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Abstract 13 

Dengue viruses (DENV) are endemic in the US territories of Puerto Rico, American 14 

Samoa, and the US Virgin Islands, with focal outbreaks also reported in the states of 15 

Florida and Hawaii. However, little is known about the intensity of dengue virus 16 

transmission over time and how dengue viruses have shaped the level of immunity in 17 

these populations, despite the importance of understanding how and why levels of 18 

immunity against dengue may change over time. These changes need to be 19 

considered when responding to future outbreaks and enacting dengue management 20 

strategies, such as guiding vaccine deployment. We used catalytic models fitted to 21 

case surveillance data stratified by age from the ArboNET national arboviral 22 

surveillance system to reconstruct the history of recent dengue virus transmission in 23 

Puerto Rico, American Samoa, US Virgin Islands, Florida, Hawaii, and Guam. We 24 

estimated average annual transmission intensity (i.e., force of infection) of DENV 25 
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between 2010 and 2019 and the level of seroprevalence by age group in each 26 

population. We compared models and found that treating all reported cases as 27 

secondary infections generally fit the surveillance data better than models 28 

considering cases as primary infections. Using the secondary case model, we found 29 

that force of infection was highly heterogeneous between jurisdictions and over time 30 

within jurisdictions, ranging from 0.00003 (95% CI: 0.00002–0.0004) in Florida to 31 

0.08 (95% CI: 0.044–0.14) in American Samoa during the 2010–2019 period. For 32 

early 2020, we estimated that seropositivity in 10 year-olds ranged from 0.09% 33 

(0.02%–0.54%) in Florida to 56.3% (43.7%–69.3%) in American Samoa. In the 34 

absence of serological data, age-specific case notification data collected through 35 

routine surveillance combined with mathematical modeling are powerful tools to 36 

monitor arbovirus circulation, estimate the level of population immunity, and design 37 

dengue management strategies. 38 

Author Summary 39 

Viruses transmitted by Aedes mosquitoes are a substantial public health burden 40 

globally. In the US, the increasing number of outbreaks in recent decades and the 41 

co-circulation of the four dengue viruses present a risk of experiencing sequential 42 

infections, which can result in more severe disease. However, reported cases only 43 

represent a proportion of all infections, so the intensity of dengue circulation in US 44 

jurisdictions and the level of population immunity are largely unknown. Combining 45 

dengue surveillance data stratified by age with mathematical models enables direct 46 

estimation of transmission intensity and previous exposure. We found that dengue 47 

virus transmission intensity was highest in American Samoa and Puerto Rico. The 48 
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US Virgin Islands also showed patterns of endemic transmission, while Hawaii and 49 

Guam present more sporadic outbreak profiles. These estimates can help improve 50 

risk assessment in these locations and guide interventions to the populations who 51 

most need them.   52 
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Introduction 53 

Dengue viruses (DENV) re-emerged in the Americas beginning in the 1970s, with the 54 

viruses rapidly expanding their range and associated burden of dengue infections [1–55 

3]. However, this expansion has not been uniform. The four antigenically distinct 56 

dengue virus serotypes (DENV-1 to DENV-4) emerged at different times with affected 57 

areas experiencing different levels of transmission intensity, from sporadic outbreaks 58 

to hyperendemic, year-round circulation [4–6]. 59 

The varied history of DENV transmission in the Americas directly shapes the current 60 

risk. Infection with one serotype generally provides long-term immunity to that 61 

serotype and short-term immunity to all serotypes. Secondary exposure to a different 62 

serotype from the primary infection has been associated with increased risk of severe 63 

dengue [7]. Population immunity is therefore modulated by the circulation of the four 64 

serotypes and the intensity of transmission of those viruses. 65 

As population immunity and transmission intensity are intrinsically linked, it is 66 

challenging to estimate either of those components directly. Existing immunity can be 67 

partially measured with age-specific serological surveys, but these are logistically and 68 

financially challenging to implement, provide only a snapshot of previous exposure, 69 

and differentiating specific serotypes and the sequence of prior serotype exposures is 70 

very difficult. Transmission intensity can be characterized as the force of infection 71 

(FOI), the per capita rate at which susceptible individuals become infected by an 72 

infectious disease. A class of models called catalytic models can estimate the FOI, 73 

providing a measure of changes in exposure to diseases. However, direct estimation 74 

of the FOI is also challenging because population susceptibility is generally not 75 
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known, many dengue infections are inapparent or unreported, and the proportion of 76 

individuals experiencing inapparent disease is dependent on prior infection [8–11]. 77 

