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Key Points 

Question 

Can MRI-based computational subtypes of preclinical neurodegeneration predict cognitive 

outcomes? 

Findings 

In this cross-sectional analysis of magnetic resonance imaging (MRI) data at screening (pre-

randomization) in the preclinical Anti-Amyloid Treatment in Asymptomatic Alzheimer disease (A4) 

Study, we detected considerable neurodegenerative heterogeneity using data-driven disease 

progression modelling. The MRI-based computational subtypes identified by Subtype and Stage 

Inference (SuStaIn) differed in baseline cognitive test scores (A4) and in longitudinal cognitive 

decline (ADNI), with sufficient heterogeneity to potentially obscure treatment effect in A4 trial 

outcomes. 

Meaning 

Data-driven disease progression modelling of screening MRI scans can predict heterogeneity in 

cognitive performance/decline and potentially reduce heterogeneity in future clinical trials. 
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Abstract 

Importance 

Undetected biological heterogeneity adversely impacts trials in Alzheimer’s disease because rate of 

cognitive decline — and perhaps response to treatment — differs in subgroups. Recent results show 

that data-driven approaches can unravel the heterogeneity of Alzheimer’s disease progression. The 

resulting stratification is yet to be leveraged in clinical trials. 

Objective 

Investigate whether image-based data-driven disease progression modelling could identify baseline 

biological heterogeneity in a clinical trial, and whether these subgroups have prognostic or predictive 

value. 

Design 

Screening data from the Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease (A4) Study 

collected between April 2014 and December 2017, and longitudinal data from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) observational study downloaded in February 2022 were 

used.  

Setting 

The A4 Study is an interventional trial involving 67 sites in the US, Canada, Australia, and Japan. 

ADNI is a multi-center observational study in North America. 

Participants 

Cognitively unimpaired amyloid-positive participants with a 3-Tesla T1-weighted MRI scan. Amyloid 

positivity was determined using florbetapir PET imaging (in A4) and CSF Aβ(1-42) (in ADNI). 

Main Outcomes and Measures 

Regional volumes estimated from MRI scans were used as input to the Subtype and Stage Inference 

(SuStaIn) algorithm. Outcomes included cognitive test scores and SUVr values from florbetapir and 

flortaucipir PET. 

Results 

We included 1,240 Aβ+ participants (and 407 Aβ− controls) from the A4 Study, and 731 A4-eligible 

ADNI participants. SuStaIn identified three neurodegeneration subtypes — Typical, Cortical, 

Subcortical — comprising 523 (42%) individuals. The remainder are designated subtype zero 

(insufficient atrophy). Baseline PACC scores (A4 primary outcome) were significantly worse in the 

Cortical subtype (median = -1.27, IQR=[-3.34,0.83]) relative to both subtype zero (median=-0.013, 

IQR=[-1.85,1.67], P<.0001) and the Subcortical subtype (median=0.03, IQR=[-1.78,1.61], P=.0006). 

In ADNI, over a four-year period (comparable to A4), greater cognitive decline in the mPACC was 

observed in both the Typical (-0.23/yr; 95% CI, [-0.41,-0.05]; P=.01) and Cortical (-0.24/yr; [-0.42,-

0.06]; P=.009) subtypes, as well as the CDR-SB (Typical: +0.09/yr, [0.06,0.12], P<.0001; and 

Cortical: +0.07/yr, [0.04,0.10], P<.0001). 

Conclusions and Relevance 

In a large secondary prevention trial, our image-based model detected neurodegenerative 

heterogeneity predictive of cognitive heterogeneity. We argue that such a model is a valuable tool to 

be considered in future trial design to control for previously undetected variance. 
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Introduction 

There is increasing evidence of biological heterogeneity to accompany the observed clinical 

heterogeneity in Alzheimer’s disease (AD), highlighting a range of potential disease subtypes 

and disease trajectories1–6. This heterogeneity reflects the inherent complexity of the disease 

and may have contributed to the high failure rate of clinical trials7, where study cohorts likely 

contain individuals potentially belonging not only to different subtypes, but also being at different 

stages of biological severity (even within a clinical/biomarker-based group), resulting in 

heterogeneous rates of progression independent of treatment effect8,9. This compounds the 

already difficult task of identifying treatment effects in AD clinical trials, where 

neuropsychological test scores or single biomarkers (e.g. amyloid PET SUVr) are used as 

outcomes10,11. Nearly half of currently ongoing Phase 3 AD trials (for disease-modifying 

therapies) did not use biomarkers as inclusion criteria, relying instead on neuropsychological 

tests10. Although some composite neuropsychological tests are sensitive to relatively early, 

subtle changes in cognitive function12, underlying pathology in the preclinical phase cannot be 

fully characterized without biomarkers12,13. 

