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ABSTRACT (349 words/350 maximum words) 

Background and objectives: An unmet need exists for validated quantitative tools 

to measure multiple sclerosis (MS) disease activity and progression. We developed a 

custom immunoassay-based MS disease activity (MSDA) Test incorporating 18 

protein concentrations into an algorithm to calculate four Disease Pathway scores 

(Immunomodulation, Neuroinflammation, Myelin Biology, and Neuroaxonal Integrity) 

and an overall Disease Activity score. The objective was to clinically validate the 

MSDA Test based on associations between scores and clinical/radiographic 

assessments. 

Methods: Serum samples (N=614) from patients with MS at multiple sites were split 

into Train (n=426; algorithm development) and Test (n=188; evaluation) subsets. 

Subsets were stratified by demographics, sample counts per site, and gadolinium-

positive (Gd+) lesion counts; age and sex were used to demographically adjust 

protein concentrations. MSDA Test results were evaluated for potential association 

with Gd+ lesion presence/absence, new and enlarging (N/E) T2 lesion presence, and 

active versus stable disease status (composite endpoint combining radiographic and 

clinical evidence of disease activity).  

Results: A multi-protein model was developed (trained and cross-validated) using 

the Train subset. When applied to the Test subset, the model classified the Gd+ 

lesion presence/absence, N/E T2 lesion presence, and active versus stable disease 

status assessments with an area under the receiver operating characteristic 

(AUROC) of 0.781, 0.750, and 0.768, respectively. In each case, the multi-protein 

model had significantly (bootstrapped, one-sided p<0.05) greater AUROC 

performance when compared with the top-performing, demographically adjusted (by 

age and sex) single-protein model based on neurofilament light polypeptide chain. 
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Algorithmic score thresholds corresponded to low, moderate, or high levels of 

disease activity. Based on the Test subset, the diagnostic odds ratios determined 

that the odds of having ≥1 Gd+ lesions among samples with a moderate/high 

Disease Activity score were 4.49 times that of a low Disease Activity score. The odds 

of having ≥2 Gd+ lesions among samples with a high Disease Activity score were 

20.99 times that of a low/moderate Disease Activity score. 

Discussion: The MSDA Test was clinically validated; the multi-protein model had 

greater performance compared with the top-performing single-protein model. The 

MSDA Test may serve as a quantitative and objective tool to enhance care for MS. 
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GLOSSARY 

AMIR = American University of Beirut Medical Center Study; ANOVA = analysis of 

variance; AUROC = area under the receiver operating characteristic; CD6, cluster of 

differentiation 6; CIS = clinically isolated syndrome; CLIMB = Comprehensive 

Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's 

Hospital; CNS = central nervous system; CSF = cerebral spinal fluid; CXCL13 = C-X-

C motif chemokine ligand 13; DMT = disease-modifying therapy; FSDD = Family 

Study of Demyelinating Disease; Gd+ = gadolinium-positive; IL-12β = interleukin 

12β; LOQ = limit of quantitation; MRI = magnetic resonance imaging; MS = multiple 

sclerosis; MSDA = multiple sclerosis disease activity; N/E = new and enlarging; NfL 

= neurofilament light polypeptide chain; NPV = negative predictive value; NPX = 

normalized protein expression; OLS = ordinary least squares; PPV = positive 

predictive value; RMMSC = Rocky Mountain Multiple Sclerosis Clinic; RRMS = 

relapsing-remitting multiple sclerosis; SUMMIT = Serially Unified Multicenter Multiple 

Sclerosis Investigation; TNFSF13B = tumor necrosis factor superfamily member 

13B. 
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INTRODUCTION 

Multiple sclerosis (MS) is an autoimmune, chronic, neuroinflammatory disease 

of the central nervous system,1, 2 with a complex disease course and variable 

symptoms or manifestations.1 The clinical course following the first clinical 

manifestation of MS, or clinically isolated syndrome (CIS), can vary, but most patients 

transition to having an MS diagnosis.3, 4 Approximately 15% of patients have primary 

progressive MS, which is usually diagnosed following symptom onset, has no periods 

of remission, and has a worse prognosis compared with other types of MS.5-7 More 

than 85% of patients have relapsing-remitting MS (RRMS),7-9 which is characterized 

by clinical exacerbations, or relapses, followed by periods of clinical remission, or 

recovery, as inflammation resolves and remyelination occurs.1, 5, 7, 9, 10 Most patients 

with RRMS enter a progressive phase, which presents as accumulating loss of 

neurological function over time, a result of demyelination, neuroinflammation, 

accumulation of neuroaxonal damage, and brain atrophy.11, 12 These manifestations 

contribute to a progressively worsening disability, namely, secondary progressive 

MS, which can occur with or without further relapses.5, 8, 13  

The heterogenous variations in the clinical disease course of MS have made 

diagnosis and prognosis difficult.9, 14 Although early diagnosis was based primarily on 

clinical evidence, the 2017 revision of the McDonald criteria for MS diagnosis has 

been updated to place greater emphasis on radiographic evidence using magnetic 

resonance imaging (MRI; eg, dissemination or spread over a minimum of two distinct 

areas of the central nervous system [CNS], including the brain, spinal cord, and optic 

nerves and at two different time points), as well as the presence of oligoclonal bands 

in the cerebral spinal fluid (CSF). Dissemination of lesions can be evaluated by 

gadolinium enhanced or T2-weighted imaging.15, 16 Although the McDonald criteria 
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was recently updated to combine clinical manifestations and radiographic imaging,15 

these criteria do not always accurately predict disease course, activity, progression, 

recurrence, or treatment response.13, 17, 18 To date, there are no validated clinical 

tests that leverage multiple serum biomarkers to track disease activity or disease 

progression in patients with MS. As such, there is an unmet need for clinically 

validated, objective, quantitative tests that can accurately monitor MS disease activity 

and progression.14, 19  

A multi-protein, serum-based biomarker assay was developed to quantitatively 

measure disease activity using protein concentrations of 18 biomarkers in the serum 

of patients with all types of MS. The custom multi-protein assay panel was developed 

and analytically validated using the Olink® Proximity Extension Assay (Olink 

Proteomics, Uppsala, Sweden) technology.20 The comprehensive analytical 

characterization of this MS disease activity (MSDA) Test was described previously. 