Estimating the FOI therefore requires accounting for both underreporting and 78 

historical transmission intensity.  79 

To help meet this challenge, age-stratified case data collected through passive 80 

surveillance can be used to gather insight into both existing immunity and 81 

transmission intensity [12]. Due to every age group having different exposure 82 

periods, incidence across each age group each year reflects both the age-group 83 

specific immunity and the yearly transmission intensity, enabling estimation of yearly 84 

transmission intensity for both current and past years [13]. Catalytic models that use 85 

age-specific case data can thus provide valuable insights into the dynamics of 86 

arboviruses [12,14,15] by quantifying infection burden in settings where 87 

seroprevalence data are unavailable or unrepresentative of the population. 88 

Here, we analyze reported dengue case data from six US jurisdictions with outbreaks 89 

reported since dengue became a nationally reportable disease in 2010: Puerto Rico, 90 

American Samoa, US Virgin Islands, Florida, Hawaii and Guam. These locations 91 

represent diverse historical trends in reported case data, from long-term hyper-92 

endemicity in Puerto Rico to no reported dengue in decades prior to an outbreak in 93 

2019 in Guam (Figure 1). Building on previous work by Rodriguez-Barraquer et al. 94 

[12], we developed a generalized model that accounts for variability in transmission 95 

intensity and reporting over time and estimates the FOI and age-specific immunity 96 

over time. Accounting for yearly variability in FOI and reporting provides critical 97 

insights into dengue epidemiology in a wide variety of settings, from hyperendemic to 98 

sporadic outbreaks, and can be used to better assess dengue burden in the US and 99 
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other settings, contribute to epidemic risk assessment, and guide implementation and 100 

evaluation of control strategies such as vaccination. 101 

Methods 102 

Data sources 103 

Dengue became a nationally notifiable disease in January 2010 and we analyzed 104 

confirmed and probable dengue cases reported to ArboNET for the years 2010–2019 105 

for six jurisdictions: Puerto Rico, American Samoa, US Virgin Islands, Hawaii, Florida 106 

and Guam. Texas was excluded due to low case counts. ArboNET includes 107 

information about place of likely acquisition (locally acquired or travel-associated) and 108 

disease severity. We analyzed locally acquired cases only, except Florida, where we 109 

analyzed both categories. For all locations, we combined severe and non-severe 110 

cases. In Puerto Rico, where the highest number of severe cases was reported, we 111 

also analyzed severe cases (including dengue hemorrhagic fever and dengue shock 112 

syndrome [16,17]) on their own. Age distribution data for each population was 113 

obtained from the 2010 census data provided by the United States Census Bureau 114 

(census.gov), except for Florida, Hawaii and Puerto Rico where in addition to the 115 

2010 census data, population estimates were available for years 2011–2019. The 116 

ArboNET surveillance data is available to researchers upon request.  117 
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Estimating the force of infection 118 

We used a Bayesian catalytic model extending one developed by Rodriguez-119 

Barraquer et al., [12] to estimate the time-dependent force of infection (FOI(t)) of all 120 

circulating serotypes and derive age-specific seroprevalence estimates. Building on 121 

the original model, we (i) added random effects for both reporting and FOI 122 

probabilities to allow a long-term mean with yearly variability for each of these 123 

components. We also (ii) implemented separate models for different reporting 124 

possibilities (cases reported are primary DENV infections, secondary infections or a 125 

combination of both) and (iii) accounted for potential infections in infants that appear 126 

more like secondary infections due to possible maternal antibody transfer. Finally, we 127 

(iv) generated a full suite of retrospective FOI estimates (prior to 2010, i.e., when 128 

ArboNET data became available). 129 

Reporting probability. Many DENV infections are mild or asymptomatic, and do not 130 

result in a visit to a clinic or being reported as a case [8,9,18]. Building on previous 131 

estimates, we set a prior for the probability of reporting a case using a logit-normal 132 

distribution (mean = -2.2, β = 0.7) for the long-term mean, which translates into a 133 

mean value of approximately 10% with a 97.5% bound of 30%. Multiple factors may 134 

lead to year-to-year fluctuation of reporting probabilities; the presence of other 135 

arboviruses infections may influence dengue reporting and testing, and, during 136 

epidemic years, doctors may be more likely to recognize and test dengue cases [19–137 

22]. To allow some variability in reporting probabilities, we let it vary between years 138 

and partitioned the variance of the reporting prior between uncertainty in the mean 139 

and uncertainty in year-to-year variability (see S1). 140 
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The probability of identifying and reporting dengue cases is also dependent on case 141 

severity. In one cohort study, the proportion of inapparent versus symptomatic case 142 

was similar between primary and secondary cases, with age, year, and time interval 143 

between consecutive infections more likely to affect symptomatic status [23]. 144 

