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Abbreviations 
ABCD, Adolescent Brain Cognitive Development; 
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ATR, anterior thalamic radiations;  
BMI, body mass index; 
CC, corpus callosum; 
CgC, cingulate cingulum; 
CgH, parahippocampal cingulum; 
CI, confidence interval; 
CST, corticospinal/pyramidal tract; 
DTI, diffusion tensor imaging; 
DV, dependent variable; 
DWI, diffusion-weighted image; 
FA, fractional anisotropy; 
FDR, false discovery rate; 
Fmaj, forceps major; 
Fmin, forceps minor; 
Fx, fornix; 
ICV, intracranial volumes; 
IFOF, inferior frontal-occipital fasciculus; 
IFSFC, inferior-frontal to superior-frontal cortical tract; 
ILF, inferior longitudinal fasciculus; 
IV, independent variable; 
MD, mean diffusivity; 
MRI, magnetic resonance imaging; 
PC, principal component; 
PCA, principal component analyses; 
PDS, pubertal development stage; 
pSLF, parietal superior longitudinal fasciculus; 
RND, restricted normalized directional; 
RNI, restricted normalized isotropic; 
RSI, restriction spectrum imaging; 
SCS, superior-corticostriatal tract; 
SD, standard deviation; 
SE, standard error; 
SES, socioeconomic status; 
SIFC, striatal to inferior-frontal cortical tract; 
SLF, superior longitudinal fasciculus; 
STROBE, Strengthening the Reporting of Observational Studies in Epidemiology; 
tSLF, temporal superior longitudinal fasciculus; 
Unc, uncinate fasciculus; 
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Abstract (447 words) 

Importance 

Both neighborhood and household socioeconomic disadvantage relate to negative health 

outcomes and altered brain structure in children. It is unclear whether such findings extend to 

white matter development, and via what mechanisms socioeconomic status (SES) influences the 

brain. 

Objective 

To test independent associations between neighborhood and household SES indicators and white 

matter microstructure in children, and examine whether body mass index and cognitive function 

(a proxy of environmental cognitive/sensory stimulation) may plausibly mediate these 

associations.   

Design 

This cross-sectional study used baseline data from the Adolescent Brain Cognitive Development 

(ABCD) Study, an ongoing 10-year cohort study tracking child health. 

Setting 

School-based recruitment at 21 U.S. sites. 

Participants 

Children aged 9 to 11 years and their parents/caregivers completed baseline assessments between 

October 1st, 2016 and October 31st, 2018. Data analysis was conducted from July to December 

2022. 

Exposures 

Neighborhood disadvantage was derived from area deprivation indices at primary residence. 

Household SES indicators were total income and the highest parental education attainment. 

Main Outcomes and Measures 

Thirty-one major white matter tracts were segmented from diffusion-weighted images. The 

Restriction Spectrum Imaging (RSI) model was implemented to measure restricted normalized 

directional (RND; reflecting oriented myelin organization) and isotropic (RNI; reflecting 

glial/neuronal cell bodies) diffusion in each tract. Obesity-related measures were body mass 

index (BMI), BMI z-scores, and waist circumference, and cognitive performance was assessed 

using the NIH Toolbox Cognition Battery. Linear mixed-effects models tested the associations 

between SES indicators and scanner-harmonized RSI metrics. Structural equation models 
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examined indirect effects of obesity and cognitive performance in the significant associations 

between SES and white mater microstructure summary principal components. Analyses were 

adjusted for age, sex, pubertal development stage, intracranial volume, and head motion. 

Results 

The analytical sample included 8842 children (4299 [48.6%] girls; mean age [SD], 9.9 [0.7] 

years). Greater neighborhood disadvantage and lower parental education were independently 

associated with lower RSI-RND in forceps major and corticospinal/pyramidal tracts, and had 

overlapping associations in the superior longitudinal fasciculus. Lower cognition scores and 

greater obesity-related measures partially accounted for these SES associations with RSI-RND. 

Lower household income was related to higher RSI-RNI in almost every tract, and greater 

neighborhood disadvantage had similar effects in primarily frontolimbic tracts. Lower parental 

education was uniquely linked to higher RSI-RNI in forceps major. Greater obesity-related 

measures partially accounted for these SES associations with RSI-RNI. Findings were robust in 

sensitivity analyses and mostly corroborated using traditional diffusion tensor imaging (DTI). 

Conclusions and Relevance 

These cross-sectional results demonstrate that both neighborhood and household contexts are 

relevant to white matter development in children, and suggest cognitive performance and obesity 

as possible pathways of influence. Interventions targeting obesity reduction and improving 

cognition from multiple socioeconomic angles may ameliorate brain health in low-SES children. 
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Key Points (103 words) 

Question 

Are neighborhood and household socioeconomic levels associated with children’s brain white 

matter microstructure, and if so, do obesity and cognitive performance (reflecting environmental 

stimulation) mediate the associations? 

Findings 

In a cohort of 8842 children, higher neighborhood disadvantage, lower household income, and 

lower parental education had independent and overlapping associations with lower restricted 

directional diffusion and greater restricted isotropic diffusion in white matter. Greater body mass 

index and poorer cognitive performance partially mediated these associations.  