Recognizing this limitation in trial designs, biomarkers are increasingly used in screening 

protocols10,11,14,15, yet still incur high failure rates likely due to the limited temporal resolution of a 

single biomarker, and the presence of undetected subtypes having differing cognitive 

trajectories/prognoses4,16. Data-driven methods such as disease progression modelling (DPM) 

have previously characterized heterogeneity (both in variation of severity and the presence of 

subtypes) typically using image-based input features5,17. The ability to utilize high-dimensional 

medical imaging data enables deeper comparisons between individuals beyond univariate cut-

offs, providing utility in assessing heterogeneity across a cohort. In this study, we use DPM to 

identify undetected MRI-based heterogeneity at screening in the Anti-Amyloid Treatment in 

Asymptomatic AD (A4) Study18, analyze these subtypes for differences in trial outcome 

measures (at baseline), and investigate differences across subtypes in longitudinal outcomes in 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)19 observational study to characterize 

the potential impact such heterogeneity may have on the A4 interventional trial outcomes. 

Methods 

Our primary aim is to test whether biological heterogeneity is predictive of cognitive decline in 

the carefully selected A4 Study clinical trial cohort. We train a subtyping DPM on imaging (MRI) 

data, then compare cognitive outcomes across subtypes cross-sectionally (in A4) and 

longitudinally (in ADNI). 

Participants 

Data comes from cognitively unimpaired participants in the A4 Study interventional trial 

(NCT02008357) and the ADNI observational study (eMethods 1 in supplementary material). The 

A4 Study is a prevention trial investigating whether solanezumab reduces cognitive decline in 

an Aβ+ preclinical cohort14,20, with the primary outcome being the change from baseline of the 

Preclinical Alzheimer Cognitive Composite (PACC)21. Secondary outcomes include changes 

from baseline in the Clinical Dementia Rating Sum of Boxes (CDR-SB) score and the Cognitive 
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Function Index (CFI) total score (combining participant and study partner scores)22. ADNI is an 

observational study investigating biomarker and clinical changes in individuals diagnosed with, 

or at-risk of, AD. 

The A4 Study selected individuals using the following criteria14: Mini-Mental State Examination 

(MMSE) score of 25-30; Clinical Dementia Rating (CDR) global score of 0; Logical Memory 

Delayed Recall (LMDR-IIa) score of 6-18; and, amyloid positivity (Aβ+). Amyloid positivity was 

defined following florbetapir PET imaging, using a mean cortical standardized uptake value ratio 

(SUVr) with a whole cerebellar reference region of ≥1.15 (or ≥1.10 on a positive visual read with 

a 2-reader consensus). To maximize data availability in ADNI, CSF Aβ(1-42) was instead used 

to determine amyloid positivity using a cut-off of 977pg/mL23. Cognitively unimpaired individuals 

in ADNI were selected using the same inclusion criteria as the A4 Study. ADNI data was 

downloaded from the LONI Image & Data Archive on 27th February 2022. 

Control subjects for our study were Aβ− and APOE ɛ4 non-carriers from the A4 Study. These 

controls (N=407) were used for covariate adjustment and as a normative reference when 

analyzing both A4 and ADNI cohorts (see below). 

Data Pre-Processing 

All available 3-Tesla (3T) T1-weighted MRI were obtained for both the A4 and ADNI cohorts. 

Images from ADNI were selected having passed overall quality control. All images were 

processed using FreeSurfer v7.1.124 within a publicly available containerized pipeline 

(https://github.com/e-dads/freesurfer), with cortical and subcortical volumes combined into 

bilateral averages in 13 regions of interest25. Original image acquisition protocols for both 

studies can be found in their respective documentation. 