Additionally, laboratory confirmation generally relies on virological testing that cannot 145 

differentiate primary and secondary infections, so the proportion of cases reported to 146 

ArboNET that are primary or secondary is not known. We therefore compared three 147 

different models considering either that all reported cases are secondary infections 148 

(Model S), that reported cases are a combination of primary and secondary infections 149 

(Model PS), and that all reported cases are primary infections (Model P, see 150 

Supporting information S1). 151 

Severe dengue cases, which are predominantly secondary infections, are also 152 

reported to ArboNET. Because substantial numbers of severe cases were reported in 153 

Puerto Rico during the study time period, we performed a secondary analysis for 154 

Puerto Rico limiting the included cases to severe dengue only. While severe cases 155 

are more likely to be reported than non-severe cases, severe cases represent only a 156 

small proportion of secondary infections. In previous cohort studies, the estimated 157 

probability of a secondary infection resulting in a reported severe case was lower 158 

than the reporting probability of a secondary infection resulting in any reported 159 

dengue case (dengue fever or severe dengue), below 5% (less than 1% [23] and 3% 160 

[24]). Based on those studies, we used a lower prior for the reporting of severe 161 

cases, setting a mean of 1% of all primary or secondary (depending on the model) 162 

infections being reported as severe cases and a 97.5% bound of 5%.  163 
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FOI. The FOI is likely to vary over time depending on the circulating dengue 164 

serotypes, serotype introduction or re-introduction, and population immunity, but few 165 

catalytic models account for this fluctuation [25]. Similar to the reporting probabilities 166 

(described above), we use a logit-normal prior for long-term average FOI and 167 

partitioned the prior variance between uncertainty in the mean and uncertainty in the 168 

year-to-year variability. We estimated a specific FOI prior for each location, using the 169 

average age of infection, life expectancy, and the mean reporting prior (see 170 

Supporting information S1, Table S1).  171 

Infant cases. The presence of maternal antibodies may interfere and potentially 172 

predispose some infants to more severe disease, such that infant infections may be 173 

more severe and more likely to be reported than expected for a true primary infection 174 

[26]. To account for this, we added a proportion parameter, 𝛼, that sets the initial 175 

previous exposure for infants to a proportion of the FOI in the previous year rather 176 

than zero (see S1, Figure S13). 177 

Model comparison 178 

Models were compared using leave-one-out (loo) Pareto smoothed importance 179 

sampling [27]. Lower loo scores indicate better cross-validation model fit. We also 180 

collected yearly log-likelihood estimates to assess how our S, P and PS models fit to 181 

the reported case data. For each parameter we extracted the posterior medians and 182 

95% Bayesian credible intervals (hereafter 95% CI). Models were run using Bayesian 183 

Markov Chain Monte Carlo sampling with a No-U-Turn sampler using the RStan 184 

package [28] in R (version 4.1.2, [29]). Detailed information on the methods used can 185 

be found in Supporting Information S1. 186 
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Results 187 

Dengue circulation was highly heterogeneous during 2010–2019 across the six 188 

jurisdictions (Figure 1). The age distribution of cases also varied markedly, with the 189 

most commonly reported age group being 10–14 years in the US Virgin Islands and 190 

Guam to 60–64 years for locally acquired cases in Florida (Figure 2). If all age groups 191 

had the same risk of infection, the age distribution of cases would mirror the 192 

population age distribution, e.g., the largest age group is more likely to have the 193 

highest number of reported cases. However, immunity from prior infection, especially 194 

in endemic areas, shifts the age of cases to predominantly younger age groups (e.g., 195 

Puerto Rico, American Samoa). 196 

We fitted models to each time series of age-specific case data under three different 197 

assumptions: (i) that all reported cases are primary infections (Model P), (ii) that all 198 

reported cases are secondary infections (Model S), and (iii) that reported cases 199 

include both primary and secondary cases (Model PS). In Hawaii and Guam, Model 200 

P and Model PS had significantly lower loo error than Model S (Figure 3). The fit of 201 

Model S was only significantly better for local cases in Florida (i.e., excluding travel-202 

associated cases) though also had lower mean error for the US Virgin Islands and 203 

severe cases in Puerto Rico. 204 

Comparing the different models across years, age groups and locations, we found 205 

mixed evidence about relative fit. For Puerto Rico, log likelihoods indicated that 206 

Model S tended to have a better fit in years with more reported cases and sometimes 207 

a worse fit in years and age groups with fewer reported cases (S1, Figures S5-S6). 208 