Meaning 

Both neighborhood and household poverty may contribute to altered white matter development 

in children. These effects may be partially explained by obesity incidence and poorer cognitive 

performance.  
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1. Introduction (737 words) 

Socioeconomic disadvantage (e.g., poverty) during early life, as experienced by nearly 11.8 

million U.S. children in 20211, relates robustly to poor physical and mental health that can 

extend into adulthood2,3. Impoverished environments have been shown to affect brain structure 

and function, particularly during development4–6. Further, there is evidence that early 

neurodevelopmental alterations may mediate the links between low socioeconomic status (SES) 

and both current and future negative health outcomes7–10. Such evidence implicates the brain as a 

potential target for intervention.  

 

In children, low SES has been associated with lower cortical volumes, surface area, and 

thickness, as well as lower hippocampal volume11. Lower frontal gyri volumes and surface area 

further related to poorer cognition and more externalizing symptoms9,12–14. In contrast to the 

growing literature documenting SES-related differences in gray matter, studies on white matter 

remain scarce. While support exists for a link between low SES and compromised white matter 

microstructure in children15–20, findings diverge on which tracts are implicated, likely as a result 

of limited sample sizes and different SES measurements8,21. White matter tracts, which are 

primarily myelin-ensheathed axonal bundles connecting distal gray matter regions, are integral 

for long-range information processing22. For example, lower integrity in the superior longitudinal 

fasciculus and cingulum has been respectively associated with poorer working memory and 

greater psychopathology in youth23,24. During childhood and adolescence, white matter 

undergoes rapid myelination and microstructural organization and continues to mature well into 

young adulthood4,25. Such a protracted developmental window could allow long-lasting 

influences of low SES on white matter and, due to its functional relevance, warrants in-depth 

investigation.  

 

A key question is how SES influences brain development. Proximal factors such as nutrition and 

environmental enrichment, amongst others, are theorized to be influenced by SES and thus could 

impact brain health7,8,26,27. Studies have recently demonstrated that unhealthy weight and poorer 

cognitive performance mediate associations between low SES and altered brain volumes and 

functional connectivity13,28,29. These studies used obesity measures as a proxy for diet and 

exercise13, and cognitive performance as a proxy for the social, sensory, and cognitive 
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stimulation in the environment28,29. Furthermore, there may be multiple components of SES that 

influence the brain, potentially through different pathways. Recent findings suggest that SES 

indicators at both neighborhood-level (e.g., area deprivation index) and household-level (e.g., 

income, parental education), though correlated, do independently relate to children’s brain 

morphology and functional networks12,13,29–33. In terms of SES, families having the same income 

level may have access to different neighborhoods due to differences in local cost of living and/or 

structural racism barriers8. Proximally, neighborhood SES could reflect environmental (e.g., 

noise, pollution, crime) and/or social influences (e.g., interactions with teachers and peers), 

whereas household SES may reflect home characteristics such as material access and parenting 

practices7,8,27. However, it remains unknown how neighborhood and household SES relate to 

white matter development, and via what mechanisms. Identifying potential mediating factors 

within this framework may reveal important intervention targets to promote brain health in 

disadvantaged children.   

 

Leveraging the multi-shell restriction spectrum imaging (RSI) model, we address these 

knowledge gaps by interrogating associations between SES and white matter microstructure in a 

large cross-sectional cohort of children aged 9-11 years from the Adolescent Brain Cognitive 

Development (ABCD) Study. RSI goes beyond traditional diffusion tensor imaging (DTI) by 

distinguishing restricted (originating intracellularly) from hindered (originating extracellularly) 

water diffusion within image voxels, thus modeling for greater tissue complexity34–37. 

Specifically, white matter microstructure was assessed using restricted normalized directional 

(RSI-RND), which models cylindrical intracellular water diffusion and purportedly reflects 

oriented axons/dendrites; and restricted normalized isotropic (RSI-RNI), which models spherical 

intracellular water diffusion and purportedly reflects glial/neuronal cell bodies36–40 (see Figure 1, 

adapted from Burnor et al. (2021), JAMA Netw Open). Given that socioeconomic deprivation has 

been linked to impaired myelination and heightened microglial activity6,20, we expected lower 

SES to be associated with decreased white matter RSI-RND and increased RSI-RNI. We further 

expected that greater neighborhood disadvantage and lower household SES (i.e., income, 

parental education) would independently relate to white matter microstructure, paralleling the 

independent associations that have been seen with gray matter and function. Given known links 

between obesity, cognition, and white matter microstructure in children41,42, we hypothesized 
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that obesity measures and cognition would have indirect effects, independent for each SES 

indicator, on the associations between lower SES and altered white matter microstructure, 

thereby boosting the plausibility of these proximal factors being causal mediators and potentially 

motivating their management from both community and household angles. 