Briefly, 18 proteins were selected for inclusion into the panel based on results from 

previously performed research and development studies and incorporated into a final 

algorithm for calculating four Disease Pathway scores (Immunomodulation, 

Neuroinflammation, Myelin Biology, and Neuroaxonal Integrity) scores and an overall 

Disease Activity score (Supplementary Table 1).21 The objective of the study was to 

clinically validate the MSDA Test by evaluating the associations of the overall 

Disease Activity score and the four Disease Pathway scores with gadolinium-positive 

(Gd+) lesions, new and enlarging T2 (N/E T2) lesions, and active or stable disease 

status. MS disease status was a combination assessment of Gd+ lesions, N/E T2 

lesions, and clinical relapse status. 

 

METHODS 
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Patient samples  

A total of 614 serum samples were included from two different sources: 448 

retrospective samples from the Serially Unified Multicenter MS Investigation 

[SUMMIT] consortium; 166 prospective samples from the Rocky Mountain Multiple 

Sclerosis Clinic (RMMSC). SUMMIT samples were sent to Octave Bioscience, Inc. 

from three independent sites and studies: Comprehensive Longitudinal Investigation 

of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB; n=195), 

American University of Beirut Medical Center Study (AMIR; n=202), and University of 

Massachusetts MS Center—Family Study of Demyelinating Disease (FSDD; n=51). 

Patient samples selected for this study were intentionally enriched for the presence 

of Gd+ lesions compared with the general MS population.  

SUMMIT was an international multicenter, prospectively enrolled MS cohort 

study with standardized data structure and analysis groups that can be stratified by 

demographics, clinical measures, disease relapses, MRI measures, or blood 

sampling.22 Samples from RMMSC were collected as part of the matched serum and 

MRI for the Disease Activity Test Development Study. Cross-sectional (samples from 

a single time point) and longitudinal samples (samples from multiple time points from 

the same patient) from both SUMMIT and RMMSC were included in the analysis. 

Serum specimens were collected using standard venipuncture and processing 

protocols. Samples were transferred to Octave Bioscience, Inc. for analysis and 

stored at −65�C.  

 

Clinical and radiographic data for biostatistical analysis 

An annotated data set containing clinical and radiographical data was 

obtained for each serum sample. Individual data sets with additional demographic, 
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clinical, and radiographic fields were collected; a combined data set was matched 

and adjusted so that the annotations were consistently labeled across the study sites 

and stratified, meaning that the data were split into the Train and Test subsets with a 

balanced distribution across demographic characteristics, sample counts per site, 

and Gd+ lesion counts. 

 

Bioanalytical analysis  

All serum samples were analyzed as part of a single experiment performed 

over several days. Assay plates contained up to 72 samples analyzed in a single well 

each; four serum controls, three calibrators, and a blank control, were described 

previously21 and assayed in triplicate. Analytical runs were stratified independently of 

the clinical Train/Test randomization, ensuring that assay plates had balanced 

distribution across sites, demographics, and presence/absence of or number of Gd+ 

lesions. Analysis was performed cross-sectionally, using the protein concentrations 

as predictors and algorithmic features. 

Pre-processing and quality control was performed using the Olink® Normalized 

Protein Expression (NPX) Manager software (Olink Proteomics, Uppsala, Sweden). 

Built-in quality control (three internal controls that were added into all samples and 

the external controls) enabled control over the technical performance of the assay at 

each step of the analysis. These internal controls consisted of an incubation control, 

extension control, and a detection control. Quality control was performed per assay 

run and for individual samples at each step of the analysis. Standard deviations for 

each internal control were established to be below a predetermined threshold (ie, 0.2 

NPX) for the entire plate. Median values were calculated for the incubation and 

detection controls, respectively, for a sample plate. The result of each internal control 
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was required to be within ±0.3 NPX from the plate median. If any of these internal 

controls deviated from this range, the sample failed quality control and was 

reanalyzed.  

External controls consisted of serum pools with endogenous protein 

concentrations established at expected levels. Acceptability of a plate run was based 

on the percent recovery of the serum pools relative to their expected values (ie, ±3 

SD). Individual samples or plates that failed the analytical quality control process 

were rerun.  

 

Assessments 

The primary and exploratory assessments of the study included evaluation of 

the association of the multi-protein and single-protein models to the radiographic 

(Gd+ and N/E T2 lesions) and clinical (active vs stable disease status) assessments. 

Radiographic annotations were derived from brain MRIs for all patients in the study 

and from spine MRIs when available. Association of single-protein and multi-protein 

models with the presence or absence of Gd+ lesions, as determined on a matched 

MRI performed within 60 days of the blood draw, was considered the primary 

endpoint. Next, the final models were evaluated relative to additional disease activity 

exploratory assessments (N/E T2 lesions and active vs stable disease status). 

Samples were considered active if any Gd+ lesion was present, if any N/E T2 lesion 

was present, or if there was evidence of a clinical relapse within 30 days. Samples 

were otherwise considered stable (including samples missing N/E T2 lesion/clinical 

relapse data). This approach was used to further refine the overall Disease Activity 

and Disease Pathway algorithms (eg, Immunomodulation, Neuroinflammation, 

Myelin Biology, and Neuroaxonal Integrity). Association of the results from multi-
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protein and single-protein modeling with disease progression was an additional 

exploratory assessment, which is not reported in this manuscript. Classification 

models were fit to the data with proteomic results as the independent variables and 

presence or absence of Gd+ lesions as the dependent variable.  