Model S also appeared to fit the distribution of cases across younger age groups 209 
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more accurately across most jurisdictions (S1, Figures S7 to S13). Models P and PS 210 

both tend to estimate that a larger number of cases should be reported in the 211 

youngest age group (0-4 years old). Model S qualitatively better matches the distinct 212 

pattern of dengue cases in children across endemic areas. Because of this distinct 213 

advantage and the finding that fit for Model S was only inferior for Hawaii and Guam 214 

(where there was the least evidence of sustained transmission) (S1, Figures S7 to 215 

S13), we used Model S for subsequent analyses.  216 

Of the six locations analyzed, Puerto Rico had the second highest long-term mean 217 

estimated FOI, an estimated 1.1% (95% CI: 0.9–1.3%) per year with substantial year-218 

to-year variation including higher FOI estimates in the early 1990s and 2000s (prior to 219 

the dataset analyzed here, Figure 4). The estimated probability of a secondary 220 

infection resulting in a reported dengue case was 2.1% (95% CI: 1.4–3.3%). The 221 

estimated probability of a secondary infection resulting in a reported severe dengue 222 

case was 0.1% (95% CI: 0.1–0.3%). Reporting was estimated to be slightly higher in 223 

years when more cases were reported (Figure 5). For 2019, we estimated 224 

seroprevalence in 5-year-old children to be 10.1% (95% CI: 6.1–16.9%), increasing 225 

to 94.5% (95% CI: 92–96.2%) by age 35 (Figure 2A). FOI and seroprevalence 226 

estimates using only severe cases were similar to those using all cases in Puerto 227 

Rico, although we observe a lower seroprevalence for 2019 in younger age groups 228 

and higher in older age groups (Figure 6).  229 

While no cases were reported in American Samoa between 2010 and 2016, the 230 

model estimated low reporting in 2010–2016 (Figure 5) and high uncertainty for FOI 231 

prior to 2010 with the highest long-term average FOI of all locations at 1.4% (95% CI: 232 

1.1–1.8%, Figure 4). The high estimated FOI in 2017–2018 translated to an 233 
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estimated 2019 seroprevalence in 2019 for 5-year-olds of 46.5% (95% CI: 33.2–234 

61.6%, Figure 2B). Thus, the age structure of cases in 2017-2018, indicates that 235 

while this was a large outbreak, there was likely dengue transmission both in 2010-236 

2016 and in preceding years. The FOI estimate for American Samoa was higher than 237 

the estimate for Puerto Rico, with similar estimated adult seroprevalence (91.9%, 238 

95% CI: 84.8–95.7% for 35-year-olds, Figure 2B). 239 

The US Virgin Islands had lower estimated long term average FOI (0.5%, 95% CI: 240 

0.3–0.7%, Figure 4) and more stable estimated reporting (Figure 5). With a low FOI 241 

in recent years, the 5-year-old estimated seroprevalence for 2019 was low (5.1%, 242 

95% CI: 2.3–11%, Figure 2C) but cumulative exposure in adults was still high, with 243 

35-year-old estimated seroprevalence for 2019 of 86.1% (95% CI: 72.7–94.1%, 244 

Figure 2C). 245 

Hawaii reported two outbreaks (2011 and 2014–2015) and Guam reported one 246 

(2019) during the study period (Figure 1) and both had less distinct age-specific case 247 

patterns (Figure 2D, 2F). The estimates for reporting largely reflected the reporting 248 

prior (Figure 4), indicating that there was little information between the case numbers 249 

and case age data to distinguish differences in reporting versus FOI. Nonetheless, 250 

long-term average FOI estimates were low for both jurisdictions (Hawaii: 0.001%, 251 

95% CI: 0.0003–0.004%; Guam: 0.003%, 95% CI: 0.0008–0.013%; Figure 4), with 252 

significant increases in the years when the outbreaks were reported. The 2019 253 

seroprevalence estimates were low for all age groups in both locations: 6.3% (95% 254 

CI: 3.9–12.3%, Figure 2D) and 2.6% (95% CI: 0.8–8.9%, Figure 2F) for 35-year-olds 255 

in Hawaii and Guam, respectively. 256 
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Florida was unique in that 90.5% of cases had reported travel histories. To assess 257 

local transmission within the state, we therefore only analyzed cases without reported 258 

travel (Figure 2E). Local dengue cases were reported in multiple years and had a 259 

distinctly different age profile for cases compared to other locations, with no reported 260 

cases in younger age groups and many among adults, which resulted in the largest 261 

uncertainty for seroprevalence estimates, especially for older age groups (Figure 2E). 262 