 

2. Methods (1493 words) 

2.1. Participants 

Participants were from the ABCD Study, a ten-year cohort study tracking child brain 

development across 21 U.S. sites representing national demographics43,44. Participants receive 

annual physical, environmental, and behavioral assessments, as well as neuroimaging and 

cognitive testing every two years37,45–47. Institutional review boards at study sites approved 

procedures; parents/caregivers provided written consent and children gave verbal assent. Our 

study employed ABCD Study baseline data (release 4.0; collected between October 1st, 2016 and 

October 31st, 2018). In addition to the standard ABCD Study inclusion/exclusion criteria43, we 

excluded participants with 1) missing age, sex, or anthropometric data; 2) T1 or diffusion-

weighted magnetic resonance imaging (MRI) scans that failed quality control or had clinically 

significant incidental findings37; and 3) history of severe neurological or psychiatric conditions 

(eMethods in the Supplement). We also excluded participants with history of diabetes or eating 

disorders that may confound with obesity-related neurobiological findings48. These additional 

criteria led to a sample of 8842 children from 11875 total. Description of participant selection is 

shown stepwise in eFigure 1 in the Supplement. This report follows the Strengthening the 

Reporting of Observational Studies in Epidemiology (STROBE) guidelines. 

2.2. Measures 

Participant age, sex, race/ethnicity, and pubertal development stage (PDS)49 were collected; other 

measures are defined below (see eTable 1 in the Supplement for corresponding ABCD Study 

instrument names).  

2.2.1. Neighborhood SES 

The participant’s primary home address was geocoded into a census tract, from which the 

American Community Survey (2011-2015) Area Deprivation Index (ADI) estimates were 

extracted50. An exploratory factor analysis created a latent neighborhood disadvantage score that 

included 10 of all 17 ADI values (loadings ≥ 0.63; eTable 2 in the Supplement), consistent with 
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previous reports12,29. ADI values that loaded less strongly generally reflected outdated (e.g., 

percentage of households without telephones) or market-dependent (e.g., median mortgage/rent) 

instead of contemporary, stable disadvantage and were excluded12,29,30. In the current study, 

higher neighborhood disadvantage scores would suggest lower education, income, property 

ownership, and higher unemployment, poverty, income disparity, and percentage of single-

parent households, all at the community level.  

2.2.2. Household SES 

Household income was the combined annual income from all family members. As it was 

assessed in ordinal ranges, we used a reported procedure30 that divided the midpoint of each 

income bracket by $10000, creating a continuous variable. Parental education level was the 

highest education attainment amongst parents/caregivers, recoded into years of schooling 

estimated per U.S. convention following previous studies31,33 (eMethods in the Supplement).  

2.2.3. Neuroimaging 

Participants were scanned following standardized protocols across 3T scanner platforms 

(Siemens Prisma and Prisma Fit; GE Discovery MR750; and Philips Achieva dStream and 

Ingenia) at study sites47. T1-weighted structural images and multi-shell diffusion-weighted 

images (DWIs) were collected (see eMethods in the Supplement for specifications). Scans were 

processed centrally at the ABCD Data Analysis, Informatics, & Resource Center37. DWIs were 

corrected for eddy current, head motion, and susceptibility-induced distortions during 

preprocessing. Participant mean head motion during scanning was inferred from average DWI 

framewise displacement and was covaried in statistical analyses to partial out residual motion 

effects. Intracranial volumes (ICVs) were estimated from T1-weighted images. RSI was fitted to 

DWI-derived fiber orientation density functions to model RSI-RND and RNI, which were each 

normalized by total diffusion signal and served as the primary assessment of white matter 

microstructure in the present study. To evaluate the convergent validity of our novel RSI-derived 

results, we repeated analyses with DTI fractional anisotropy (FA) and mean diffusivity (MD). 

Previous work suggests a positive correspondence between RSI-RND and DTI-FA, both 

reflecting anisotropic diffusion, in development36, epilepsy51, and Alzheimer’s disease34. Low 

SES has been consistently associated with lower DTI-FA15–19, but findings have been mixed for 

DTI-MD. Thus, we expected similar pattern of results between RSI-RND and DTI-FA. 
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Major white matter tracts were delineated by matching prior probabilities and diffusion 

orientations of fibers from AtlasTrack to individual DWIs37,52. RSI and DTI metrics were 

extracted from 31 tracts52, including the corpus callosum (CC) (with forceps major (Fmaj) and 

minor (Fmin) subregions) and bilateral fornix (Fx), cingulate cingulum (CgC), parahippocampal 

cingulum (CgH), corticospinal/pyramidal tract (CST), anterior thalamic radiations (ATR), 

uncinate fasciculus (Unc), inferior longitudinal fasciculus (ILF), inferior frontal-occipital 

fasciculus (IFOF), superior longitudinal fasciculus (SLF) (with temporal (tSLF; i.e., arcuate 

fasciculus) and parietal (pSLF) subregions), superior-corticostriatal tract (SCS), striatal to 

inferior-frontal cortical tract (SIFC), and inferior-frontal to superior-frontal cortical tract (IFSFC). 

Visualizations of individual tracts are shown in eFigure 2 in the Supplement. 

2.2.4. Obesity-related measures 

Participant waist circumference, height, and weight were each averaged across up to three 

measurements. Body mass index (BMI) was calculated (weight(lbs)/height(in)
2 × 703). Age and 

sex-corrected BMI z-scores were computed using the 2000 CDC growth charts53. We used 

different obesity-related measures to address their varied accuracy in reflecting adiposity in 

children54,55. 

2.2.5. Cognitive performance 

We assessed cognitive performance using the age-corrected total cognition score from the NIH 

Toolbox Cognition Battery, summarized from seven tasks that probed executive functioning, 

memory, language abilities, and processing speed46 (see detailed description in eMethods in the 

Supplement). Follow-up analyses using individual task and crystallized and fluid cognition 

composite scores were conducted to explore any cognitive domain-specific effects.  

