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Abstract

This report addresses, from a machine learning perspective, a multi-class classification
problem to predict the first deterioration level of a COVID-19 positive patient at the time
of hospital admission. Socio-demographic features, laboratory tests and other measures are
taken into account to learn the models. Our output is divided into 4 categories ranging from
healthy patients, followed by patients requiring some form of ventilation (divided in 2 cate-
gories) and finally patients expected to die. The study is conducted thanks to data provided
by Sociedad Española de Medicina Interna (SEMI) and Red de Investigación en Servicios de
Salud de Enfermedades Crónicas (REDISSEC). Results show that logistic regression is the
best method for identifying patients with clinical deterioration.
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1. Introduction

The mortality predictive models for COVID-19 are too generic for the evolution that the pan-
demic has undergone. Therefore, physicians are demanding for specific models capable of predicting
a patient’s prognosis. One way to address this issue is by classifying patient deterioration into var-
ious levels according to the type of ventilation required, or even death. This report focused on
developing a multi-class classifier capable to predict the first deterioration level of a COVID-19
positive patient admitted to the hospital. As inclusion criteria, all patients admitted with a pos-
itive PCR between seven days before admission and two days after admission are considered in
the study. Knowing the available features at the time of admission (socio-demographic features,
laboratory tests, comorbidities, symptoms...) the objective is to learn a model able to accurately
predict the deterioration level:

0. No deterioration

1. Ventimask (VMK), Optiflow (OPT), Non-Invasive Ventilation (NIV)

2. Invasive Ventilation (IV), Intensive Care Unit (ICU)

3. Death
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2 DATA PRE-PROCESSING 2

The type of prognosis associated with each patient corresponds to the first deterioration state
that the patient acquires after hospital admission. The proposed outcome aligns closely with the
WHO Clinical Progression Scale [6]. Deterioration problem in patients with COVID-19 is widely
known and several publications have been produced addressing this issue. Gupta [3] developed a
high-impact work focusing on a model to predict the risk of clinical deterioration in acute COVID-
19 cases. Furthermore, other clinical deterioration models have been developed with Spanish data
cohorts [2].

2. Data pre-processing

Two datasets are used for learning our classifiers: One from Sociedad Española de Medicina
Interna (SEMI) and another from Red de Investigación en Servicios de Salud de Enfermedades
Crónicas (REDISSEC). Owing to the fact that both datasets do not collect the same features,
different models for each dataset are learned.

Both sets of data are pre-processed individually. We start by analyzing the distribution of
values. Those features with unexpected distributions are studied in detail, contrasting information
about their range and establishing valid ranges for collected data. All those features with a co-
herent distribution did not undergo any range modification. In addition to socio-demographic and
laboratory features, three new features are created: basal treatment, comorbidities and symptoms.
Each of them indicates the number of basal treatments, comorbidities and the patient’s symptoms
prior to admission. Note that an insightful quantitative analysis of the features for each dataset is
reported in Appendix A.

Finally, two filters are applied to treat missing values, one filter on the features and another on
the patients [1, 4].

• Feature filter. Blood tests, demographic and clinical features with more than 30% of missing
values are removed from the study.

• Patient filter. Patients with three or more missing values in the features are removed for
further analysis.

Remaining missing values are afterwards imputed by unsupervised similarity [5]. Specifically,
a five nearest-neighbours method with Euclidean distance is used to impute the data.

3. Data analysis

After data pre-processing, a brief analysis of the data is reported. In Table 1, the number
of patients and features of each dataset is shown. SEMI dataset collects a larger number of
patients and features than REDISSEC. Furthermore, both datasets are unbalanced with more
non-deteriorated (class 0) than deteriorated patients (union of classes 1, 2 and 3).

Table 1. General characteristics of deterioration datasets

Dataset Patients Features Classes
0 1 2 3

SEMI 14950 36 10399 2274 634 1643

REDISSEC 2566 27 1783 460 144 179

3.1. SEMI dataset

SEMI data can be classified into the different waves recorded in Spain during the pandemic
(see Table 2). It should be noted that the wave division has been made taking into account both
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3.2 REDISSEC dataset 3

the trend of our data and the true wave divisions in Spain. Therefore, it is possible that the dates
do not coincide exactly with the Spanish trend.

Table 2. COVID-19 waves’ distribution on SEMI dataset.