Considering all cases, the uncertainty for estimated seroprevalence in 35-year-olds 263 

was very high, with a 95% CI of 3.5% to 98.1%. Among local cases only, uncertainty 264 

was still high, but indicated more confidence in lower seroprevalence for younger 265 

adults, 9.6% (95% CI: 2.0–28.1%) for 35-year-olds. This lower seroprevalence 266 

estimate for local cases indicates a relatively low historical transmission intensity 267 

locally, implying that many imported secondary cases likely also had their primary 268 

infections outside of Florida. The long-term mean FOI for Florida considering only 269 

local cases was 0.001% (95% CI: (0.0002–0.008%). Similar to Hawaii and Guam, 270 

there was insufficient information to further resolve the probability of reporting a case 271 

and the estimated reporting probabilities resembled the prior. 272 

Across the six locations, estimated long-term average FOI was highest for American 273 

Samoa and Puerto Rico, followed by the US Virgin Islands, with much lower 274 

estimates for Hawaii and Guam. We also assessed the average yearly FOI estimates 275 

for each location and found that for the higher FOI locations (Puerto Rico, American 276 

Samoa, and US Virgin Islands), the yearly average was lower for the period which 277 

included surveillance data (2010–2019) compared to estimates for time periods prior 278 
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to 2010, for which ArboNET data are not available. In contrast, the estimated FOI for 279 

the 2010–2019 period were higher than the historical period for Hawaii and Guam.   280 
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Discussion 281 

Passive surveillance is the most common approach for dengue surveillance globally 282 

[30–32]. While passive surveillance can be highly effective for monitoring longitudinal 283 

changes in incidence, insight into disease burden is challenging as care seeking 284 

behavior, access to care, case definitions, reporting, and resources can differ 285 

substantially over time and across jurisdictions. Differences in these components can 286 

mean that actual increases, decreases, or jurisdictional differences in dengue burden 287 

are difficult to disentangle from reporting dynamics. The importance of understanding 288 

dengue burden beyond reported incidence has grown in recent years, with the 289 

advent of dengue vaccines which can be used to reduce the burden, but also require 290 

consideration of levels of preexisting population immunity for effective deployment 291 

[33]. Here, we extended a previously developed Bayesian model to leverage the age 292 

distribution among cases reported via passive surveillance in the US to estimate 293 

yearly DENV force of infection, yearly reporting probabilities, and seroprevalence for 294 

six jurisdictions with very different histories of reported dengue incidence.  295 

Across the six jurisdictions, the estimated dengue burden was highly heterogeneous 296 

and FOI estimates did not appear be higher over time, except in Hawaii and Guam. 297 

We found evidence of high long-term transmission intensity in Puerto Rico, American 298 

Samoa, and US Virgin Islands (FOI and high seroprevalence in adults), despite 299 

different histories of dengue in each location. Hawaii, Florida, and Guam also differed 300 

in the frequency and magnitude of reported outbreaks, but all had considerably lower 301 

long-term FOIs. 302 
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The higher estimated FOI in Puerto Rico, American Samoa, and US Virgin Islands 303 

reflect different dynamics. Puerto Rico has consistently reported dengue cases for at 304 

least three decades ([34,35], timeline by [6]), while dengue reporting in American 305 

Samoa and the US Virgin Islands is more sporadic. Outbreaks have been reported in 306 

American Samoa in the 1970s, 1990s, 2000s, and 2017–2018 [36–38] and in the US 307 

Virgin Islands in the 1990s, 2000s, and in 2012–2013 [6,39]. Here, we found that 308 

despite these different apparent dynamics, the estimated long-term FOI and 309 

seroprevalence in these locations were similar, with a high likelihood that individuals 310 

experienced a secondary infection by the time they reached 10 years old (point 311 

estimates between 42% and 59%). Three seroprevalence studies support these 312 

findings. First, a study in the municipality of Patillas in the southeastern part of Puerto 313 

Rico [40] found a 42.5% seroprevalence in 10–11 year-olds in 2007–2008. For 10-314 

year-olds, we estimated a seroprevalence of 57.2% (95% CI: 45.3–69.6%) in 2010 — 315 

the earliest estimate available for our study — in Puerto Rico. A 2010 seroprevalence 316 

study in American Samoa found a seroprevalence of 95.6% (95% CI 93.9–96.8%) for 317 

18–87 year-olds, with slightly lower estimates for 18–25 year-olds (89.1%, 95% CI: 318 

84.0–92.6%) [41]. For the same age groups and year, using only passive surveillance 319 

data, we estimated seroprevalence of 95.9% (95% CI: 86.9–98.5%) and 86.9% (95% 320 