2.3. Statistical analyses 

All analyses were performed in R version 4.2.1 (R Project for Statistical Computing). 

2.3.1. Handling of outliers and missing data 

Outliers ± 4 SD away from the mean were removed. As the missingness in SES indicators 

seemed related to demographics (eFigure 3 in the Supplement), we imputed missing data 50 

times using the “mice” package instead of excluding them56. Neuroimaging and cognitive 

variables, being primary outcomes, were not imputed (eTable 3 in the Supplement). Imputation 

did not bias data distribution (eTable 4 in the Supplement).  

2.3.2. Harmonization of neuroimaging data 
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Technical differences between scanners accounted for substantial variance in RSI and DTI 

metrics (R2’s = 0.06 to 0.55, p’s < 0.001) and could contaminate statistical inference57. Because 

SES indicators were unevenly distributed across scanner sites (R2’s ≥ 0.09, p’s < 0.001), the 

convention of analyzing each scanner separately in multilevel modeling could underestimate 

meaningful SES-related variance. Instead, we harmonized RSI and DTI data using the batch-

adjustment algorithm ComBat58, reducing scanner effects (post-harmonization R2’s ≤ 0.002 (> 

30-fold reduction compared to pre-harmonization), p’s = 0.007 to 0.99) while retaining inherent 

associations between neuroimaging metrics and age, sex, race/ethnicity, PDS, and SES (eTable 5 

in the Supplement). 

2.3.3. Associations with SES 

Associations between SES and white matter microstructure were assessed using linear mixed-

effects models (“lme4” package59) in which neighborhood disadvantage, household income, and 

parental education were independent variables (IVs) included simultaneously and RSI or DTI 

metrics were dependent variables (DVs). Age, sex, PDS, ICV, and mean head motion were 

covaried due to potential confounding36,39,60, and family was modeled as a random effect. 

Associations between SES, obesity-related measures, and cognition were examined using the 

same procedure but without covarying for ICV and mean head motion. Because SES was highly 

entangled with race/ethnicity (eTable 6 in the Supplement), we did not adjust for race/ethnicity 

in models in order to preserve SES-related variance61. In follow-up analyses, covarying for 

race/ethnicity led to more restricted findings (eTable 10 in the Supplement). All models were 

checked for normality of residuals, homoscedasticity, and low multicollinearity (variance 

inflation factors were ≤ 1.89). Estimates were standardized β’s with 95% confidence intervals 

(CIs) pooled across imputed datasets. Multiple comparison correction was performed within each 

group of models and by each SES indicator using false discovery rate (FDR) at two-tailed pFDR ≤ 

0.05. As missing neuroimaging and cognition data were not imputed, sample sizes varied across 

models and are reported in eTable 7 in the Supplement. 

2.3.4. Sensitivity analyses 

Associations between SES and white matter microstructure were further examined in subsamples 

that censored potential neuroimaging confounds: 1) participants with mean head motion ≤ 2.5 

mm; 2) participants without adverse childhood experiences (e.g., trauma/abuse); 3) participants 
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without common psychiatric diagnoses, including attention-deficit/hyperactivity disorder, 

depression, bipolar disorder, anxiety, and phobias; and 4) participants with full-term birth. 

2.3.5. Testing for indirect effects 

We estimated the indirect effects of SES on white matter microstructure through obesity-related 

measures and cognition using the “lavaan” package62. As we employed cross-sectional data, such 

analyses can establish the plausibility of factors as potential causal mediators that could be 

confirmed in future longitudinal studies. To reduce data dimensionality, principal component 

analyses (PCA) were applied to RSI or DTI metrics in tracts that demonstrated significant 

associations with SES. Structural equation models specified each of the SES indicators as IV, 

obesity-related measures or cognitive performance as mediator, and white matter microstructure 

principal components (PCs) as DVs. Covariates included the other SES indicators, age, sex, PDS, 

ICV, and mean head motion. As multilevel modeling was not feasible in “lavaan”, findings were 

confirmed in a random subsample of unrelated participants that eliminated possible family 

confounds (eTable 20 in the Supplement). Lastly, building upon previous research12,13,33, we 

studied additional models with white matter microstructure PCs as mediators and cognition as 

DV. Standardized estimates were computed with standard errors (SEs) and 95% CIs (from 20000 

Monte Carlo simulations). Statistical significance was at two-tailed pFDR ≤ 0.05 corrected across 

all tested models. 

 

3. Results (751 words) 

This study included 8842 children (4299 [48.6%] girls; mean age [SD], 9.9 [0.7] years); sample 

characteristics are detailed in Table 1. SES indicators were moderately correlated with each 

other (eFigure 4 in the Supplement).  

3.1. Associations between SES and white matter microstructure 

Higher SES was associated with greater RSI-RND, lower RSI-RNI, and greater DTI-FA in 9, 29, 

and 10 out of 31 tracts, respectively. Full statistics are shown in eTable 8 in the Supplement; 

key results are noted below. Findings largely survived sensitivity analyses (eTable 9 in the 

Supplement).  

