We used 3,177 out of 3,500 chest 

radiographs of nodules as abnormal cases, excluding low-quality images. In addition, 

3,177 chest radiographs were randomly extracted from 10,000 normal chest X-ray 

images. In the AI-HUB dataset, duplicate patient images were not allowed. 

We utilized two distinct chest radiograph datasets for external validation. One was 

collected retrospectively at the Gachon University Gil Medical Center (GMC). These 

chest radiographs included 246 cases of nodules and 440 cases of normal. A 
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radiologist labeled them by referencing chest CT and annotated the nodule locations 

using pixel-level mask images. The other dataset was the VinBig dataset (VBD)20 

made available to the public. It consisted of 15,000 chest radiographs collected in 

Vietnam. Three experienced radiologists annotated each chest radiograph's lesion 

areas with a bounding box. We used as abnormal cases 83 chest radiographs 

annotated by two or more radiologists as having a nodule or mass in the same 

location. 

 

Deep convolutional neural network structure and development 

From NIH and AI-HUB data, we randomly samples normal and nodule or mass 

images with a ratio of 1:1, taking class balance into account (Table 1). We built 4 

models to investigate whether 1) labeling based on chest computed tomography 

versus chest X-ray and 2) pixel-level labeling versus image-level labeling improves 

deep learning’s performance in the nodule detection. The first model, the deep 

learning network pre-trained on ImageNet was transferred to NIH data. The second 

model, the network pre-trained on ImageNet was transferred to AI-HUB data with an 

image-level label. The third model, the network pre-trained on NIH data was 

transferred to AI-HUB data with an image-level label. For the fourth model, the 

network pre-trained on NIH data transferred to AI-HUB with a pixel-level label.  

We built two neural networks, as depicted in Supplementary Fig 1, using Densenets 

with Squeeze-and-Excitation (SE) blocks and sub-networks. Using two convolution 

layers, the sub-network decreases the number of channels while preserving the 

width and height of the input feature maps. The network 1, which is employed for the 

classification task with image-level labeled data, is a standard Densenet with SE 

blocks. Network 1 analyzes the input chest x-ray and calculates the probability that a 

nodule is present, which ranges from 0 to 1. In order for the network to calculate loss 

between projected likelihood and a true label, the final global average pooling layer 

converts the output from the sub-network, which is 16 × 16 sized feature maps, to a 

float. Also, Network 1 provides a class activation map. Network 2 modified Network 1 

to use a label at the pixel level. As a result, Network2 constructed a single-channel 

probability map from the output of the sub-network. We added an upsampling layer 
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between Densenet and the sub-network, thereby using a two-fold upscaled feature 

map as the input for the sub-network, because a 16 x 16 sized feature map 

produced from Densenet with se-block is constrained to pinpoint the nodule position. 

The probability map shows the nodule's location, and its maximum value denotes the 

probability that a nodule is present. In order to train Network2, classification and 

localization loss were summated. As the localization loss, we used the mean of the 

binary cross entropy at the pixel level. The probability map generated by the deep 

learning model and the 32x32 resized nodule mask from the ground truth were used 

to calculate the localization loss function. 

In the training phase, we cropped an image around lung area to prevent background 

information of original image from interfering with network training.21 Then, we 

resized the cropped image to 512x512 and fed it as an input to the network. Also, for 

better performance and robustness, we applied contrast limited adaptive histogram 

equalization (CLAHE) and augmentation techniques such as horizontal flipping, 

shifting, scaling, rotating and shearing. We trained the network by using Adam 

optimizer with the batch size of 16. We set the initial learning rate of 0.0001 and then 

multiplied 0.1 at 25th, 37th epoch. Our experiments were based on Tensorflow 

v1.14.0 with Keras v2.3.0 and performed on an Intel® Xeon® Gold 5120 CPU @ 

2.20GHz and 2 NVIDIA Tesla V100 GPUs. 

 

Quantification and statistical analysis 

Each chest x-ray image was assigned one of four cases during the classification 

performance assessment by comparing the deep learning model’s prediction and the 

image-level ground truth label: true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN). Specificity (Sp), sensitivity (Se), and area under (AUC) 

the receiver operating characteristic (ROC) curve were the three evaluation criteria 

we used. We utilized DeLong's test for ROC curves to compare the AUC of different 

deep learning models.22 

For localization performance assessment, we used the DICE coefficient score (DCS) 

between the class activation map or the heat map generated by deep learning 
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models and ground truth mask annotated by thoracic radiologists. The metric is 

defined as follows: 

 

��� �
2 �  �	
� �
������

��	
� �
������ � ����� �
�
����� � ��	
� �
������ � ����� ���������
 

 

 

Results 

Training and validation datasets 

For model training, 7,218 radiographs (normal 3,609 and nodule 3,609) from the NIH 

dataset and 4,446 radiographs (normal 2,223 and nodule 2,223) from the AI-HUB 

dataset were used (Table 1). For the external validation, 686 cases (440 normal and 

246 nodule) from GMC and 183 cases (100 normal and 83 nodule) from VBD were 

used. 

  

Comparison of model performance on nodule detection 

Table 2, Figure 1, and Supplementary Fig 2 elaborate the performance summary of 

training algorithms on each dataset. Externally validated, the model trained with AI-

HUB data (pretrained using ImageNet) outperformed the model trained with NIH data. 