CI: 63.6–95.6%) for these respective age groups. More recently, CDC’s updated 321 

traveler risk classifications re-categorized US Virgin Islands from 322 

“Sporadic/Uncertain” to “Frequent/Continuous” [42]. Additionally, a cross-sectional 323 

seroprevalence study conducted in US Virgin Island schools in April 2022 estimated 324 

a seroprevalence of 42% (95% CI: 26–60%) and 54% (95% CI: 18–89%) among 10 325 

and 13 year-olds respectively [43], while our model estimated a seroprevalence of 326 
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34% (95% CI: 18–54%) and 41% (95% CI: 26–61%) in 7 and 13 year-olds for 2019, 327 

3 years prior. No major outbreak has been reported in the US Virgin Islands between 328 

2019 and 2022. The high level of immunity found in the US Virgin Islands with our 329 

model confirms that dengue transmission intensity in this territory is likely higher than 330 

previously suspected.  331 

In Hawaii, low FOI and seroprevalence estimates are consistent with several possible 332 

histories: small intermittent outbreaks, rare large epidemics, or continuous low 333 

intensity transmission. No autochthonous cases had been reported in Hawaii 334 

between 1944 and 2001, but recent outbreaks were reported in 2001–2002 [44], 335 

2011, and 2015–2016 [45]. Given some reporting issues during these outbreaks (see 336 

[46]), the seroprevalence profile in Hawaii should be interpreted with caution. 337 

Although the results here do not differentiate between the possible histories, they do 338 

indicate that substantial and sustained undetected transmission in recent decades is 339 

highly unlikely. Further serological data collection could help decipher between these 340 

hypotheses.  341 

In Florida, we found a low FOI and a low level of immunity, suggesting low circulation 342 

of the virus. Frequent introductions of dengue viruses by travelers result in frequent 343 

opportunities for local transmission, so FOI estimates likely reflect both this relatively 344 

high introduction risk and limited local transmission. The travel and migration history 345 

of Florida residents may also contribute to a higher seroprevalence among older 346 

individuals than what would be expected from local transmission alone. This could 347 

explain the higher case numbers in older adults, high uncertainty in seroprevalence 348 

estimates for those adults, and the better fit of the secondary case model to the 349 

Florida data. More detailed data on histories of travel and dengue exposure could 350 
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potentially provide more resolution on historical patterns of transmission in Florida as 351 

compared to exposures acquired elsewhere that impact the patterns of dengue seen 352 

in Florida today.  353 

Our FOI and seroprevalence estimates in Guam were lower than for the other US 354 

territories with comparable environmental conditions. According to our model, primary 355 

infections, or a combination of primary and secondary infections dominated the 2019 356 

outbreak in Guam, which is consistent with other studies that found no evidence of 357 

endemic circulation in Guam since World War II [38,47,48], potentially due to 358 

successful vector control strategies limiting dengue transmission on this territory [47]. 359 

Our model estimated time-varying reporting probabilities for all jurisdictions and found 360 

important variations across locations and years. In locations with lower long-term FOI 361 

estimates, there was little information in the case data to update the broad prior 362 

assumption for reporting probabilities of approximately 10–30%. However, for 363 

locations with higher long-term FOI, reporting was generally below 10% and showed 364 

substantial year-to-year variability. Other recent work indicates the possibility of 365 

similar variation between years [20,22] and particularly between epidemic and non-366 

epidemic years [21], a pattern which we also found in the data and models analyzed 367 

here. These findings indicate the likely importance of accounting for variability in 368 

reporting probabilities over time.  369 

We compared models accounting for reported cases as primary, secondary, or a 370 

combination of both primary and secondary infections, finding mixed evidence of fit 371 

across jurisdictions. For Florida, the secondary case model clearly fit better by leave-372 

one-out metrics, while it was worse than the other models for Hawaii and Guam 373 
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(Figure 3). However, detailed examination of fitted model estimates and log-374 

likelihoods revealed that models for secondary infections provided better qualitative 375 

fits to the age profiles of cases in locations with higher seroprevalence and for years 376 

and age groups with higher incidence. Thus, despite equivocal out-of-sample 377 

performance, we found that the secondary-only model is likely preferrable in locations 378 

with high FOI or with high seroprevalence that may have been acquired elsewhere 379 

(Florida), while the primary or combined models may perform better in low FOI 380 

settings with limited previous exposure. For reporting, this finding implies that most 381 

cases reported in Puerto Rico, American Samoa, US Virgin Islands and Florida are 382 

secondary infections and the majority of reported cases in Hawaii and Guam are 383 

likely primary infections. This confirms that in endemic settings primary infections are 384 

largely unreported, but also suggests this pattern is slightly different in locations with 385 

more sporadic transmission. This spatial and temporal variation in reporting is likely 386 

to be a more general phenomenon.  387 

While we were able to identify clear differences in transmission intensity across 388 

locations, this analysis provides limited insight into why those differences exist. 389 