Wave Duration Patients Classes
0 1 2 3

1st Beginning - 15 June 2020 11008 7657 1569 528 1254
2nd 16 June 2020 - 30 November 2020 2697 1953 404 78 262
3rd 1 December 2020 - 28 February 2020 1184 749 287 26 122
4th 28 February 2020 - 04 March 2021 61 40 14 2 5

Total Beginning - 04 March 2021 14950 10399 2274 634 1643

Figure 1 reports the distribution of positive COVID-19 patients by date of admission. The
waves can perfectly be identified. Accordingly, the vast majority of patients corresponds to the
most chaotic period of the pandemic, the first wave. In this stage, ventilation mechanisms were in
demand and in short supply, leading to the use of one type or another depending on availability.
Hence, in addition to the difficulties of a multi-class classification problem, we must add the
uncertainty of the type of deterioration present during the chaotic early period of the pandemic.
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Figure 1. Distribution of SEMI patients by date of admission. Blue color shows the quantity of
non-deteriorated patients and orange shows the patients with any type of deterioration. The asso-
ciated lines report the estimated density function for deteriorated (orange) and non-deteriorated
(blue) patients.

3.2. REDISSEC dataset
REDISSEC dataset is divided into different regions: Andalucia, Canary Islands, Catalonia and

Basque Country regions (see Table 3). The most predominant region is Basque Country with more
than half of the data. Canary Islands’ data highlights for the exclusive presence of patients with
high degree of deterioration.

Table 3. Regions distribution on REDISSEC dataset.

Region Patients Classes
0 1 2 3

Basque Country 1770 1295 320 44 111
Catalonia 503 342 81 36 44
Andalucia 246 146 42 34 24

Canary Islands 47 - 17 30 -
Total 2566 1783 460 144 179
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Figure 2 shows the distribution of positive COVID-19 patients by date of admission. As ex-
pected, when looking at the graph’s trend we can see how the fluctuations in patient numbers are
related to the different waves of the pandemic. The graph clearly shows that the patients collected
by REDISSEC correspond to the first two waves in Spain.
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Figure 2. Distribution of REDISSEC patients by date of admission. In blue appears the quantity
of non-deteriorated patients and in orange patients with any type of deterioration. The associated
lines report the density function for deteriorated (orange) and non-deteriorated (blue) patients.

4. Design and development aspects
A multi-class machine learning model capable of establishing a prognosis for a COVID-19

positive patient admitted to hospital is not straightforward to develop. First of all, both datasets
are unbalanced, most of the patients do not show any deterioration. This unbalanced degree in
the output complicates the accurate learning of classifiers. To solve the problem, two different
supervised learning methods for multi-class problems are proposed. Furthermore, a more complex
ensemble classifier is developed in order to improve the multi-class classification problem.

4.1. Supervised learning methods
Despite of having tested the performance of a large set of methods, only two of them are

considered as relevant to be included in the report.

• Logistic Regression. This traditional method, widely used and known by physicians, is
our first option to build the classifier. Due to its interpretability and popularity, it is essential
include this method within our study. To adapt the Logistic Regression into the multi-class
classification problem, the one-versus-rest (OVR) technique is implemented. This strategy
splits a multi-class classification into one binary classification problem per class. Predictions
are made by choosing the most confident class. Furthermore, the unbalance between the
classes is internally rectified by adjusting the weights of the instances.

• XGBClassifier. Currently, XGBoost algorithms are one of the most widely used methods
owing to its ease of implementation and good performance. Moreover, due to its ability to
deal with multi-class datasets, it is taken into consideration for our deterioration problem.

4.2. Ensemble Classifier
The multi-class problem is difficult for any classifier. Therefore, an ensemble method is proposed

to attempt a more accurate classification. The ensemble method is divided into two parts.

1. First level. Binary classification to differentiate between deteriorated and non-deteriorated
patients. In this step, non-deteriorated predicted patients retain its category and patients
predicted as deteriorated move to the next step.
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5 RESULTS 5

2. Second Level. Multi-class classification to classify deteriorated patients in one of its three
possible classes: class 1 (VMK, OPT, NIV), class 2 (IV, ICU), class 3 (Death).

Once the structure of our ensemble classifier is known, we need to determine the classification
algorithms for the two established levels. Two different ensemble classifiers are proposed:

• Double LR. Two Logistic Regression models are chosen. A Logistic Regression with a
correction for the unbalance problem is placed at the first level of the classifier to differentiate
between deteriorated and non-deteriorated patients. The second Logistic Regression with a
correction for the unbalance problem and the OVR technique is proposed for the multi-class
classification (second level).