 

Statistical analysis  

The study hypothesis was that a multi-protein model would significantly 

associate with clinical and radiographic disease activity endpoints and be superior to 

the highest performing, single-protein model based on the protein biomarkers 

included in the multi-protein model.  

Inclusion criteria for the study required that information for the primary 

endpoint reference standard (eg, presence or absence of Gd+ lesions) was available 

for all patient samples. Upon completion of analytical quality control processes and 

any necessary reanalysis, index test data (eg, protein concentrations) were available 

for each sample. For secondary and exploratory endpoints, samples with missing 

data were excluded from the statistical analysis. 

The entire data set (N=614) was split into Train and Test subsets. The Train 

subset was designed to optimize algorithms and included 70% of the total available 

samples; the Test subset established the performance specifications of the MSDA 

Test and comprised 30% of the total available samples. The subsets were stratified 

to ensure a balanced distribution across demographic characteristics that included 

age, sex, and disease duration; sample counts per site; and Gd+ lesion counts. 

Analysis was performed in the Train subset to assess unexpected differences in 

biomarker ranges resulting from preanalytical processing at the four sites from which 

the samples were obtained.  
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A two-layer stacked classifier using L2-penalized logistic regression models, 

which leveraged biological categorizations of biomarkers to calculate Disease 

Pathway scores, was ultimately developed. A score-based algorithm enabled the four 

Disease Pathway scores and an overall Disease Activity score to be derived from the 

probabilities from the Pathway and Disease Activity model and calculated for 

individual samples (Figure 1). Full details on the algorithm and model parameters 

are presented elsewhere.23 

Single-protein models were fit using L2-penalized logistic regression with 

presence or absence of Gd+ lesions as the dependent variable and an intercept and 

the protein biomarker as independent variables. 

Protein concentrations were limit of quantitation (LOQ)-imputed, log10-

transformed, and demographically adjusted (with age and sex, based on Ordinary 

Least Squares [OLS] modeling) prior to being used in the Disease Pathway, Disease 

Activity, and single-protein models. Sex and age were selected as demographic 

adjustment variables (if there was a dependence with the protein biomarkers) since 

they are routinely collected in a clinical setting when blood samples are taken for 

analysis. Previous research and development studies, samples from a cohort of 

healthy controls, and those from the Train subset were used to establish the 

biomarker-specific demographic adjustment strategy, which included removing 

protein concentration outliers, accounting for OLS coefficient sign consistency across 

the three studies and establishing statistical significance related to both age and 

sex.23  

Metrics for model performance including the area under the receiver operating 

characteristic (AUROC), sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), accuracy, and odds ratios were used to evaluate 
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model performance. The prevalence of Gd+ lesions was enriched in this dataset, and 

it is important to note that PPV, NPV, and accuracy all depend on the prevalence. An 

L2-penalization was used to optimize the model and minimize overfitting when 

training to ensure generalizability to the Test subset. The multi-protein classification 

model was compared with the top-performing single-protein model (demographically 

corrected neurofilament light polypeptide chain [NfL] for all disease activity 

endpoints) to assess the statistical significance of differences in AUROC 

performance using a boot-strapped (1000 iterations), one-sided test for significance 

using the pROC24 package in R.25 

The importance of each protein biomarker included in the Disease Activity 

model was evaluated using mlxtend26 by the mean decrease in the AUROC after 

permutation (repeated 1000 times) of only that protein marker in the trained Pathway 

and Disease Activity models, compared with the AUROC for predictions with no 

permutation. Proteins that displayed a larger decrease in the AUROC were more 

important for the Disease Activity model. NfL was identified as the most important 

biomarker, followed by tumor necrosis factor superfamily member 13B (TNFSF13B) 

(Supplementary Figure 1). 

 Statistical analysis was performed to characterize the algorithm at the model 

level (eg, prior to scoring individual samples) and at the score level. Thresholds were 

established for the score levels that corresponded to Disease Activity scores based 

on the number of Gd+ lesions. Patients with no lesions were considered to have low 

(1.0–4.0) disease activity, patients with 1 Gd+ lesion had moderate (4.5–7.0) disease 

activity, and patients with ≥2 Gd+ lesions had high (7.5–10.0) disease activity. The 

low versus moderate/high threshold was selected based on sensitivity. The rationale 

for selecting sensitivity for the low versus moderate/high threshold was that the 
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presence of any number of Gd+ lesion(s) was an accurate and reliable indicator of 

active disease. The low/moderate versus high threshold was selected based on 

accuracy. The rationale for selecting accuracy for the low/moderate versus high 

threshold was that all samples within this score range were expected to have 

radiographic evidence of disease activity; the primary factor would therefore be 

optimizing the ability to distinguish a single lesion versus ≥2 Gd+ lesions.  

Statistical analysis for the Train subset was performed by the Octave 

Bioscience Data Science Team who remained blinded to the analytical results (eg, 

protein concentrations) and clinical assessments in the Test subset until the 

algorithm was finalized. To investigate generalizability of the Disease Activity and 

Pathway algorithms determined using the Train subset, samples from earlier 

research and development studies were also evaluated prior to the Test subset 

analysis (analyses not reported here).  

 

Standard protocol approvals, registration, and patient consents 

The study was approved by the Mass General Brigham institutional review board 

(Somerville, MA, USA) and the WCG institutional review board (Puyallup, WA, USA). 

All patients provided written informed consent. 

 

Data availability 

Access to anonymized data not published within this article and the study protocol 

can be made available by request from any qualified investigator once a data-sharing 

agreement is in place. 

 

RESULTS 
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Demographic and patient characteristics 

A total of 614 serum samples were included from two different sources and 

split into Train (n=426; algorithm development) and Test (n=188; evaluation) subsets. 