Prior to input into our DPM, FreeSurfer volumes were adjusted for healthy/normal linear trends 

(in controls) in age, years of education, sex, and intracranial volume, estimated using a general 

linear model26. The covariate-adjusted volumes were transformed into z-scores relative to 

controls. 

The amyloid (florbetapir) and tau (flortaucipir) PET images acquired in the A4 Study were 

analyzed to investigate differences across subtypes. For this analysis, we used a newly-

developed multi-platform software AmyPET (https://github.com/AMYPAD/AmyPET), extending 

NiftyPET27. AmyPET enables robust quantification of PET scans while using SPM12 for core 

MR-PET image registration28, estimating amyloid/tau load with high quantitative accuracy and 

precision from raw count PET data to accurately account for common head motion. Protocol 

details for amyloid and tau PET acquisition are provided in eMethods 2 (supplementary 

material). 

Disease Progression Modelling 

To characterize biological heterogeneity in the A4 Study cohort, we used the Subtype and Stage 

Inference (SuStaIn) algorithm5 as our DPM. This approach combines clustering with event-

based modelling17,29 to reconstruct one (or more) sequences of disease progression from cross-

sectional data, simultaneously disentangling pathological and temporal heterogeneity to identify 

both disease subtype(s) and severity (i.e. stage) across a cohort. SuStaIn has been applied to 

identify image-based subtypes and spreading patterns in AD5,16,30, other forms of dementia such 
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as frontotemporal dementia31, and other neurodegenerative diseases such as multiple 

sclerosis32. 

Disease “events” (transitions of a regional volume to abnormality) are defined by reaching 

progressive z-scores of 1 and 2 (relative to controls), from which SuStaIn determines the event 

sequence that maximizes the data likelihood. SuStaIn then iteratively determines multiple such 

sequences, referred to here as disease subtypes, that maximize the likelihood for subsets of the 

data from one subtype up to a pre-defined maximum (set as 𝑁𝑚𝑎𝑥 = 4), with the optimal number 

of subtypes selected using cross-validation (described below). Markov chain Monte Carlo 

(MCMC) sampling is used to estimate uncertainty in the sequence(s). 

SuStaIn was trained using the 1,240 Aβ+ participants with complete MRI data from the A4 

Study. This produced a model for each number of subtypes investigated. To select a single 

model, we performed 10-fold cross-validation and calculated the cross-validation information 

criterion (CVIC)13, which balances minimizing model complexity (i.e. fewer subtypes) and 

maximizing how well the model fits the data. The model with the minimal CVIC is selected, and 

then used to assign both a maximum-likelihood subtype and stage to each participant (for both 

A4 and ADNI cohorts)5,17. 

Statistical Analyses 

The original A4 Study analysis14 found significant differences between the Aβ+ and Aβ− groups 

at baseline for both the PACC and CFI scores, with the Aβ+ group performing worse on both 

scores. We performed a similar analysis stratified by DPM subtype assignment, using Pearson‘s 

χ2 (adjusted for multiple comparisons using Holm-Bonferroni correction). This analysis was 

repeated for the ADNI subset to compare differences between the subtypes, and between the 

A4 and ADNI cohorts to identify any systematic differences in demographic and cognitive 

variables common to both studies. 

Associations between DPM subtypes and cognitive outcomes are assessed for (pairwise) 

differences using a two-tailed Mann-Whitney U test (with Holm-Bonferroni correction). This was 

performed cross-sectionally in A4 using the PACC and CFI (total) scores to potentially identify 

undetected baseline cognitive heterogeneity revealed by the DPM. 

We then analyzed longitudinal cognitive trajectories in ADNI for two similar trial outcomes 

available in ADNI: a modified version of the PACC (mPACC), which uses the (log-transformed) 

Trail-Making Test B to replace the unavailable Digit Symbol Substitution test33, and the CDR-

SB. The impact of subtype assignment and resulting differences in cognitive decline was 

analyzed using a linear mixed effects model, including age at baseline, time since baseline 

(continuous), and subtype-by-time interactions as fixed effects, as well as allowing for 

participant-specific random intercepts34. To mirror the A4 Study, we restricted this analysis using 

data obtained over a similar period of observation (4 years from baseline). 