3.1.1. Associations with RSI-RND 

Both neighborhood disadvantage and parental education had independent associations with white 

matter RSI-RND, overlapping in the SLF (Figure 2). Higher neighborhood disadvantage was 
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associated with lower RSI-RND in Fmaj (β = -0.040; 95% CI: -0.067 to -0.013; pFDR = 0.03) and 

left SLF (β = -0.055; 95% CI: -0.081 to -0.028; pFDR = 0.001). Higher parental education was 

associated with greater RSI-RND in bilateral CST (e.g., right β = 0.042; 95% CI: 0.015 to 0.069; 

pFDR = 0.01) and SLF (e.g., right β = 0.053; 95% CI: 0.025 to 0.080; pFDR = 0.002). No 

independent associations were observed for household income. 

3.1.2. Associations with RSI-RNI 

All three SES indicators were independently associated with white matter RSI-RNI, with some 

spatial overlap of effects between household income and neighborhood disadvantage (Figure 3). 

Higher household income was associated with lower RSI-RNI in almost every tract (β’s = -0.062 

to -0.031; pFDR’s = 0.002 to 0.05), except for bilateral Fx, Fmaj, right tSLF, and right SCS. 

Higher neighborhood disadvantage was associated with greater RSI-RNI in bilateral Fx (e.g., 

right β = 0.046; 95% CI: 0.019 to 0.074; pFDR = 0.01) and, overlapping with household income, 

in bilateral CgH (e.g., right β = 0.061; 95% CI: 0.034 to 0.088; pFDR < 0.001), CST (e.g., right β 

= 0.037; 95% CI: 0.010 to 0.065; pFDR = 0.03), and ATR (e.g., right β = 0.045; 95% CI: 0.018 to 

0.072; pFDR = 0.01). Lastly, higher parental education was uniquely associated with lower RSI-

RNI in Fmaj (β = -0.048; 95% CI: -0.077 to -0.020; pFDR = 0.03).  

3.1.3. Associations with DTI-FA and MD 

Associations between SES and DTI-FA largely resembled those with RSI-RND. Higher 

neighborhood disadvantage had independent associations with lower RSI-RND in the left SLF, 

and higher parental education with greater RSI-RND in left Fx, bilateral CST, bilateral SLF, and 

left SCS (eFigure 5 in the Supplement). Household income was not associated with DTI-FA, 

nor was any SES indicator with DTI-MD. 

3.2. Analyses of indirect effects 

In each PCA summarizing each independent SES indicator and RSI/DTI metric association, the 

first PC carried substantial loadings from all involved tracts, captured 58% to 95% of variance, 

and were related to the SES indicator as individual tracts did (eTable 11 and 12 in the 

Supplement). These first PCs were thus used in indirect effects models. All models 

demonstrated good fit (eTable 17 in the Supplement). 

3.2.1. Indirect effects via obesity-related measures 

Lower SES indexed by all three SES indicators had independent associations with higher values 

of all obesity-related measures (eTable 13 in the Supplement). Higher BMI had indirect effects 
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on the associations between higher neighborhood disadvantage and lower RSI-RND PC and 

greater RSI-RNI PC; between lower household income and greater RSI-RNI PC; and between 

lower parental education and lower RSI-RND PC and greater RSI-RNI in Fmaj (Figure 4A). No 

effect was observed with DTI-FA PCs. Consistent results were seen with waist circumference 

and BMI z-scores. Full statistics are in eTable 14 in the Supplement.  

3.2.2. Indirect effects via cognitive performance 

Lower SES indexed by all three SES indicators was independently associated with lower total 

cognition score (eTable 15 in the Supplement). Lower total cognition score had indirect effects 

on the associations between higher neighborhood disadvantage and lower RSI-RND and DTI-FA 

PCs. Conversely, higher total cognition score had indirect effects on the associations between 

higher parental education and greater RSI-RND and DTI-FA PCs (Figure 4B; full statistics in 

eTable 16 in the Supplement). The total cognition score was not related to RSI-RNI PCs and 

was not tested for indirect effects in these models. Results were consistent across most analyses 

with composite and individual task scores, suggesting that our observed indirect effects related to 

general cognition rather than certain domains (eTable 18 in the Supplement). In models where 

cognition was the DV, we observed indirect effects of greater RSI-RND PCs and greater DTI-FA 

PCs between higher SES and better cognition, again broadly across cognitive domains (eTable 

19 in the Supplement).  

 

4. Discussion (1167 words) 

In a large group of 9 to 11-year-old children, we found that greater neighborhood disadvantage 

and lower household SES related independently and robustly with lower RSI-RND, greater RSI-

RNI, and lower DTI-FA in partially overlapping white matter regions. Furthermore, there was 

evidence for indirect effects of SES, whereby greater BMI and related anthropometrics, as well 

as poorer cognitive performance, partially explained associations between lower SES and altered 

white matter microstructure. Given the size and demographic diversity of our sample, these 

results suggest a potentially generalizable pattern that both neighborhood and household SES 

may be important for white matter development in children. Future research should investigate 

obesity and cognition as potential mechanistic mediators. 
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Higher SES was associated with greater RSI-RND in the SLF, Fmaj, and CST. As RSI-RND 

models anisotropic intracellular water diffusion35, these findings might reflect more oriented 

axonal/dendritic organization in these tracts4,36,40. Such interpretation parallels observations with 

DTI-FA, a traditional indicator of white matter integrity36, and is consistent with previous 

evidence of greater DTI-FA in the SLF16,18,63,64 and CST18,64 in children from high SES families. 