Patient demographics and characteristics were well balanced between Train and 

Test subsets (Table 1). 

 

Single-protein model evaluation  

The AUROC of demographically corrected, log10-transformed, LOQ-imputed 

individual biomarkers evaluated in the Train and Test subsets ranged from 0.436 to 

0.726. NfL was the highest performing protein, with an AUROC of 0.726 for the Test 

subset. The biomarkers that correlated with nominal significance (p<0.05, no multiple 

hypothesis testing correction) with Gd+ lesion presence included NfL, cluster of 

differentiation 6 (CD6), C-X-C motif chemokine ligand 13 (CXCL13), interleukin 12β 

(IL-12β), and TNFSF13B (Supplementary Table 2).  

 

Multi-protein model performance and optimization  

Prior to incorporation of the scoring algorithm, a threshold for the multi-protein 

stacked classifier was chosen to provide a sensitivity of at least 0.80 for the Train 

subset. This threshold led to a sensitivity of 0.684 and a specificity of 0.714 in the 

Test subset. The AUROC of the multi-protein stacked classifier was 0.807 and 0.781   

for the Train and Test subsets, respectively, based on Gd+ lesion presence 

(Supplementary Table 3).  

 

Clinical validation of the multi-protein model  
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The multi-protein model developed on the Gd+ lesion presence endpoint using 

the Train subset was then applied to the Test subset. The final model performance 

achieved an AUROC of 0.781 relative to the Gd+ lesion presence/absence endpoint, 

0.750 relative to the N/E T2 lesion presence endpoint, and 0.768 relative to the 

active/stable disease endpoint. In each case, the multi-protein model was found to 

have significantly greater (p<0.05) performance when compared with the top-

performing single-protein model based on demographically corrected NfL (p<0.05). 

By comparison, the single-protein model for demographically corrected NfL had an 

AUROC of 0.726 for Gd+ lesion presence, 0.660 for N/E T2 lesion presence, and 

0.683 for active/stable disease. The multi-protein model also outperformed NfL 

models based on log10-transformed, LOQ-imputed NfL protein concentrations with no 

demographic correction. The AUROCs for the single-protein, demographically 

uncorrected NfL models were 0.694, 0.619, and 0.645 for Gd+ lesion presence, N/E 

T2 lesion presence, and active versus stable disease, respectively (Figure 2).  

Once the final model was optimized, score-level performance of the model in 

the Train and Test subsets was evaluated using 2 x 2 confusion matrices. Score-

level precision for the Train subset is shown in Table 2. Selection of the low versus 

moderate/high threshold was based on sensitivity (for the comparison of no lesions 

vs ≥1 Gd+ lesions); selection of the low/medium versus high threshold was based on 

accuracy (for the comparison of 0 or 1 vs ≥2 Gd+ lesions).  

For Test samples with ≥1 versus 0 Gd+ lesions, the sensitivity and NPV for 

the low versus moderate/high cutoff were determined to be 0.737 and 0.775, 

respectively. A diagnostic odds ratio demonstrated that the odds of having ≥1 Gd+ 

lesions among samples with a moderate/high Disease Activity score was 4.49 times 

the odds of having ≥1 Gd+ lesions among samples with a low Disease Activity score 
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(Table 2). A comparison of the performance of the Disease Activity score in these 

samples using the multi-protein model with that of the highest performing single-

protein model based on demographically corrected NfL demonstrated that the multi-

protein demographically corrected model outperformed the single-protein 

demographically corrected NfL model (Figure 3). 

For the Test samples with either 0 or 1 Gd+ lesions when compared with 

those samples with ≥2 Gd+ lesions, the accuracy at the Disease Activity score to 

predict low/moderate versus high cutoff was determined to be 0.894. The diagnostic 

odds ratio demonstrated that the odds of having ≥2 Gd+ lesions among samples with 

a high Disease Activity score were 20.99 times the odds of having ≥2 Gd+ lesions 

among samples with a low/moderate Disease Activity score (Table 2).  

The overall performance of the Disease Activity score and four Disease 

Pathway scores is shown in Figure 4. The score distribution and respective box plots 

with Gd+ lesions for each of the four Disease Pathway scores are shown in 

Supplementary Figure 2. The centering and scaling strategy for the four Disease 

Pathway scores resulted in sufficient correlation to the overall Disease Activity score 

while retaining an independent signal. Finally, a stacked bar plot of the results for the 

Train and Test subsets demonstrated that the calculated Disease Activity score 

reflected both the likelihood and severity of radiographic disease activity, based on 

the presence or absence of and count of Gd+ lesions. As shown, patients without 

Gd+ lesions had a low Disease Activity score (in blue), patients with high Gd+ lesions 

had a high Disease Activity score (in orange) and those with moderate disease 

activity had a medium range of Disease Activity score (in yellow; Figure 5).  

The distribution of individual biomarkers, and the Disease Activity and Disease 

Pathway scores obtained from the MSDA Test were analyzed for each of six 
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disease-modifying therapy (DMT) categories (anti-CD20s, natalizumab, interferons, 

dimethyl fumarate, fingolimod, and glatiramer acetate) in 466 samples, reflecting the 

therapy the patient was on at the time of the blood draw. The remaining samples did 

not fall in one of these six categories and were categorized as either other (treated 

with a DMT that was not analyzed independently due to low sample count) or blank 

(information relating to therapy was not provided in the clinical dataset). Significant 

analysis of variance (ANOVA) Bonferroni corrected p-values were observed for 14 of 

the 18 individual biomarkers utilized in the MSDA Test algorithm (Supplementary 

Figure 3). Samples (n=40) from the anti-CD20 category had the lowest Disease 

Activity score on average (3.11 ± 1.77), followed by samples (n=129) from the 

natalizumab category (4.17 ± 1.63). The highest Disease Activity score on average 

was associated with samples (n=62) from the glatiramer acetate category (6.39 ± 

1.67; Supplementary Table 4). 