• XGB+LR. XGBoost is chosen for the first level to determine if the patient presents deterio-
ration. For the second level a Logistic Regression (unbalance correction and OVR technique)
to extract the type of deterioration.

5. Results

The results are reported separately. On the one hand, those corresponding to SEMI, and on
the other hand those corresponding to REDISSEC. In each of them, the performance of the models
on the complete dataset is studied by conducting a 5-fold cross-validation repeated 10 times. In
addition, SEMI dataset is trained in different waves and evaluated in subsequent waves. However,
with REDISSEC dataset, we do not focus on waves but on regions. Different models are trained
in the regions of the Basque Country and Catalonia, and evaluated in the remaining regions.

It should be noted that the features of each dataset are normalized before the implementation
of any model and default hyperparameter values are used in each classifier. As we are dealing with
a multi-class and unbalanced problem, the accuracy and recall (sensitivity) of each of the classes
is presented as key metrics for each method. For a multi-class classification problem, the accuracy
does not reflect the real behaviour of the model, so recalls are necessary to assess the performance
of our models. A brief definition of the metrics is shown in Table 4.

Table 4. Brief definition of the used metrics.

Metric Description
Accuracy (Acc) Fraction of correct predictions

Recall 0 (R0) Number of patients with no deterioration that the model
correctly matches, divided by the total number of patients

with real no deterioration.

Recall 1 (R1) Number of patients with type 1 deterioration that the model
correctly matches, divided by the total number of patients

with real type 1 deterioration.

Recall 2 (R2) Number of patients with type 2 deterioration that the model
correctly matches, divided by the total number of patients

with real type 2 deterioration.

Recall 3 (R3) Number of patients with type 3 deterioration that the model
correctly matches, divided by the total number of patients

with real type 3 deterioration.

Recall Det. (RD) Number of patients with deterioration (type 1, 2 or 3) that the model
correctly matches, divided by the total number of patients

with real deterioration (type 1, 2 or 3).
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5.1. SEMI dataset

5.1.1. Complete set of data

The complete set of data provided by SEMI is considered. Models developed in SEMI dataset
are reported in Table 5. In spite that the accuracy of the models is not high in any case, it should
be noted that we are dealing with a difficult 4-class classification problem. Logistic Regression is
the model with highest RD. Thus, the model shows high predictive ability in the identification the
patients with any type of deterioration. The model with the best accuracy and also best R0 is the
XGBoost Classifier. This model behaves correctly in the detection of non-deteriorated patients.

Table 5. Results for SEMI dataset. Complete set of data.

Metric Model
Logistic Regression XGBoost Double LR XGB+LR

Acc 0.6070±0.0007 0.7311±0.0015 0.6584±0.0010 0.7111±0.0013
R0 0.6793±0.0010 0.9350±0.0015 0.7585±0.0009 0.8867±0.0011
R1 0.2667±0.0035 0.2234±0.0047 0.2965±0.0033 0.1999±0.0031
R2 0.4380±0.0062 0.0754±0.0086 0.3219±0.0080 0.2562±0.0085
R3 0.6855±0.0031 0.3958±0.0058 0.6562±0.0020 0.4827±0.0055
RD 0.7532±0.0015 0.3979±0.0040 0.6931±0.0012 0.5045±0.0042

The central classes, levels 1 and 2 of deterioration, are the ones that show the highest error in
our models. One of the possible causes is the low number of patients for these classes.

The ensemble classifiers provide a different approach to the previous classifiers. The Double
LR maintains the structure of traditional Logistic Regression and increases the result of R0. This
is due to the worsening of the recalls related to deterioration levels (1, 2, 3). The model composed
by an XGBoost classifier and a Logistic Regression achieves a slightly lower accuracy and R0 than
the XGBoost model. However, an increase in the recalls of the rest of the classes is reported with
respect to the XGBoost model. Owing to the balanced recalls, XGB+LR is more consistent than
XGBoost Classifier.

5.1.2. Train and test with different waves

As data of different waves is available, two different models are studied to evaluate their be-
haviour in the following phases of the pandemic. Firstly, we train on the first wave and evaluate
on the remaining waves. Then, we train with the second wave and evaluate with the data of the
subsequent waves. The results are shown in Table 8.

Table 6. Results for SEMI dataset. Waves study.