In GMC and VBD datasets, AUCs for model trained with AI-HUB and NIH were 0.88 

and 0.78 versus 0.71 and 0.73, respectively (p < 0.001). Notably, the model trained 

with AI-HUB data better performed on the dataset labeled with referencing to chest 

CT compared with dataset labeled with only chest radiograph (Figure 1C and Figure 

1D). The model trained with NIH data outperformed the model trained with AI-HUB 

data only the internal validation data (Figure 1A). The model was trained with AI-

HUB data after pretrain with NIH data improved performance only in VBD dataset (p 

< 0.001). Finally, the model trained with pixel-level AI-HUB data (pre-trained with NIH 

data) showed the best performance in both internal and external validation datasets. 
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In GMC and VBD datasets, AUCs of the model trained with pixel-level data were 

0.91 and 0.86, respectively.  

Figure 2 depicts the probability distributions of models for normal and nodule chest 

radiographs. Distributions of probability for normal and abnormal (nodule) images by 

the model trained with NIH data were considerably overlapping, particularly for 

external validation datasets, indicating poor discriminative performance. In contrast, 

the model trained on AI-HUB data effectively discriminated normal from abnormal 

chest X-ray data. The model trained with AI-HUB data demonstrated 

improved probability distribution even when validated against the NIH dataset, 

despite having lower AUC values than the model trained with NIH data. 

  

Comparison of model performance on nodule localization 

In external datasets with pixel-level annotations (GMC), we compared the trained 

models' nodule localization performance. Models trained with image-level annotation 

data (the first, second, and third columns of Table 2) exhibited dice coefficient scores 

ranging from 0.36 to 0.58, which are comparable between models. However, the 

model trained with AI-HUB data annotated at the pixel level demonstrated dice 

coefficient values greater than 0.60 in all validation datasets. Figure 3 depicts 

representative radiographs demonstrating the nodule localization performance of the 

trained models. 
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Discussion  

In the present study, we found that a deep learning model trained with chest 

radiographs data with a labeling referring to chest CT outperformed the model 

trained with chest radiographs data without exact labeling in a nodule detection. In 

addition, the performance of the deep learning model was enhanced by the addition 

of pixel-level annotations. On chest radiographs, the deep learning model trained 

with pixel-level label demonstrated more precise localization of nodules. Even in 

large datasets, precise labeling and detailed information are required to construct a 

precise deep learning model for the interpretation of medical images. 

The NIH chest X-ray dataset is preprocessed using natural language processing; 

consequently, it tends to contain incorrect and uncertain labels.16, 23 Several reports 

on the effect of label noise on the classification of convolutional neural networks 

have demonstrated that CNNs are resistant to massive label noise.24 One study, 

however, argued that the deep learning–based computer-assisted diagnosis model 

is sensitive to label noise and that computer-assisted diagnosis with inaccurate 

labels is not credible.25 In addition, the study indicated that the deep learning 

performance is inversely related with a noisy label data ratio.25  In addition, the study 

revealed that the performance of deep learning is negatively correlated with the ratio 

of noisy label data.26 Our findings that the deep learning model trained with more 

precise label data outperformed the model trained with less precise label data are 

consistent with previous research. Taken together, given the consequences of 

misclassifying a medical image, the deep learning model in medical imaging requires 

precise data labeling. 

In the present study, the model trained with accurate labels differentiated nodule x-

rays from normal images more explicitly. Although deep learning in medical imaging 

has made tremendous strides, there are still a number of obstacles to overcome. 

The most significant disadvantage of deep learning in medical imaging is the 'domain 

shift problem,' in which the performance of the model degrades when applied to data 

from a different domain.27 Because the classification model classifies input data as 

normal or abnormal based on a threshold, the model producing highly overlapping 

probability distributions for normal and abnormal cases may be susceptible to the 

domain shift problem. In contrast, the model train with label based on CT showed a 
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marked difference in distributions between nodule and normal chest x-rays, 

indicating the model's robustness, as confirmed by two external validation datasets. 

The class activation map generated by a deep learning classification model is a 

simple method for obtaining the discriminative image regions used by a neural 

network to identify a specific class in the image,28 which physicians frequently 

misinterpret as indicating the lesion area. Prior research has demonstrated that the 

class activation map often indicates disease-related regions rather than lesions per 

se.29 For instance, the class activation map produced by a deep learning model for 

detecting pneumothorax shows around the chest tube rather than pneumothorax 

itself.30 A study using the chest x-ray dataset for coronavirus disease 2019 (COVID-

19) demonstrated conclusively that the classification deep learning algorithm uses 

"shortcuts" such as a laterality marker to distinguish between normal and abnormal 

cases.31 In the present study, the deep learning model was trained using two loss 

functions, nodule classification and localization, which is likely less susceptible to the 

"shortcuts" problem. Also, higher dice coefficient in the model trained with pixel-level 

data also buttressed this speculation. Due to the typically diminutive size of nodules 

on chest radiograph, providing a precise localization and accurate classification may 

be useful in daily clinical practice. 

Our findings should be interpreted with caution. In the present study, the deep 

learning models were validated using two distinct external datasets. Due to the AI-

HUB dataset and two external datasets collected from the Asian population, the 

observed performance difference in the study could be attributable, in part, to the 

ethnic variation of nodules.  

The detection of lung nodules on a chest radiograph is crucial because lung nodules 

may indicate lung cancer. However, this is often difficult, and radiologists frequently 

miss lung nodules.32 Our findings indicate that accurate labeled data are required to 

build robust and reliable deep learning nodule detection models. In addition, it is 

expected that the deep learning model trained with pixel-level data will provide 

information on nodule location. 
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