Results 
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A4 Study MRI-based Disease Progression Subtypes 

A total of 1,240 Aβ+ participants with complete MRI data were used as input into SuStaIn, 

following covariate adjustment and z-scoring using the 407 Aβ− screen-failures. Cross-

validation indicated that the 3-subtype model best fit the data. Table 1 shows demographic and 

cognitive score variables for the Aβ− control group (for reference), the whole Aβ+ group, and 

the Aβ+ subtype groups which we designate as Typical, Cortical, and Subcortical based on the 

observed patterns of atrophy (Figure 1). There were no significant differences in demographic 

variables between the subtypes nor in the CDR-SB or MMSE, but the PACC, CFI (total), and 

Digit Symbol Substitution test scores were significantly different across the subtypes. 

Table 1 – Characteristics of the A4 Study cohort, separated between Aβ− (control) and Aβ+ (SuStaIn input) groups, 
further separated by subtype assignment. There were no significant differences among subtypes in demographic 
variables, the CDR-SB and the MMSE according to either an ANOVA or Pearson’s χ2 test (following Holm-Bonferroni 
adjustment for multiple comparisons). The PACC, CFI (total), and Digital Symbol Substitution test scores showed 
significant (P < .001) differences between subtypes. Abbreviations: SUVr – Standardized Uptake Value ratio; PACC – 
Preclinical Alzheimer Cognitive Composite; CFI – Cognitive Function Index; MMSE – Mini-Mental State Examination; 
CDR-SB – Clinical Dementia Rating Sum of Boxes 
 

a ANOVA 

b Pearson’s χ2 

 

 

Characteristic 
Aβ− (Control 
group) 

Aβ+ (Whole 
group) 

Subtype 
Zero (sub-
threshold) 

Typical 
Subtype 

Cortical 
Subtype 

Subcortical 
Subtype 

Adjusted 
P-value 
(across 
subtypes) 

No. individuals 407 1240 717 170 179 174  

Age, yrs, mean 
(SD) 

70.8 (4.4) 72.0 (4.9) 71.9 (4.6) 72.4 (5.3) 72.6 (5.2) 71.6 (4.9) 
.58 a 

Female, (%) 258 (63.4) 730 (59.0) 445 (62.1) 98 (57.6) 103 (57.5) 84 (48.3) .08 b 

Education, yrs, 
mean (SD) 

16.7 (2.5) 16.6 (2.8) 16.6 (2.8) 16.0 (2.8) 16.6 (2.8) 16.8 (2.9) 
.18 a  

Family history of 
dementia (%) 

249 (61.2) 924 (74.5) 525 (73.2) 130 (76.5) 136 (76.0) 133 (76.4) 
.58 b  

APOE ɛ4 alleles 
(%) 

 

0 407 (100.0) 506 (40.8) 297 (41.4) 62 (36.5) 73 (40.8) 74 (42.5) 

.68 b 

1 0 (0.0) 621 (50.1) 364 (50.8) 92 (54.1) 82 (45.8) 83 (47.7) 

2 0 (0.0) 101 (8.2) 49 (6.8) 12 (7.1) 23 (12.9) 17 (9.8) 

Missing 0 (0.0) 12 (1.0) 7 (1.0) 4 (2.4) 1 (0.6) 0 (0.00) 

PET SUVr, mean 
(SD) 

0.99 (0.07) 1.33 (0.18) 1.32 (0.17) 1.35 (0.19) 1.35 (0.19) 1.33 (0.18) 
.58 a 

PACC score, 
mean (SD) 

0.22 (2.38) -0.42 (2.69) -0.15 (2.57) -0.89 (2.72) -1.30 (3.04) -0.13 (2.49) 
< .001 a 

CDR-SB score, 
mean (SD) 

0.05 (0.16) 0.06 (0.17) 0.05 (0.15) 0.08 (0.19) 0.06 (0.16) 0.07 (0.22) 
.50 a 

MMSE score, 
mean (SD) 

28.93 (1.13) 28.74 (1.28) 28.80 (1.23) 28.55 (1.38) 28.65 (1.41) 28.78 (1.21) 
.50 a 

Digit Symbol, 
mean (SD) 

44.21 (8.85) 42.59 (8.93) 43.52 (8.91) 41.08 (9.19) 40.55 (8.82) 42.29 (8.39) 
< .001 a 