 

Classification of evidence 

The MSDA Test is a multi-protein, serum-based biomarker assay designed to 

quantitatively measure disease activity using the protein levels of biomarkers present 

in the serum of patients with MS. Protein concentrations were LOQ imputed, log10 

transformed, and demographically adjusted for age and sex. The combination of 

multiple proteins was used to calculate four Disease Pathway scores and an overall 

Disease Activity score. The protein selection was intended to reflect the various 

biological pathways associated with MS pathophysiology. Using associations of the 

results from the multi-protein and single-protein models and the radiographic/clinical 

assessments, the MSDA Test was clinically validated in this study. This study 
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provided Class II evidence to demonstrate the clinical validation of MSDA Test for 

disease activity assessments in MS. 

 

DISCUSSION 

There are currently no validated clinical tests that leverage multiple serum 

biomarkers to monitor disease activity or progression in patients with MS. We have 

previously established that the MSDA Test is accurate, sensitive, precise, and 

robust, which serves as a critical first step in the validation of this assay.23 The MSDA 

Test uses 18 protein biomarkers, which reflect various biological pathways 

associated with MS pathophysiology. 

In this study, we successfully demonstrated the clinical validation of the MSDA 

Test. All disease activity assessments, namely, Gd+ lesions, N/E T2 lesions, and 

active/stable disease status, showed association with the Disease Pathway and 

overall Disease Activity scores from the MSDA Test. The multi-protein model had 

significantly (bootstrapped, one-sided p<0.05) greater performance compared with 

the top-performing single-protein model based on demographically corrected NfL in 

all assessments. The MSDA Test performed well when differentiating samples from 

patients with ≥1 Gd+ lesions versus no lesions, as well as when differentiating 

samples from patients with ≥2 Gd+ lesions versus 0 or 1 lesions.  

The highest-performing single-protein biomarker for all disease activity 

endpoints was NfL. NfL has been demonstrated to be a prognostic indicator of 

disease activity in MS.27-31 Elevated serum and CSF levels of NfL correlate with 

neuronal cell damage and brain atrophy.28, 29, 32-34 It has been used to predict long-

term clinical outcomes of MS34, 35 and guide treatment decisions.28, 29, 34, 36, 37 

However, NfL is not specific for MS and is elevated in several neurodegenerative 
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diseases.38-40 Furthermore, the protein is released into CSF and blood as a result of 

neuroaxonal damage, reflecting pathophysiology downstream of immune-mediated 

inflammatory pathways.29, 38, 39 In single-protein analyses, high-performing 

biomarkers in addition to NfL in this study included IL-12β, CXCL13, and TNFSF13B, 

all of which have been found to be potential biomarkers for MS in other studies.29, 34, 

41-46 Our analysis revealed that the multi-protein model outperformed single-protein 

models for each of these biomarkers, which indicated a more accurate 

representation of the various pathways, processes, and cell types involved in a 

complex disease state, such as MS, by a combination of biomarkers.20  

The MSDA Test was developed to favor sensitivity over specificity. In 

biomarker validation studies, there is typically a tradeoff between sensitivity and 

specificity for assay development.14 Development of a highly sensitive model, which 

can produce a higher degree of false-positive results and have reduced specificity is 

critical to the identification of patients with subradiographic and subclinical disease 

activity. Detection of early-stage MS remains challenging when using conventional 

clinical or radiographic assessments.17-19 We believe that the MSDA Test utilizes a 

well-balanced sensitivity and specificity combination, which can play a key role in the 

identification of patients with subradiographic and subclinical MS prior to detection of 

clear clinical or radiographic manifestations. This more sensitive detection will allow 

for optimal and timely treatment, which can positively impacts patient outcomes.47 

Another advantage of a blood-based approach is that disease activity can be 

detected regardless of where in the CNS lesions have occurred. Brain MRIs are 

more frequently used in the assessment of patients with MS, although spinal lesions 

are a common occurrence in MS as well.15, 48 
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A disease activity measurement tool should reflect therapeutic efficacy and be 

characterized relative to the biological impact of various mechanisms of action. In the 

DMT analysis, the lowest average Disease Activity scores were observed in the anti-

CD20 and natalizumab groups, which represent the highest efficacy therapies in our 

categorizations. Lower Disease Activity scores were observed in patients without 

radiographic evidence of disease activity (0 Gd+ lesions) and there was a direct 

correlation between Disease Activity and Disease Pathway scores with Gd+ lesion 

counts across all DMT categories. Future studies will expand upon the DMT analysis 

to factor in a patient’s overall disease duration, their duration on the DMT, and their 

previous DMT history.49 

Our study has limitations. The patient samples in this study were obtained 

from four different sites. Practice at different sites, including sample preparation 

techniques, may introduce potential differences between the data sets. Despite this 

challenge, the MSDA Test showed successful performance in the test subset, 

demonstrating its promise of real-world performance.  

With the successful clinical validation of the MSDA Test, we envision several 

potential uses in the future, including a routine surveillance test to better monitor 

disease activity and progression (eg, distinguish inflammation from silent disease 

progression), especially in patients considered to have stable disease, and to track 

new/worsening symptoms, as well as an evaluation test of treatment response, or in 

consideration of alternative treatment options. We also wish to expand the analysis 

to investigate the association between overall Disease Activity and Disease Pathway 

scores and additional assessments (eg, Expanded Disability Status Scale; Patient 

Determined Disease Steps). Evaluation of the MSDA Test in a larger population of 

patients with MS in a real-world setting is also valuable. The MSDA Test is intended 
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to complement standard radiographic imaging and clinical assessment and promote 

individualized disease management.14, 19, 50 
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TABLES 

Table 1. Demographic and patient characteristics for the Train and Test subsets and 

the entire dataset.  