The integrity of these tracts have been implicated in cognition: the SLF is linked to language 

abilities, social cognition, and visuospatial attention64,65, and the Fmaj to gross memory 

functioning66. The CST, primarily a motor pathway, finetunes somatosensory-motor information 

integration necessary for fast processing speed67. Correspondingly, we found that higher 

cognition scores partially explained the links between higher SES and greater RSI-RND. This 

effect appeared general and not limited to particular cognitive domains, echoing the tracts’ wide 

functional relevance. This pathway might represent the level of cognitive stimulation a child 

receives, which has been shown to be higher in high SES families26,27,68–70. Nonetheless, our 

cross-sectional data precludes inference of directionality, and our models with white matter 

microstructure as the mediator supported the equal plausibility that SES may impact brain 

outcomes first and in turn contribute to cognition12,13. Cognitive performance also likely has both 

social (i.e., school, family) and neurobiological (i.e., brain-supported functioning) foundations 

that would position cognition as either a contributor to or consequence of brain development26–28, 

and future research may dissociate these effects using more specific measurements. Additionally, 

because morphometry in certain regions connected to the SLF (e.g., superior frontal-parietal 

cortices), CST (e.g., precentral gyrus), and Fmaj (e.g., occipital lobes) has similarly exhibited 

associations with SES and cognition in children12–14,28,30,32,33, our findings in white matter might 

reflect developmental interactions with gray matter instead of an isolated process71. 

 

In comparison to the localized effects seen with RSI-RND, lower SES was associated with 

greater RSI-RNI in almost every white matter tract. Given that RSI-RNI measured spherical 

intracellular diffusion35, these widespread associations hint that SES might modulate 

glial/neuronal cell presence in a brain-wide fashion. Our observation that greater BMI and 

related anthropometrics partially accounted for these associations provides insights to some 

potential mechanisms. First, obesity induces systemic inflammation, which upregulates 

circulating pro-inflammatory molecules72 that may infiltrate brain tissue through a weakened 
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blood-brain barrier73,74. As an immune response, the brain’s astrocytes and microglia undergo 

“reactive gliosis”, a process marked by their proliferation and enlargement as seen in rodent 

models of obesity74–78. In diffusion MRI models, such neuroinflammatory phenotype may 

manifest as increases in isotropic intracellular signals, a phenomenon observed in the 

striatum39,42,79 and recently hypothalamus and diffuse white matter tracts42 in childhood obesity. 

Thus, it is possible that low SES might be related to neuroinflammation via obesity incidence. 

Additionally, microglia dysregulation may cause myelin damage80,81, which could explain the 

observed association between obesity and RSI-RND. Second, because RSI-RNI increases with 

normative child development36, our findings of greater RSI-RNI, which were corrected for age, 

may represent accelerated white matter maturation with socioeconomic disadvantage. This 

interpretation echoes reports of higher gray matter-derived brain-predicted age amongst low-SES 

early adolescents82–84 and parallels the stress acceleration hypothesis, which proposes prioritized 

neuroadaptation to deprivation and adversity85. Indeed, the largest RSI-RNI effects were seen in 

frontolimbic pathways (Fx, CgH, ATR, and Unc) relevant for emotion processing, stress, and 

depression86–88. Notably, obesity has been linked to earlier pubertal onset89 and advanced brain 

aging90,91, and thus might embody a way SES impacts brain development. Future animal research 

comparing RSI to cellular/tissue imaging may help elucidate the exact neurobiological basis 

underlying our observed SES-related white matter microstructural changes. 

 

The plausibility of obesity and cognitive performance being mediators linking SES to white 

matter microstructure, if confirmed in future longitudinal studies, may support their intervention 

to promote brain health in low-SES children. Weight loss has been shown to increase cortical 

volumes and white matter density92,93, attenuate neuroinflammation94, and normalize μ-opioid 

receptor availability95. Similar effects were also seen following low-fat dieting96 and aerobic 

training97. In the same vein, environments enriched in social and sensory stimuli are known to 

promote myelination in hypoxic rodents68 and aging adults69. Critically, because both 

neighborhood and household SES were independently associated with white matter 

microstructure, a distinction that continued in our indirect effects models, interventions may need 

to be conceptualized from multiple socioeconomic angles. At the neighborhood level, improved 

access to healthy food outlets and playgrounds may limit obesity amongst children living in low-

SES areas98,99. Household factors such as buying power and health awareness, which might 
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influence the child’s diet choice and participation in sports, are also important for maintaining 

healthy weight99,100. For cognition, sports and music programs in schools have been observed to 

improve academic achievement and cognitive performance in participating children101,102. At 

home, enriching parent-child interactions, such as reading and play, are known to benefit 

children’s long-term cognitive and overall well-being103,104. Crucially, many of these potential 

proximal mechanisms, whether through neighborhoods or households, are filtered through 

structural forces such as occupation, market, allocation of government resources, etc., and thus 

their management should be considered in terms of broad social policy. Further research is 

warranted to characterize the specific impact of these factors, together with other unexplored 

ones such as crime and pollution exposure7,8,38, on brain development. 