CFI total score, 
mean (SD) 

2.92 (3.07) 3.82 (3.49) 3.43 (3.10) 4.29 (3.83) 4.81 (4.17) 3.93 (3.68) 
< .001 a 
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Figure 1 shows a positional variance diagram illustrating the MCMC-sampled posterior 

distributions for each subtype in the final 3-subtype SuStaIn model. The vertical axis of brain 

volumes is ordered from cortical to subcortical regions, top-to-bottom. Z-score events along the 

horizontal axis are color-coded, with z=1 indicating subtle abnormality (in red), and z=2 

indicating atrophy (in magenta). Subtypes were named according to the earliest atrophy events 

(z=2, magenta). In Figure 1, the Typical subtype shows early atrophy in the hippocampus, 

amygdala, and temporal lobe, alongside early yet subtle abnormality in the caudate, putamen, 

and pallidum. The Cortical subtype shows early atrophy in cortical regions (including the 

cingulate gyrus) and subtle abnormality in the entorhinal cortex, hippocampus, and amygdala. 

The Subcortical subtype shows early atrophy in the putamen and thalamus, albeit with high 

uncertainty (possibly indicating slow atrophy), alongside subtle abnormality in cortical lobes. 

 

Figure 1 – Positional variance diagram showing the disease progression sequences of the final 3-
subtype disease progression model trained on the A4 Aβ+ cohort. The red squares indicate a z-score 1 
event (abnormality), and magenta squares indicate a z-score 2 event (atrophy). Color intensity is 
proportional to positional confidence/certainty of the model. 
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Figure 2 shows the distribution of stage assignments stratified by subtype in the A4 cohort 

(upper panel) and ADNI cohort (lower panel). Across A4, 523 (42.2%) individuals were assigned 

to a subtype: 170 (32.5%) Typical, 179 (34.2%) Cortical, and 174 (33.3%) Subcortical. The 

remaining 717 (57.8%) individuals were not assigned a subtype due to all regional volumes 

scoring z<1. We refer to these as subtype zero. The Typical, Cortical, and Subcortical subtypes 

have median stage assignments of 2 (IQR=1–3), 3 (IQR=1–5), and 3 (IQR=1–5) respectively, 

consistent with having subtle abnormality reflective of their cognitively unimpaired status. 

Figure 2 – Heatmap and counts of stage assignments per subtype for the A4 Study cohort (upper panel) 
and ADNI cohort (lower panel). 

 

Mean cortical SUVr used in the A4 Study screening did not show any significant differences 

across subtypes (Table 1). In Figure 3, our image processing using AmyPET (see Methods) 

shows SUVr (with a whole cerebellar reference region) values for amyloid (N=1234) and tau 

(N=392) PET imaging stratified by subtype. Following multiple comparison correction, there was 

a significant difference between subtype zero and the Cortical subtype in amyloid SUVr (P=.04), 

though the Cortical subtype also had a notably higher tau burden (median=1.12; IQR=1.03–

1.16) relative to subtype zero (median=1.08; IQR=1.04–1.12), the Typical subtype 

(median=1.08; IQR=1.05–1.11), and the Subcortical subtype (median=1.09; IQR=1.05–1.13). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.07.23285572doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.07.23285572
http://creativecommons.org/licenses/by/4.0/


Disease Progression Modelling in A4 — Shand, et al. 

 9  
 

 

Figure 3 – Boxplots showing SUVr values (stratified by model-based subtype) for amyloid (left) and tau 
(right) PET scans, each using the whole cerebellum as a reference region. Lines are added to show 
pairwise significant differences (two-tailed Mann-Whitney U test, adjusted for multiple comparisons). 
Abbreviations: SUVr – standardized uptake value ratio 

 

Biological Heterogeneity Predicts Cognitive Heterogeneity  

Error! Reference source not found. shows baseline PACC and CFI (total) scores in the A4 

cohort stratified by subtype assignment. Broadly, baseline cognitive test scores were better in 

subtype zero and the Subcortical subtype. For the PACC score, there were significant 

differences between subtype zero (median = -0.013; IQR = -1.85 – 1.67) and both the Typical 

subtype (median = -0.78; IQR = -2.65 – 0.96; P = .004) and the Cortical subtype (median = -