Characteristic* Train Test Entire 

(n=426) (n=188) (N=614) 

Female 298 (70.0) 134 (71.3) 432 (70.4) 

Age, years, mean (SD) 41.6 (12.7) 42.5 (13.5) 41.9 (12.9) 

Disease duration, months, mean (SD) 9.5 (8.6) 9.2 (8.8) 9.4 (8.6) 

Gd+ lesions    

0  267 (62.7) 112 (59.6) 379 (61.7) 

1  102 (23.9) 55 (29.3) 157 (25.6) 

≥2  57 (13.4) 21 (11.2) 78 (12.7) 

N/E T2 lesions 126 (29.6) 52 (27.7) 178 (29.0) 

Disease status†    

Stable 251 (58.9) 104 (55.3) 355 (57.8) 

Active 175 (41.1) 84 (44.7) 259 (42.2) 

Study site    

American University of Beirut 143 (33.6) 59 (31.4) 202 (32.9) 

Brigham and Women’s Hospital 134 (31.5) 61 (32.4) 195 (31.8) 

Rocky Mountain MS Clinic 114 (26.8) 52 (27.7) 166 (27.0) 

University of Massachusetts MS Center 35 (8.2) 16 (8.5) 51 (8.3) 

*Characteristics were evaluated as n (%) unless otherwise noted. †Active versus 

stable disease status was defined as a composite endpoint that combined 

radiographic and clinical evidence of disease activity. Gd+ = gadolinium-positive; MS 

= multiple sclerosis. N/E = new/enlarging. 
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Table 2. Score level evaluation of the model in the Train and Test subsets by number of Gd+ lesions.  

MS samples  No Gd+  ≥1 Gd+  Sensitivity Specificity PPV NPV Accuracy Odds Ratio 

Train (n=426)        

Low 150 20 
0.874 0.562 0.543 0.882 0.678 8.91 

Moderate/high 117 139 

Test (n=188)        

Low 69 20 
0.737 0.616 0.566 0.775 0.665 4.49 

Moderate/high 43 56 

MS samples  0 or 1 Gd+ ≥2 Gd+  Sensitivity Specificity PPV NPV Accuracy Odds Ratio 

Train (n=426)        

Low/moderate 326 25 
0.561 0.883 0.427 0.929 0.84 9.7 

High 43 32 

Test (n=188)        

Low/moderate 155 8 
0.619 0.928 0.52 0.951 0.894 20.99 

High 12 13 

Low, 1.0–4.0; low/moderate, 1.0–7.0; moderate/high, 4.5–10.0; high, 7.5–10. Gd+ = gadolinium-positive; MS = multiple sclerosis;  

NPV = negative predictive value; PPV = positive predictive value.  
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FIGURE LEGENDS 

Figure 1. MSDA Test stacked classifier flow chart and biological characterizations 

model. The first layer of the model consisted of four Disease Pathway algorithms. 

The second layer of the model utilized the four Disease Pathway probabilities along 

with the individual age- and sex-adjusted biomarker concentrations as meta-features 

to determine an overall Disease Activity score that reflected the probability of disease 

activity. Thresholds were established based on the count of Gd+ lesions for the 

Disease Activity score, which corresponded to low (1.0–4.0), moderate (4.5–7.0), or 

high (7.5–10.0) levels of disease activity. MSDA, multiple sclerosis disease activity. 

Figure 2. Summary of final performance of the multi-protein model and top 

performing single-protein demographically corrected (NfL) model in AUROC based 

on primary (A: Gd+ lesion presence) and exploratory assessments (B: N/E T2 lesion 

presence and C: active/stable disease status). P-values were from a boot-strapped 

(1000 iterations), one-sided test for significance comparing the multi-protein and 

single-protein models. AUROC performance and p-values are also shown for a 

single-protein NfL model with no demographic correction. AUROC = area under the 

receiver operating characteristic curve; DC = demographic correction; Gd+ = 

gadolinium-positive; N/E = new/enlarging; NfL = neurofilament light polypeptide 

chain.  

Figure 3. Analysis of disease activity using the A) top-performing single-protein 

demographically corrected (NfL) model and B) multi-protein model in patients with ≥1 

Gd+ lesions. Orange bars = Test subset; Blue bars = Train subset. Gd+ = 

gadolinium-positive; NfL = neurofilament light polypeptide chain. 

Figure 4. Correlation of the Disease Activity and Disease Pathway (A: 

Immunomodulation, B: Neuroinflammation, C: Myelin Biology, and D: Neuroaxonal 

Integrity) scores in the multi-protein model. The solid line indicates the linear 
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regression fit between the Disease Activity and Disease Pathway scores, and the 

equations for the lines are given in the upper left corner of each figure. DA = Disease 

Activity; R2 = coefficient of determination. 

Figure 5. Stacked bar plots of the Disease Activity score in the A) Train and B) Test 

subsets. Low disease activity (blue) was associated with no Gd+ lesions, moderate 

disease activity (yellow) was associated with ≥1 Gd+ lesions, and high disease 

activity (orange) was associated with ≥2 Gd+ lesions. Bars for Disease Activity 

scores for which there were no samples are blank. DA = Disease Activity; Gd+ = 

gadolinium-positive. 
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Figure 1.  
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Figure 2 
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Figure 3. 
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Figure 4. 
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Figure 5.  
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Supplementary Table 1. List of the 18 proteins selected for assay inclusion. 