Train Test Metric Model
Logistic Regression XGBoost Double LR XGB+LR

1s
t

2n
d
,
3r

d
,
4
th

Acc 0.582 0.729 0.647 0.700
R0 0.637 0.933 0.736 0.878
R1 0.268 0.188 0.295 0.188
R2 0.386 0.094 0.283 0.245
R3 0.810 0.442 0.748 0.498
RD 0.774 0.368 0.689 0.456

2n
d

3r
d
,
4t

h

Acc 0.543 0.689 0.594 0.658
R0 0.565 0.913 0.643 0.835
R1 0.445 0.315 0.328 0.342
R2 0.357 0.000 0.285 0.107
R3 0.685 0.307 0.645 0.433
RD 0.811 0.381 0.730 0.521
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Both models follow a similar trend as described with the complete dataset (See Table 5). The
Logistic Regression model provides a high RD, and XGBoost does the same with R0. By training
with the first wave and validating with the remaining waves, better results are obtained compared
to the model trained with the second wave. The different sizes in the training set and the differences
between waves may be some of the causes.

Note that SHAP values of the Logistic Regression model trained on the first wave and evaluated
on the remaining waves are shown in Figure 3 of Appendix B.

5.2. REDISSEC dataset

5.2.1. Complete set of data

As with SEMI dataset, we start by using the entire dataset to evaluate the performance of
different methods. The four models described in Section 3 are implemented and results are reported
in Table 7.

Table 7. Results for REDISSEC dataset. Complete set of data.

Metric Model
Logistic Regression XGBoost Double LR LR+XGB

Acc 0.5877±0.0021 0.7055±0.0050 0.6252±0.0027 0.6805±0.0034
R0 0.6626±0.0027 0.9245±0.0035 0.7396±0.0020 0.8676±0.0046
R1 0.3486±0.0089 0.2489±0.0135 0.2958±0.0078 0.1998±0.0085
R2 0.3235±0.0231 0.1484±0.0213 0.2648±0.0163 0.2616±0.0213
R3 0.6681±0.0179 0.1760±0.0140 0.6237±0.0141 0.3889±0.0227
RD 0.7563±0.0031 0.3541±0.0083 0.6760±0.0036 0.4752±0.0123

REDISSEC data follows a similar trend to SEMI. The best accuracy and R0 is obtained with
the XGBoost Classifier. This model stands out for having a very high success in predicting non-
deteriorate patients. Logistic Regression achieves the best values in recalls related to deterioration
levels (1, 2 and 3). In addition, RD highlights for its good behaviour in predicting patients with
deterioration. Double LR and LR+XGB provide alternative solutions to XGBoost and Logistic
Regression. However, none of them shows outstanding results.

5.3. REDISSEC dataset by regions.

REDISSEC dataset provides information from four regions of Spain: Canary Islands, Andalucia,
Basque Country and Catalonia. Therefore, instead of doing a study segmented on waves, we have
decided to focus on the behaviour of different regions. So, the subset associated with the Canary
Islands is not used in this study due to its small amount of data. In addition, the training of the
models is conducted with both regions that contain the largest number of patients: Basque Country
and Catalonia. Thus, considering the regions of the Basque Country, Catalonia and Andalucia, we
train on one of the first two regions and evaluate separately on the other two. The results of the
four proposed classification models are reported in Tables 8 & 9.

In general terms, the models trained with the Basque Country data perform better when
evaluated in Catalonia than in Andalucia. The evaluation in Catalonia shows a robust R3 and RD

in the Logistic Regression. This indicates that the model trained with Basque patients has a high
predictive ability for Catalan patients with deterioration (type 1, 2 or 3) and even more for those
who die (type 3). In addition, the XGBoost shows a high R0 as the model in the previous section.
The model evaluated in Andalucia achieves lower levels of accuracy. Despite of this, the value of
RD in the Logistic Regression and R0 in the XGBoost stand out.
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Table 8. Regions study in REDISSEC dataset. Training with Basque Country data.

Train Test Metric Model
Logistic Regression XGBoost Double LR XGB+LR

B
as

.
C

ou
nt

ry

C
at

al
on

ia

Acc 0.546 0.700 0.564 0.682
R0 0.593 0.956 0.646 0.903
R1 0.345 0.098 0.271 0.062
R2 0.138 0.000 0.138 0.111
R3 0.886 0.386 0.818 0.568
RD 0.770 0.229 0.745 0.397

B
as

.
C

ou
nt

ry

A
n
d
al

u
ci

a

Acc 0.394 0.548 0.434 0.565
R0 0.479 0.842 0.500 0.787
R1 0.309 0.238 0.309 0.214
R2 0.058 0.000 0.117 0.088
R3 0.500 0.083 0.708 0.500
RD 0.770 0.400 0.690 0.500

Note that SHAP values of the Logistic Regression model trained on the Basque Country and
evaluated on Catalonia are shown in Figure 4 of Appendix B.