1.27; IQR = -3.34 – 0.83; P < .0001), but not for the Subcortical subtype (median = 0.03; IQR = -

1.78 – 1.61; P = .87).  Among the atrophy subtypes, PACC scores in both the Typical and 

Cortical subtypes were significantly different from those in the Subcortical subtype (P = .017 and 

P = .0006 respectively). For the CFI (total), there were also significant differences between 

subtype zero (median = 2.57; IQR = 1.04 – 5.00) and the Typical subtype (median = 3.02; IQR = 

1.71 – 5.50; P = .04) and the Cortical subtype (median = 3.61; IQR = 1.67 – 6.65; P = .0003), 

but not the Subcortical subtype (median = 3.00, IQR = 1.14 – 5.58, P = .69). Among the atrophy 

subtypes, CFI did not differ statistically. 
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Figure 4 – Boxplots of PACC (left) and CFI Total (right) scores in the A4 Study cohort, stratified by 
model-based subtype. Lines are added to show pairwise significant differences (two-tailed Mann-Whitney 
U test, adjusted for multiple comparisons). Abbreviations: PACC – Preclinical Alzheimer Cognitive 
Composite; CFI – Cognitive Function Index. 

 

Simulating A4 Study Subtype Cognitive Decline using ADNI 

Error! Reference source not found. (lower panel) shows the distribution of subtype and 

staging for the ADNI subset selected using A4 inclusion criteria. A total of 731 individuals (726 

CN, 5 MCI) from ADNI matched the criteria and had a baseline 3T scan. There were significant 

differences across in the subtypes in baseline age, sex, and amount of education, but not in 

APOE ɛ4 carriers or cognitive variables (eTable 1). Notably, each subtype had a much higher 

percentage of the female sex compared to subtype zero. The ADNI subset significantly differed 

from A4 in age and number of APOE ɛ4 alleles (but not sex or education) and had small but 

significant differences in the baseline MMSE and CDR-SB scores (eTable 2). Using the A4-

trained SuStaIn model, these individuals were assigned a stage and subtype as follows: 390 

(53.4%) were unclassifiable (subtype zero), 118 (16.1%) were Typical, 120 (16.4%) Cortical, 

and 103 (14.1%) Subcortical. The Typical, Cortical, and Subcortical subtypes had median stage 

assignments of 3 (IQR = 1 – 6), 3 (IQR = 2 – 5), and 4 (IQR = 2 – 7) respectively, similar to the 

A4 cohort. 

Error! Reference source not found. shows cognitive decline measured by longitudinal scores 

over 4 years on mPACC (left) and CDR-SB (right) in the ADNI cohort, stratified by baseline 

subtype. Most subtypes showed minimal cognitive decline. For the mPACC, both the Typical (-

0.23/yr; 95% CI, -0.41 to -0.05; P = .01) and Cortical (-0.24/yr; 95% CI, -0.42 to -0.06; P = .009) 

subtypes were associated with greater cognitive decline relative to subtype zero. For the CDR-

SB, both the Typical (+0.09/yr; 95% CI, 0.06 to 0.12; P < .0001) and Cortical (+0.07/yr; 95% CI, 

0.04 to 0.10; P < .0001) subtypes were associated with greater cognitive decline relative to 
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subtype zero. Higher age at baseline was significantly associated with faster cognitive decline 

over the period for both CDR-SB (P = .04) and mPACC (P < .0001). 

Figure 5 – Analysis of A4 Study outcomes available in ADNI (CDR-SB and mPACC) over a period of four 
years, with individuals stratified by their baseline subtype assignment using the final disease progression 
model. Abbreviations: mPACC – Modified Preclinical Alzheimer Cognitive Composite; CDR-SB – Clinical 
Dementia Rating Sum of Boxes. 

 

Discussion 

The A4 Study represents one of the largest studies of preclinical Alzheimer’s disease, providing 

an opportunity to leverage data-driven methods for analysis and potential applications, such as 

prediction of future decline and subgroup discovery. Using such a data-driven disease 

progression model on baseline MRI, the Subtype and Stage Inference (SuStaIn) algorithm 

uncovered previously undetected neurodegenerative heterogeneity in the A4 Study, despite 

enriching for amyloid (PET) positivity and extensive cognitive screening. Our DPM suggested 

three image-based subtypes in 523/1240 (42%) of participants, characterized as Typical, 

Cortical, and Subcortical, which share similarities with subtypes previously observed in 

cognitively impaired cohorts5,16. Our subtypes showed no significant differences in demographic, 

biomarker, or genetic variables which might otherwise be used to identify such differences. 