Different levels of mobility and interactions with mosquitos between individuals within 390 

and between households likely lead to some differences. Environmental variables 391 

(e.g., temperature and rainfall) also impact the mosquito population and may drive 392 

differences in transmission intensity [49,50]. Furthermore, we accounted for previous 393 

infections as a condition for reporting and a condition for the force of infection. 394 

However, we did not consider how heterotypic and homologous immunity to different 395 

serotypes (or other flaviviruses) may substantially impact these dynamics. 396 
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Some limitations are worth noting. First, ArboNET includes dengue data since 2010 397 

but in some jurisdictions few cases have been reported in this period, meaning that 398 

for some jurisdictions the models rely on relatively few data. While fitting the data in a 399 

Bayesian framework with informative priors reduces the possibility of misleading 400 

conclusions, it also means that high uncertainty remains around some important 401 

parameters (e.g., reporting in some jurisdictions). Heterogeneity in dengue exposure 402 

and disease across age and gender may result in both age-specific FOI and age-403 

specific reporting probabilities. Neither of these possibilities are captured in our 404 

model implementation and would be difficult to assess without informative priors for 405 

that age-specific variation. In early model development, we found that to account for 406 

time-variable reporting and FOI, we needed to have informative priors for both 407 

components. Another possible area for advancing this type of model would be to 408 

further differentiate reporting probabilities for primary and secondary infections (see 409 

[14]). With informative priors, this could potentially provide further resolution on 410 

location specific differences in transmission where reported cases may be dominated 411 

by primary infections, secondary infections, or a mix.  412 

Our study shows that analyzing age-specific case notification data with catalytic 413 

models can provide invaluable insight into dengue virus transmission dynamics 414 

beyond simple case counts, including estimates of transmission intensity over time 415 

and of evolving population-level exposure (as an ongoing proxy for seroprevalence). 416 

These components can help identify where interventions such as dengue vaccines 417 

should be prioritized in the US and elsewhere or what populations may be at higher 418 

risk of secondary infections and therefore severe disease. These models may 419 
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provide an important tool for assessing and monitoring dengue transmission risk in 420 

many locations where age-specific surveillance data already exist. 421 
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 437 

Figure 1. Confirmed and probable dengue cases reported to ArboNET by state 438 
or territory, 2010–2019. Included cases had no travel history and met laboratory 439 
criteria for diagnosis. Different y-axis scales were used for each jurisdiction. 440 

 441 
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 448 
 449 

Figure 2. Age distribution of reported dengue cases and 2019 seroprevalence 450 
estimates by age group for each US state and territory assessed. Age 451 
distribution of all locally reported, confirmed and probable dengue cases in Puerto 452 
Rico (PR, A), American Samoa (AS, B), US Virgin Islands (USVI, C), Hawaii (HI, D), 453 
Florida (FL, E) and Guam (GU, F) in 2010–2019 (colored bar) and age distribution of 454 
the population in these respective territories (grey bars, 2010 census) (left panel) and 455 
age distribution of 2019 seroprevalence estimate obtained from the fit of model S 456 
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(reported cases are secondary infections only), with corresponding 95% confidence 457 
intervals (shaded area, right panel). Florida (E) contains the additional 458 
seroprevalence estimates from all cases (imported and local). Detailed tables on 459 
years with reported dengue cases are available in S1. Y-axis scale on the left panels 460 
differ for each location. 461 

  462 

 463 

 464 

Figure 3. Leave-one-out cross validation model comparison using the 465 
estimated difference in ELPD (expected log pointwise predictive probabilities). 466 
ELPD is a measure of out-of-sample predictive accuracy, as estimated by the 467 
Bayesian leave-one-out cross validation (LOO). We compared model P (cases as 468 
primary) to models PS and S (primary and secondary cases and secondary cases 469 
only). Models under the horizontal bar at 0 fit the data better than model P 470 
(reference). Vertical bars represent the corresponding standard error of the difference 471 
in ELPD. 472 

 473 

 474 
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 475 
 476 

Figure 4. Time-varying estimates of the force of infection (FOI) in Puerto Rico 477 
(all cases) and severe cases only (PR severe), American Samoa, US Virgin 478 
Islands, Hawaii, Florida local cases and Guam in 2010–2019 from our model S 479 
(cases as secondary infections). The numbers in the upper left-hand corner of 480 
each panel shows long term FOI estimates for each location. Dark and light shaded 481 
areas represent respectively, 50% and 95% confidence intervals. Different y-axis 482 
scales were used for each jurisdiction. 483 