 

Biomarker Full name (alias) UniProt 
identifier Biological pathways 

APLP1 Amyloid beta precursor-like protein 1 P51693 Myelin Biology, Neuroaxonal Integrity 

CCL20 C-C motif chemokine ligand 20 (MIP 3-alpha) P78556 Neuroinflammation 

CD6 Cluster of differentiation 6 P30203 Immunomodulation, Neuroinflammation 

CDCP1 CUB domain-containing protein 1 Q9H5V8 Immunomodulation 

CNTN2 Contactin 2 Q02246 Neuroaxonal Integrity 

CXCL13 Chemokine (C-X-C motif) ligand 13 P02462 Immunomodulation, Neuroinflammation 

CXCL9 Chemokine (C-X-C motif) ligand 9 (MIG) O43927 Immunomodulation, Neuroinflammation 

FLRT2 Fibronectin leucine-rich repeat 
transmembrane protein 

O43155 Neuroaxonal Integrity 

GFAP Glial fibrillary acidic protein P14136 Neuroaxonal Integrity 

IL-12β Interleukin-12 subunit beta P29460 Immunomodulation, Neuroinflammation 

MOG Myelin oligodendrocyte glycoprotein Q16653 Myelin Biology 

NfL Neurofilament light polypeptide chain P07196 Neuroaxonal Integrity 

OPG Osteoprotegerin O00300 Neuroaxonal Integrity 

OPN Osteopontin P10451 Myelin Biology, Neuroaxonal Integrity 

PRTG Protogenin Q2VWP7 Neuroaxonal Integrity 

SERPINA9 Serpin family A member 9 Q86WD7 Neuroaxonal Integrity 

TNFRSF10A Tumor necrosis factor receptor superfamily 
member 10A (TRAIL-R1) 

O00220 Neuroinflammation, Neuroaxonal Integrity 

TNFSF13B Tumor necrosis factor superfamily member 
13B (BAFF) 

Q9Y275 Immunomodulation, Neuroinflammation 
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Supplementary Table 2. Single-protein model performance of individual biomarker 

proteins (LOQ-imputed, log10 transformed, and demographically corrected for age 

and sex) based on Gd+ lesion assessments. Nominal p-values from a two-sided T-

test assuming equal variances between groups (no Gd+ lesions vs ≥1 Gd+ lesions) 

are reported. 

Protein assay Train      (n=426) Test (n=188) 

 AUROC p-value AUROC p-value 

NfL 0.726 <0.0001 0.726 <0.0001 

MOG 0.576 0.022 0.547 0.208 

CD6 0.499 0.954 0.583 0.02 

CXCL13 0.586 0.064 0.645 0.003 

CXCL9 0.53 0.634 0.436 0.339 

CDCP1 0.598 0.001 0.59 0.051 

CCL20 0.526 0.619 0.492 0.542 

OPG 0.499 0.79 0.464 0.369 

IL-12β 0.619 <0.0001 0.606 0.008 

APLP1 0.522 0.623 0.536 0.502 

TNFRSF10A 0.525 0.352 0.453 0.275 

SERPINA9 0.505 0.92 0.529 0.412 

PRTG 0.478 0.507 0.504 0.379 

FLRT2 0.53 0.431 0.545 0.191 

TNFSF13B 0.651 <0.0001 0.603 0.003 

OPN 0.525 0.578 0.479 0.306 

CNTN2 0.531 0.414 0.534 0.538 

GFAP 0.595 0.014 0.552 0.267 

Green shading indicates a nominal p<0.05. 
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Supplementary Table 3. Model-level performance of the multi-protein model in the Train and Test subsets. 

 AUROC Accuracy Precision Sensitivity Specificity NPV PPV Odds ratio 

Train (n=426) 0.807 0.725 0.598 0.805 0.678 0.854 0.598 8.69 

Test (n=188) 0.781 0.702 0.619 0.684 0.714 0.769 0.619 5.417 

Model-level performance was evaluated on the Disease Activity probabilities before the algorithm was used to calculate the overall 

Disease Activity score. 

AUROC = area under the receiver operating characteristic; NPV = negative predictive value; PPV = positive predictive value. 
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Supplementary Table 4: Mean±SDDisease Activity and Disease Pathway scores categorized by disease-modifying therapy. 
 

DMT category 

Gd+ lesions 

(number of 

samples) 

Disease  

duration 

Disease Activity 

score 

Immuno-

modulation score 

Neuro-

inflammation 

score 

Myelin biology 

score 

Neuroaxonal 

integrity score 

Anti-CD20 

All (N=40) 6.41 ± 4.32 3.11 ± 1.77 2.8 ± 2.3 2.74 ± 2.15 4.11 ± 1.48 3.1 ± 1.72 

0 (n=36) 6.52 ± 3.94 2.85 ± 1.54 2.5 ± 2.04 2.44 ± 1.86 3.93 ± 1.34 2.86 ± 1.54 

1 (n=3) 1.66 ± 1.65 4.5 ± 0.87 4.0 ± 0.87 3.83 ± 0.29 6.0 ± 2.18 4.33 ± 1.04 

≥2 (n=1) 16.9 8.5 10 10 5 8 

Dimethyl fumarate 

All (N=65) 8.64 ± 7.66 4.63 ± 1.79 5.67 ± 2.03 5.02 ± 1.98 4.46 ± 1.81 3.43 ± 2.2 

0 (n=45) 9.39 ± 8.36 3.91 ± 1.26 4.92 ± 1.65 4.31 ± 1.59 3.96 ± 1.56 2.59 ± 1.49 

1 (n=12) 8.17 ± 5.47 5.54 ± 1.67 6.71 ± 1.72 5.92 ± 1.7 5.12 ± 2.14 4.29 ± 2.1 

≥2 (n=8) 5.09 ± 5.67 7.31 ± 1.41 8.31 ± 1.58 7.62 ± 1.77 6.31 ± 1.07 6.88 ± 2.01 

Fingolimod 

All (N=77) 8.3 ± 7.27 4.76 ± 1.59 5.23 ± 2.01 5.03 ± 1.93 5.23 ± 1.68 3.56 ± 1.85 