4.1. Limitations 

This study has limitations. First, the cross-sectional design precludes causal inference, and it is 

unknown whether our SES-related findings represent temporary or long-term developmental 

differences. Longitudinal investigations will be particularly meaningful, as our white matter 

observations, small in magnitude now, may accumulate over time105 and relate to future disease 

status9,24. Second, SES indicators, especially education attainment, also have genetic 

backgrounds106,107, and research is needed to dissociate the environmental from genetic 

contributions to white matter development. However, both genetics and environment influence 

white matter microstructure, with the former’s influence decreasing and the latter’s increasing 

from adolescence to adulthood25,108. Third, as many low-SES children had greater white matter 

integrity than their high-SES peers, our SES indicators were not predictors of white matter 

development at the individual level; rather, their small effects were seen in a large, population-

based sample. Future studies are also encouraged to examine other SES-related facets, as well as 

their potential interactions32. Lastly, we only studied major white matter tracts due to the higher 

reliability of RSI and diffusion-weighted MRI models in these regions, and studies are needed to 

examine whether our findings extend to superficial/peri-cortical white matter. 

 

5. Conclusions (81 words) 

To our knowledge, our study is the first large, multi-site investigation to find that both 

neighborhood and household socioeconomic adversity are associated with alterations in white 

matter microstructure in children. These independent associations could be partially explained by 
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obesity and cognition, which may be targets for interventions from multiple socioeconomic 

angles to improve white matter health in disadvantaged children. Our findings join previous 

research on gray matter12–14,28–32,109 to highlight the complex pathways through which SES might 

influence brain development. 
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Figure 1. Schematic of RSI and DTI models  
 

 

 
Note. Water diffusion patterns in white matter, measured in diffusion-weighted magnetic 
resonance imaging, are shaped by the complex tissue microstructure that may constitute neurites 
(axons/dendrites), cell bodies (glial/neuronal), and extracellular space. Water diffusion occurs at 
different scales, subject to the barriers created by these processes. Traditional diffusion tensor 
imaging (DTI) characterizes the anisotropy of water diffusion in a single 3-dimensional model, 
and gives metrics of fractional anisotropy (FA) and mean diffusivity (MD). Restriction spectrum 
imaging (RSI) however models intracellular/restricted diffusion (on a scale less than about 10 
μm) and extracellular/hindered diffusion (on a scale greater than about 10 μm) separately. Within 
the intracellular/restricted compartment, it further separates cylindrical/directional diffusion 
(RND) from spherical/isotropic diffusion (RNI). These two metrics were normalized to the total 
diffusion signal, so that greater RSI-RND and RNI would respectively reflect greater relative 
signal contributions from directional and isotropic diffusion within a voxel. RSI offers greater 
insight to specific biological processes relative to DTI. In this study, RSI-RND and RNI were the 
primary white matter microstructure assessments, and DTI-FA and MD were estimated for 
reference. This image was adapted from Burnor et al. (2021). JAMA Netw Open. Under CC-BY 
license. 
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Table 1. Sample characteristics 

Measure Current sample 
(n = 8842) 

Full ABCD Study 
(n = 11875) 

p-value 

Demographic variables 
    Age (months) 119 ± 8 119 ± 7 0.48 
    Sex   

0.23         Female 4299 (48.6%) 5641 (47.5%) 
        Male 4543 (51.4%) 6170 (52.0%) 
    Race/ethnicity   

0.11 

        Asian 183 (2.1%) 251 (2.1%) 
        Black 1212 (13.7%) 1757 (14.8%) 
        Hispanic 1805 (20.4%) 2404 (20.2%) 
        White 4738 (53.6%) 6153 (51.8%) 
        Other 902 (10.2%) 1244 (10.5%) 
    PDS   

0.91 

        Pre-puberty 4425 (50.0%) 5837 (49.2%) 
        Early puberty 2009 (22.7%) 2713 (22.8%) 
        Mid-puberty 1966 (22.2%) 2673 (22.5%) 
        Late puberty 124 (1.4%) 171 (1.4%) 
        Post-puberty 7 (0.1%) 10 (0.1%) 
SES indicators 

    Neighborhood disadvantage 
0 ± 8.3  

(min: -14; max: 37) 
0 ± 8.2 

(min: -14; max: 36) 
0.99 

    Household income 10.0 ± 6.2 9.7 ± 6.2 < 0.001 
    Parental education (years) 15.9 ± 2.8 15.8 ± 2.9 0.002 
Obesity-related measures 
    BMI (kg/m2) 18.6 ± 4.0 18.8 ± 4.2 0.002 
    Waist circumference (inches) 26.3 ± 4.0 26.5 ± 4.3 0.001 
    BMI z-score 0.4 ± 1.2 0.4 ± 1.4 0.30 
    Obesity status   

0.12 
        Underweight 367 (4.2%) 468 (3.9%) 
        Normal weight 5759 (65.1%) 7550 (63.6%) 
        Overweight 1322 (15.0%) 1784 (15.0%) 
        Obesity 1391 (15.7%) 1997 (16.8%) 
Cognitive performance 
    Total cognition score 101.4 ± 17.6 100.4 ± 18.0 < 0.001 
Neuroimaging covariates 
    Mean head motion (mm) 1.3 ± 0.4 1.4 ± 0.6 < 0.001 
    ICV (mm3) 1492802 ± 142204 1489474 ± 143907 0.10 
 