 484 
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 485 

 486 

Figure 5. Estimates of the yearly probability of reporting cases in Puerto Rico 487 
(all cases) and severe cases only (PR severe), American Samoa, US Virgin 488 
Islands, Hawaii, Florida and Guam in 2010–2019 from our S model (cases are 489 
considered secondary infections). Vertical bars represent 95% confidence 490 
intervals. For the severe cases, it is the proportion of all secondary infections that are 491 
both severe and reported. 492 

 493 
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 494 

 495 

 496 

Figure 6. Age-specific seropositivity estimates for 2019 in Puerto Rico using all 497 
dengue cases and severe dengue cases only. Derived from model S where 498 
reported cases are secondary infections only. Shaded areas represent 95% 499 
confidence intervals.  500 

  501 
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Supporting information Captions 502 

S1 Figure. Prior distribution of the reporting hyperprior. Dashed lines represent 503 
median prior value, at 10%. 504 

S2 Figure.  Age distribution of reported severe and non-severe dengue cases 505 
(colored bars) in Puerto Rico from 2010 to 2019. The grey bars represent the age 506 
distribution of the population (US census, 2010). 507 

S3 Figure. Yearly age distribution of dengue reported cases in Puerto Rico (A), 508 
American Samoa (B), US Virgin Islands (USVI, C), Hawaii (D), Florida (E), and 509 
Guam (F). Scales may be adjusted for years with fewer dengue cases reported. 510 

S4 Figure. Yearly age distribution of locally-acquired and imported dengue 511 
reported cases in Florida. Scales are adjusted for years with fewer dengue cases 512 
reported. 513 

S5 Figure. Comparison of log likelihood samples by age group and years of 514 
models 1-3 using Puerto Rico data. Comparison of log likelihood samples by 515 
age group and years of models Primary, Primary & Secondary, and Secondary 516 
using Puerto Rico data. Models’ log-likelihood values may overlap. The log 517 
likelihood value in a model is a measure of goodness of fit. The higher the value (i.e., 518 
closer to 0), the better. 519 

S6 Figure. Heatmap comparison between models Primary, Primary and 520 
Secondary, and Secondary of log likelihood median samples and cases by age 521 
group and years using Puerto Rico data. The log likelihood value in a model is a 522 
measure of goodness of fit. Here, models with log likelihood values closest to 0 were 523 
plotted.   524 

S7 Figure. Reported cases model fit (all cases and severe cases only) by age 525 
group in Puerto Rico from 2010 to 2019. Points represent cases reported to 526 
ArboNET while lines represent model fit to Primary, Primary & Secondary, and 527 
Secondary models. Shaded areas represent the best model 95% CIs. 528 
 529 
S8 Figure. Reported severe cases model fit (severe cases only) by age group in 530 
Puerto Rico from 2010 to 2019. Points represent cases reported to ArboNET while 531 
lines represent model fit to Primary, Primary & Secondary, and Secondary models. 532 
Shaded areas represent the best model 95% CIs. 533 

S9 Figure.  Reported cases model fit by age group in American Samoa from 534 
2010 to 2019. Points represent cases reported to ArboNET while lines represent 535 
model fit to Primary, Primary & Secondary, and Secondary models. 536 
Shaded areas represent the best model 95% CIs. 537 

S10 Figure.  Reported cases model fit by age group in US Virgin Islands from 538 
2010 to 2019. Points represent cases reported to ArboNET while lines represent 539 
model fit to Primary, Primary & Secondary, and Secondary models. 540 
Shaded areas represent the best model 95% CIs. 541 

S11 Figure. Reported cases model fit by age group in Hawaii from 2010 to 2019. 542 
Points represent cases reported to ArboNET while lines represent model fit to 543 
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Primary, Primary & Secondary, and Secondary models. Shaded areas represent the 544 
best model 95% CIs. 545 

S12 Figure. Reported cases model fit by age group in Florida from 2010 to 546 
2019. Points represent cases reported to ArboNET while lines represent model fit to 547 
Primary, Primary & Secondary, and Secondary models. Shaded areas represent the 548 
best model 95% CIs. 549 

S13 Figure. Reported cases model fit by age group in Guam from 2010 to 2019. 550 
Points represent cases reported to ArboNET while lines represent model fit to 551 
Primary, Primary & Secondary, and Secondary models. Shaded areas represent the 552 
best model 95% CIs. 553 

S14 Alpha parameter posterior estimates with 95%CI (vertical bars) in Puerto 554 
Rico, Puerto Rico severe (using severe cases only), American Samoa, US 555 
Virgin Islands, Hawaii, Florida and Guam. 556 

Table S1: Force of infection estimates in Puerto Rico, American Samoa, US 557 
Virgin Islands, Hawaii, Florida and Guam from 2010 to 2019. Median and 95% 558 
Bayesian credible intervals. 559 

 560 
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