Table 9. Regions study in REDISSEC dataset. Training with Catalan data.

Train Test Metric Model
Logistic Regression XGBoost Double LR XGB+LR

C
at

al
on

ia

B
as

.
C

ou
nt

ry Acc 0.498 0.705 0.546 0.666
R0 0.486 0.875 0.576 0.796
R1 0.637 0.287 0.540 0.384
R2 0.113 0.045 0.023 0.023
R3 0.387 0.180 0.423 0.225
RD 0.844 0.393 0.779 0.555

C
at

al
on

ia

A
n
d
al

u
ci

a

Acc 0.313 0.565 0.349 0.512
R0 0.246 0.794 0.301 0.650
R1 0.523 0.262 0.404 0.309
R2 0.147 0.147 0.147 0.147
R3 0.583 0.291 0.833 0.541
RD 0.900 0.430 0.860 0.600

When training the algorithms with the Catalan data a similar trend occurs. The accuracy of
the model evaluated in Andalucia is much lower than the one evaluated in the Basque Country.
The evaluation in the Basque Country leads to remarkable results in RD metric for the Logistic
Regression and R0 of the XGBoost. Despite the low accuracy of the model evaluated in Andalucia,
a better RD of the logistic model is obtained than in any of the three previous models. Moreover,
as in previous models, the R0 value of the XGBoost continues to be remarkable and the solid
performance of R3 for the Double LR is surprising.

6. Conclusions

The designed multi-class classification problem is not trivial. In addition to the 4 different
classes presented, we have to deal with unbalanced datasets. In spite of this, models with solid
scores for specific scenarios are achieved.

The SEMI dataset has been trained on the full dataset, the first and the second wave. Although
it is observed that the performance of the model trained on the first wave is better, the results
do not differ from those of the second wave. With respect to REDISSEC dataset, we have chosen
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to train the models on the regions of the Basque Country and Catalonia. It is noteworthy that
different results are obtained when evaluating in different regions.

Four supervised learning methods have been applied in each database: Logistic Regression,
XGBoost, Double LR and XGB+LR. The performance of RD metric in Logistic Regression and
R0 score in XGBoost are competitive.

From my point of view, the most suitable model to implement in hospitals would be the one
that shows the highest recall (sensitivity) on deteriorated patients. That is, the model that reduces
the number of patients predicted as non-deteriorated but who actually have some deterioration.
Logistic Regression because of its high RD fulfils this condition in all cases. Although it is more
complicated to differentiate among deterioration of types 1, 2 and 3, at least we know that our
model performs properly in identifying any type of deterioration.
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A. Appendix. Quantitative analysis of the features.

Table 10. Descriptive statistics for SEMI dataset features.

mean std min 25% 50% 75% max
edad 66.98 15.93 0.01 56.08 68.75 79.20 104.93
sexo 0.42 0.49 0.00 0.00 0.00 1.00 1.00
aboh 0.05 0.21 0.00 0.00 0.00 0.00 1.00
depend 0.22 0.55 0.00 0.00 0.00 0.00 2.00
confus 0.11 0.31 0.00 0.00 0.00 0.00 1.00
taquipn 0.34 0.47 0.00 0.00 0.00 1.00 1.00
tas 129.24 21.06 50.00 115.00 128.00 142.00 250.00
tad 74.30 13.05 6.00 66.00 74.00 82.00 180.00
frcar 88.25 17.08 32.00 76.00 87.00 100.00 180.00
temp 37.01 0.96 35.00 36.30 36.90 37.70 41.00
crep 0.56 0.50 0.00 0.00 1.00 1.00 1.00
spo2 93.05 5.78 40.00 91.00 94.00 97.00 100.00
hb 13.65 1.89 3.70 12.60 13.80 14.90 20.00
plaq 205548.69 89605.46 1000.00 148000.00 190000.00 245000.00 1420000.00
leuin 7199.21 4870.57 11.00 4740.00 6260.00 8480.00 90000.00
eosin 17.19 32.28 0.00 0.00 0.00 20.00 150.00
linfin 1137.82 2327.32 0.00 670.00 910.00 1270.00 98970.00
neutin 5346.99 3056.64 0.00 3230.00 4600.00 6700.00 20000.00
monin 487.42 446.43 0.00 300.00 400.00 600.00 9999.00
pcrin 90.36 87.72 0.00 23.40 66.00 131.60 1000.00
creain 1.11 0.87 0.01 0.74 0.91 1.17 15.00
urea 47.51 34.76 10.00 28.00 38.00 54.00 500.00
ldh 372.86 203.85 3.00 252.00 325.00 435.00 5435.00
lsldh 266.74 77.98 24.00 225.00 246.00 250.00 950.00
got 47.32 58.37 0.00 27.00 37.00 52.00 3641.00
gpt 41.71 64.90 1.00 19.00 30.00 47.00 4130.00
bilin 0.66 1.16 0.00 0.40 0.50 0.70 47.00
soser 137.36 4.59 105.00 135.00 137.00 140.00 176.00
poser 4.12 0.56 1.60 3.80 4.10 4.40 8.90
glubas 130.77 59.48 15.00 100.00 115.00 140.00 1100.00
aptt 30.75 9.71 0.00 27.06 29.80 32.60 200.00
dimerd 1653.46 5227.27 0.00 388.00 670.00 1209.95 137012.00
comor 2.25 1.50 0.00 1.00 2.00 4.00 4.00
ttobasal 1.50 1.27 0.00 0.00 2.00 3.00 3.00
sintomas 3.23 1.00 0.00 3.00 4.00 4.00 4.00
radtorax 1.14 0.61 0.00 1.00 1.00 1.00 3.00
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Table 11. Descriptive statistics for REDISSEC dataset features.