Note. Compared with the full ABCD Study cohort, participants in the current study generally had 
higher socioeconomic status (SES), lower values on obesity-related measures, higher 
neurocognition, and lower mean head motion during neuroimaging scans. The datasets did not 
differ on demographics. The “Other” race/ethnicity category included participants who had 
parent/caregiver-reported American Indian, Alaskan Native, Native Hawaiian, other Pacific 
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Islander, mixed, and otherwise not listed race/ethnicity. Because neighborhood disadvantage was 
a scaled variable, its minimum and maximum are also reported for reference. Obesity status, 
shown for context, was derived from the participant’s age and sex-adjusted BMI percentiles: 
underweight (BMI < 5th percentile), normal weight (5th to < 85th percentile), overweight (85th to 
< 95th percentile), and obesity (≥ 95th percentile)53. Numbers for some variables may not sum up 
to the total due to missing data. Statistics are expressed as count (frequency) for categorical data 
and mean ± standard deviation for continuous data. Comparisons were performed using two-
tailed Pearson’s χ2 test (categorical variables) or Student’s t test (continuous variables). 
Abbreviations: ABCD, Adolescent Brain Cognitive Development; PDS, pubertal development 
stage; BMI, body mass index; ICV, intracranial volume 
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Figure 2. Associations between SES and white matter RSI-RND 
 

 
 
Note. Greater neighborhood disadvantage and higher parental education were independently 
associated with lower and greater RSI-RND in specific white matter tracts, respectively. Tracts 
were visualized using the AtlasTrack atlas. The principal components (PCs) summarized RSI-
RND in the relevant tracts, as associations did not differ qualitatively between tracts. In 
scatterplots, linear regression lines were adjusted for covariates and are flanked by shaded 95% 
confidence interval. Data points were standardized (std.) residuals extracted from a randomly 
selected imputed dataset as reference. Covariates included age, sex, pubertal development stage, 
intracranial volume, and head motion, and family was the random effect. Detailed statistics are 
shown in eTable 8 and 12 in the Supplement. RSI, restriction spectrum imaging; RND, 
restricted normalized directional; R, right; L, left; A, anterior; P, posterior; SES, socioeconomic 
status; CST, corticospinal/pyramidal tract; Fmaj, forceps major; SLF, superior longitudinal 
fasciculus, including temporal (t) and parietal (p) subregions. 
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Figure 3. Associations between SES and white matter RSI-RNI 
 

 
 
Note. Greater neighborhood disadvantage, higher household income, and higher parental 
education were independently associated with greater, lower, and lower RSI-RNI in white matter 
tracts, respectively. Widespread effects were seen for household income. Tracts were visualized 
using the AtlasTrack atlas. The principal components (PCs) summarized RSI-RNI in the relevant 
tracts, as associations did not differ qualitatively between tracts. In scatterplots, linear regression 
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lines were adjusted for covariates and are flanked by shaded 95% confidence interval. Data 
points were standardized (std.) residuals extracted from a randomly selected imputed dataset as 
reference. Covariates included age, sex, pubertal development stage, intracranial volume, and 
head motion, and family was the random effect. Detailed statistics are shown in eTable 8 and 12 
in the Supplement. RSI, restriction spectrum imaging; RNI, restricted normalized isotropic; R, 
right; L, left; A, anterior; P, posterior; SES, socioeconomic status; Fx, fornix; CgC, cingulate 
cingulum; CgH, parahippocampal cingulum; CST, corticospinal/pyramidal tract; ATR, anterior 
thalamic radiations; Unc, uncinate fasciculus; ILF, inferior longitudinal fasciculus; IFOF, 
inferior frontal-occipital fasciculus; Fmaj, forceps major; Fmin, forceps minor; CC, corpus 
callosum; SLF, superior longitudinal fasciculus, including temporal (t) and parietal (p) 
subregions; SCS, superior-corticostriatal tract; SIFC, striatal to inferior-frontal cortical tract; 
IFSFC, inferior-frontal to superior-frontal cortical tract.  
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Figure 4. Indirect effects of obesity-related measures and neurocognition in the associations 
between SES and white matter microstructure 
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Note. Body mass index (BMI) and total cognition score constituted significant partial indirect 
effects between the associations between socioeconomic status (SES) indicators and white matter 
microstructure. For BMI, consistent results were seen with BMI z-scores and waist 
circumference. For cognitive performance, findings were mostly similar with individual task and 
composite scores. In each model, structural equation modeling covariates included age, sex, 
pubertal development stage, intracranial volume, and head motion, as well as the SES indicators 
that were not the independent variable (e.g., household income and parental education were 
covariates in models concerning neighborhood disadvantage). Detailed statistics are shown in 
eTable 14 and 16 in the Supplement, and model fit indices are in eTable 17. **, p ≤ 0.01; ***, 
p ≤ 0.001. For indirect effects, p-values were corrected using false discovery rate (FDR). RSI, 
restriction spectrum imaging; RND, restricted normalized directional; RNI, restricted normalized 
isotropic; PC, principal component; Fmaj, forceps major; DTI, diffusion tensor imaging; FA, 
fractional anisotropy. 
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