0 (n=48) 8.3 ± 6.6 4.41 ± 1.57 4.97 ± 2.07 4.83 ± 2.01 4.77 ± 1.46 3.0 ± 1.68 

1 (n=25) 8.87 ± 8.83 5.26 ± 1.35 5.6 ± 1.78 5.34 ± 1.74 5.92 ± 1.65 4.3 ± 1.76 

≥2 (n=4) 4.69 ± 3.38 5.88 ± 2.14 6.0 ± 2.74 5.5 ± 2.2 6.5 ± 2.65 5.75 ± 1.26 

Glatiramer acetate 

All (N=62) 10.04 ± 9.29 6.39 ± 1.67 7.45 ± 1.97 6.78 ± 1.98 6.31 ± 1.5 4.8 ± 2.27 

0 (n=22) 12.26 ± 11.04 5.59 ± 1.71 6.66 ± 2.25 5.98 ± 2.2 5.75 ± 1.4 3.86 ± 2.01 

1 (n=27) 9.14 ± 8.66 6.56 ± 1.24 7.89 ± 1.45 7.06 ± 1.61 6.41 ± 1.3 4.56 ± 1.64 

≥2 (n=13) 8.12 ± 6.92 7.38 ± 1.83 7.88 ± 2.13 7.58 ± 1.96 7.08 ± 1.74 6.88 ± 2.62 

Interferons 

All (N=93) 7.97 ± 6.95 4.51 ± 2.09 4.55 ± 2.37 4.5 ± 2.23 5.04 ± 1.92 3.78 ± 2.67 

0 (n=52) 7.42 ± 6.68 3.59 ± 1.58 3.63 ± 2.11 3.69 ± 2.01 4.26 ± 1.29 2.58 ± 1.68 

1 (n=30) 9.82 ± 7.63 5.37 ± 1.82 5.4 ± 1.93 5.23 ± 1.9 5.88 ± 2.09 4.82 ± 2.67 

≥2 (n=11) 5.53 ± 5.48 6.55 ± 2.61 6.55 ± 2.71 6.32 ± 2.41 6.45 ± 2.27 6.64 ± 3.26 
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DMT category 

Gd+ lesions 

(number of 

samples) 

Disease  

duration 

Disease Activity 

score 

Immuno-

modulation score 

Neuro-

inflammation 

score 

Myelin biology 

score 

Neuroaxonal 

integrity score 

Natalizumab 

All (N=129) 13.15 ± 10.01 4.17 ± 1.63 4.55 ± 2.06 4.01 ± 1.96 4.89 ± 1.55 3.23 ± 1.89 

0 (n=124) 13.26 ± 10.13 4.12 ± 1.6 4.49 ± 2.04 3.96 ± 1.94 4.84 ± 1.53 3.2 ± 1.86 

1 (n=4) 12.45 ± 5.28 5.12 ± 2.5 5.62 ± 2.46 4.88 ± 2.46 5.88 ± 1.93 3.75 ± 3.1 

≥2 (n=1) 2.2 6.5 7.5 6.5 7 5 

Other 

All (N=32) 9.67 ± 6.53 5.48 ± 1.83 6.11 ± 1.94 5.64 ± 1.84 5.55 ± 2.41 4.67 ± 2.53 

0 (n=18) 10.29 ± 7.18 4.81 ± 1.76 5.47 ± 1.88 5.0 ± 1.71 5.08 ± 2.5 3.81 ± 2.46 

1 (n=11) 9.16 ± 6.47 6.41 ± 1.59 7.0 ± 1.84 6.55 ± 1.82 6.09 ± 2.23 5.82 ± 1.99 

≥2 (n=3) 7.86 ± 1.93 6.17 ± 1.89 6.67 ± 1.61 6.17 ± 1.61 6.33 ± 2.75 5.67 ± 3.55 

Blank 

All (N=116) 8.4 ± 9.67 6.05 ± 2.39 6.35 ± 2.6 6.03 ± 2.45 6.07 ± 2.09 5.46 ± 2.98 

0 (n=34) 12.31 ± 10.77 4.46 ± 1.89 4.65 ± 2.36 4.43 ± 2.14 5.25 ± 1.92 3.59 ± 2.1 

1 (n=45) 8.09 ± 9.42 6.12 ± 2.27 6.6 ± 2.54 6.19 ± 2.4 5.96 ± 2.02 5.52 ± 2.88 

≥2 (n=37) 5.29 ± 7.8 7.43 ± 2.07 7.61 ± 2.07 7.32 ± 1.96 6.97 ± 2.03 7.11 ± 2.84 

DMT = disease-modifying therapy; Gd+ = gadolinium-positive.
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Supplementary Figure 1. Feature importance demonstrated by mean AUROC 

decrease (no Gd+ lesions vs ≥1 Gd+ lesions) after permutation (1000 times) for each 

biomarker in the Disease Activity stacked classifier model and the input Pathway 

models. Biomarkers with a larger positive decrease in AUROC have greater 

importance for the Disease Activity model. NfL was identified as the most important 

feature, followed by TNFSF13B. Error bars correspond to 2.5th and 97.5th 

percentiles. AUROC = area under the receiver operating characteristic; Gd+ = 

gadolinium-positive; NfL = neurofilament light polypeptide chain; TNFSF13B = tumor 

necrosis factor superfamily member 13B.   

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.08.23285438doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.08.23285438


 

Supplementary Figure 2. Score distribution and respective box plots with Gd+ 

lesions for A) Immunomodulation, B) Neuroinflammation, C) Myelin Biology, and D) 

Neuroaxonal Integrity scores in the multi-protein model.  

 

DA = Disease Activity; Gd+ = gadolinium-positive.
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Supplementary Figure 3. Protein biomarker distributions by disease-modifying therapy class.  

 
Significant ANOVA Bonferroni corrected p-values, based on biomarkers across DMT categories, are marked in red. Nominal 

p-values are reported. ANOVA = analysis of variance; DMT = disease-modifying therapy. 

al ANOVA 
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