mean std min 25% 50% 75% max
Sexo Mujer 0.43 0.49 0.00 0.00 0.00 1.00 1.00
edad 65.85 16.63 0.13 54.68 66.78 79.07 102.19
Sin hogar Yes 0.01 0.07 0.00 0.00 0.00 0.00 1.00
Sat O2 93.71 6.19 23.00 93.00 95.00 96.49 101.00
FC 85.12 15.96 30.00 74.00 84.00 94.00 169.00
glucosa 128.66 55.78 18.00 99.00 112.00 134.00 619.00
creatinina 1.10 0.78 0.20 0.76 0.92 1.15 12.01
GPT 37.04 37.68 0.00 18.00 27.00 43.00 605.00
sodio 137.78 4.40 114.00 135.00 138.00 140.00 178.00
potasio 4.20 2.48 1.79 3.80 4.10 4.45 127.00
DimeroD 1721.01 4020.45 0.10 468.00 770.00 1400.14 57907.00
LDH 309.92 140.93 4.25 227.85 281.00 359.00 2645.00
PCR 71.01 77.00 0.00 12.70 46.33 102.83 468.10
hemoglobina 13.57 1.90 4.16 12.40 13.80 14.90 18.80
Hematocrito 41.51 5.64 12.30 38.20 41.90 45.27 82.40
Plaquetas 207.46 85.39 2.33 149.00 190.00 251.00 562.00
leucocitos 7.11 3.40 0.12 4.89 6.33 8.50 37.05
Neutrofilos 5.38 3.18 0.00 3.30 4.56 6.58 32.52
Linfocitos 1.16 0.78 0.00 0.72 1.02 1.40 13.30
Bilirrubina 0.58 0.37 0.00 0.36 0.50 0.69 4.78
Monocitos 0.53 0.32 0.00 0.34 0.47 0.66 4.00
TAS 129.07 19.85 68.00 116.00 128.00 140.00 220.00
TAD 75.19 12.21 28.00 67.00 75.00 82.30 128.00
temperatura 37.09 0.94 34.20 36.40 37.00 37.70 40.30
sintomas 2.63 0.70 0.00 2.00 3.00 3.00 3.00
comorbilidades 0.75 1.00 0.00 0.00 0.00 1.00 3.00
tto basal 1.57 1.29 0.00 0.00 2.00 3.00 3.00
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B. Appendix. SHAP values.
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Figure 3. SHAP values for the Logistic Regression trained with the first wave of SEMI dataset
and evaluated with the remaining waves. One graph for each of the classes is plotted. (a) Class 0
vs Rest. (b) Class 1 vs Rest. (c) Class 2 vs Rest. (d) Class 3 vs Rest.
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Figure 4. SHAP values for the Logistic Regression trained with the Basque Country and evaluated
with Catalonia (REDISSEC). One graph for each of the classes is plotted. (a) Class 0 vs Rest. (b)
Class 1 vs Rest. (c) Class 2 vs Rest. (d) Class 3 vs Rest.
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