The A4 cohort had 42% of individuals with sufficient neurodegeneration to be assigned to one of 

the three subtypes, which were approximately equal in size. Individuals within each subtype 

were spread across model stages (i.e. the extent of neurodegeneration), though the majority 

exhibited abnormality/atrophy in only a few regions, as expected by their preclinical status. This 

neurodegenerative heterogeneity was not captured by an amyloid and/or tau PET signal in the 

neocortex — we did not find significant differences between subtypes in the SUVr used for trial 

screening, and minimal differences across subtypes. Median amyloid and tau burden was 

greater in those assigned to a non-zero subtype, and numerically greatest in the Cortical 

subtype (not statistically significant for tau). This supports the notion that data-driven 

multivariate methods such as SuStaIn are uniquely useful for identifying (statistically significant) 
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clinical heterogeneity in the absence of symptoms, above and beyond traditional screening 

tools. 

Our image-based subtypes predicted cognitive heterogeneity, both cross-sectionally and 

longitudinally. Differences in baseline cognitive performance and longitudinal cognitive decline 

were both associated with DPM subtypes. In particular, the Cortical subtype displayed both 

poorer PACC scores at screening in A4 and more severe cognitive decline on mPACC and 

CDR-SB in ADNI (alongside the Typical subtype), suggesting that the screening protocol did not 

sufficiently capture (the variability in) underlying neurodegeneration. The ability to identify 

biological heterogeneity and predict cognitive heterogeneity supports the notion that image-

based DPM can be used to inform clinical trial design, whether through screening (which could 

increase screen failures and initial costs), stratification, or covariate adjustment short of direct 

stratification35. Another potential design innovation could use image-based DPM to match 

subtypes to one of several targeted therapies in an umbrella design. 

Limitations 

Our forecasts of cognitive decline were produced by combining MRI-based neurodegenerative 

heterogeneity in the A4 cohort with longitudinal data from an A4-like ADNI subset. These 

cohorts are not perfectly matched, despite using the A4 inclusion criteria to select participants 

from ADNI. We found small but statistically significant differences in the number of APOE ɛ4 

alleles (more non-carriers in ADNI), age, baseline MMSE (0.34 points higher) and CDR-SB 

(0.02 points lower), indicating that the ADNI subset is at lower risk of AD decline than A4. This 

suggests that our longitudinal predictions may be underestimating effect sizes of decline 

(favoring better cognition), but only by testing directly on longitudinal data from A4 (when 

released) will our predictions be realized. 

While longitudinal data is available in ADNI, only 160 (of 731) individuals had cognitive scores 

available after 4 years. This limits the sample size (particularly after stratification) and thus 

analysis, potentially reducing the translatability of our observations into the prospective 

outcomes of the A4 Study. 

Conclusions 

The A4 Study represents a significant effort and investment into curating a preclinical cohort 

where anti-amyloid therapy may be more effective at slowing cognitive decline. Despite the 

study’s strict eligibility criteria and extensive screening, our disease progression model identified 

considerable neurodegenerative heterogeneity in 42% of participants, characterized by three 

MRI-based subtypes of neurodegeneration that can also be found in more advanced AD 

cohorts, associated with differences in cognition at baseline. Longitudinal analysis of an A4-

matched subset of ADNI revealed significant differences in cognitive decline across the 

observed subtypes. These findings have potential ramifications for preclinical (and symptomatic) 

trials, where heterogeneity may obscure treatment effects. The use of data-driven disease 

progression modelling in trial design may increase statistical power of trials by accounting for 

the potential confounding effects of such heterogeneity on trial outcomes. 
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Supplementary Material 

eMethods 1: Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 

as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see 

www.adni-info.org. MRI scans were downloaded from LONI on 27th February 2022. 

eMethods 2: A4 Amyloid & Tau PET Protocols 

Florbetapir PET scans were collected from 50–70 minutes post-injection and were generally 

reconstructed in 4x5-minute frames, which were aligned and averaged into a single 3D NIFTI-

formatted image suitable for SUVr analysis. Flortaucipir PET scans were collected 90-110 

minutes post-injection. The preprocessing/alignment was performed by the A4 Study 

investigators before data release, and so the AmyPET pipeline implemented here did not 

include the preprocessing of raw PET count data. 
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eTable 1 – Characteristics of the ADNI subset selected using the A4 Study inclusion criteria. The subset 
was assigned a subtype by the A4-trained 3-subtype model. Differences across the subtypes were 
assessed using either an ANOVA or Pearson’s χ2 test (following Holm-Bonferroni adjustment for multiple 
comparisons). There was a significant difference between sex across the subtypes, but no other 
variables. Abbreviations: mPACC – Modified Preclinical Alzheimer Cognitive Composite; MMSE – Mini-
Mental State Examination; CDR-SB – Clinical Dementia Rating Sum of Boxes 

Characteristic 

Overall 

Subset 

Subtype 

Zero (sub-

threshold)  

Typical 

Subtype 

Cortical 

Subtype 

Subcortical 

Subtype 

Adjusted 
P-value 
(across 
subtypes) 

No. individuals 731 390 118 120 103  

Age, yrs, mean 
(SD) 

72.9 (6.2) 73.3 (6.4) 71.7 (5.7) 71.7 (4.1) 72.0 (4.4) 
.003 a 

Female, (%) 407 (55.7) 143 (36.7) 91 (77.1) 18 (72.0) 23 (76.7) <.001 b 

Education, yrs, 
mean (SD) 

16.5 (2.6) 16.8 (2.4) 15.9 (2.7) 16.7 (2.9) 16.7 (2.8) 
.009 a 

APOE ɛ4 
alleles (%) 

 

0 494 (67.7) 271 (69.5) 75 (63.6) 76 (72.0) 72 (66.7) 

1.00 b 
1 198 (27.1) 102 (26.2) 37 (31.4) 32 (20.0) 27 (33.3) 

2 21 (2.9) 10 (2.6) 2 (1.7) 6 (8.0) 3 (0.0) 

Missing 18 (2.5) 7 (1.8) 4 (3.4) 6 (0.0) 1 (0.0) 

mPACC, mean 
(SD) 

-0.13 
(2.43) 

-0.14 (2.35) -0.22 (2.51) 0.22 (2.39) -0.37 (2.63) 
1.00 a 

MMSE score, 
mean (SD) 

29.08 
(1.08) 

29.13 (1.10) 29.02 (1.02) 29.07 (1.01) 29.00 (1.14) 
1.00 a 

CDR-SB, mean 
(SD) 

0.04 (0.14) 0.04 (0.14) 0.04 (0.13) 0.04 (0.14) 0.04 (0.13) 
1.00 a 

a ANOVA 

b Pearson’s χ2 
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eTable 2 – Comparison of A4 Aβ+ group and the ADNI subset selected using the A4 Study inclusion 
criteria. Differences between the cohorts were assessed using either an ANOVA or Pearson’s χ2 test 
(following Holm-Bonferroni adjustment for multiple comparisons) on variables available in both cohorts 
relevant to this study. Abbreviations: MMSE – Mini-Mental State Examination; CDR-SB – Clinical 
Dementia Rating Sum of Boxes 

a ANOVA 

b Pearson’s χ2 

Characteristic A4 Aβ+ Group 

ADNI (A4-selected) 

Subset 

Adjusted P-
value (across 
subtypes) 

No. individuals 1240 731  

Age, yrs, mean (SD) 72.0 (4.9) 72.9 (6.2) .002 a 

Female, (%) 730 (58.9) 407 (55.7) .33 b 

Education, yrs, mean (SD) 16.5 (2.8) 16.5 (2.6) .51 a 

APOE ɛ4 alleles (%)  

0 506 (40.8) 494 (67.6) 

< .001 b 
1 621 (50.1) 198 (27.1) 

2 101 (8.2) 21 (2.9) 

Missing 12 (1.0) 18 (2.5) 

MMSE score, mean (SD) 28.74 (1.28) 29.08 (1.08) .03 a 

CDR-SB, mean (SD) 0.06 (0.17) 0.04 (0.14) < .001 a 
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