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Abstract

Many drug discovery projects are started, but few progress fully through clinical trials to approval.
Previous work has shown that human genetics support for the therapeutic hypothesis increases
the chance of trial progression. Here, we applied natural language processing to classify the
freetext reasons for 28,842 clinical trials that stopped before their endpoints were met. We then
evaluated these classes in the light of the underlying evidence for the therapeutic hypothesis and
target properties. We show that trials are more likely to stop due to lack of efficacy in the absence
of strong genetic evidence from human populations or genetically-modified animal models.
Furthermore, trials are more likely to stop for safety reasons if the drug target gene is highly
constrained in human populations and if the gene is not selectively expressed. These results
support the growing use of human genetics to evaluate targets for drug discovery programmes.
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Introduction
In drug discovery, many projects are started but few yield approved drugs. While there are myriad
possible reasons for individual failures in clinical trials, major, and expensive, sources of attrition
(79%) are lack of efficacy or unforeseen safety issues, both suggesting that the therapeutic
hypothesis was insufficiently supported (Dowden and Munro, 2019). New approaches adopted
across the industry aim to improve success rates by systematic assessment of the available
evidence throughout the research and clinical pipelines (Morgan et al., 2018; Wu et al., 2021).
Recently, support from genetic studies has been associated with successful clinical trial
progression (Nelson et al., 2015; King, Davis and Degner, 2019; Ochoa et al., 2022). However
further understanding of the reasons for success or failure in clinical trials could assist in reducing
future attrition.

Systematically assessing the reasons for success or failure in clinical trials is hampered by several
factors. Several surveys have demonstrated a bias towards reporting positive results, with 78.3%
of trials in the literature reporting successful outcomes (Ioannidis, 2005; Young, Ioannidis and
Al-Ubaydli, 2008; Bourgeois, Murthy and Mandl, 2010). Successful clinical trials are published
significantly faster than trials reporting negative results (Qunaj et al., 2018; Jones et al., 2021).
Clearly, there is a disconnect between reporting of positive trial results and overall success rates
(DiMasi et al., 2010). Having access to negative results is important to reveal efficacy tendencies
and safety liabilities (Petsko, 2010), for retrospective review and for benchmarking of predictive
methods including machine learning (ML). One area that has not been examined extensively is the
reasons underlying the premature stopping of clinical trials. Many clinical trials stop before their
scheduled endpoint is met and before formal success or failure outcomes are declared.

ClinicalTrials.gov is a free-to-access database registering global clinical trials (Ross et al., 2009;
Califf et al., 2012) and provides a partially structured trial status. For trials halted before their
scheduled endpoint, ClinicalTrials.gov provides a freeform stopping reason - termination,
suspension or withdrawal (Al-Durra et al., 2018). Pak et al. previously classified stopping reasons
for 3,125 stopped trials and found that only 10.8% of trials stopped because of a clear negative
outcome, while the majority (54.5%) fell into a set of reasons characterised as neutral (Pak,
Rodriguez and Roth, 2015). Here, we extended that work by training a natural language
processing (NLP) model to classify stopping reasons and used this model to classify 28,842
stopped trials. We integrated our classification with evidence associating the drug target and
disease from the Open Targets Platform (Ochoa et al., 2023), revealing that trials stopped for lack
of efficacy or safety reasons were less supported by genetic evidence. Furthermore, trials
involving drugs whose target gene is constrained in human populations were more likely to stop
for safety reasons (Duffy et al., 2020), while drugs with targets with tissue-selective expression
were less likely to pose safety risks. Taken together these observations confirm and extend
previous studies recognising the value of genetic information and selective expression in target
selection.
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Results

Interpretable classification of the reasons why clinical trials stop

To catalogue the reasons behind the withdrawal, termination or suspension of clinical studies, we
classified every free-text reason submitted to ClinicalTrials.gov using an NLP classifier. In order to
build a training set for our model, we revisited the manual classification of 3,124 stopped trials
based on the available submissions to ClinicalTrials.gov in May 2010 (Pak, Rodriguez and Roth,
2015). The authors classified every study with a maximum of 3 classes following an ontological
structure (Supplementary Table 1). Each of the classes was also assigned a higher-level category
representing the outcome implications for the clinical project. For example, 33.7% of the studies
were classified as stopped due to “insufficient enrollment”, a “neutral” outcome due to its
expected independence from the therapeutic hypothesis. When inspecting submitted reasons
belonging to the same curated category, we observed a strong linguistic similarity, as revealed by
clustering the cosine similarity of the sentence embeddings (Supplementary Figure 1). Studies
stopped because of reasons linked to lack of efficacy and studies stopped due to futility have a
linguistic similarity of 0.98, with both classes manually classified as “negative” outcomes. Based
on this clustering, we redefined the classification by merging semantically similar classes
represented by low numbers of annotated sentences. Moreover, we added 447 studies stopped
due to the COVID-19 pandemic (Supplementary Table 2), resulting in a total of 3,571 studies
manually classified into at least one of 17 stop reasons and explained by 6 different higher-level
outcome categories.

By leveraging the consistent language used by the submitters, we fine-tuned the BERT model
(Devlin et al., 2018) for the task of clinical trial classification into stop reasons (Supplementary
Methods). Overall, the model showed strong predictive power in the cross-validated set (𝐹

𝑚𝑖𝑐𝑟𝑜

=0.91), performing strongly for the most frequent classes, such as “insufficient enrollment”
(F=0.98) or “COVID-19” (F=1.00), but demonstrating decreased performance on linguistically
complex reasons, such as trials stopped because of another study (F=0.71) (Supplementary Table
3).

To further evaluate the model, we manually curated an additional set of 1,675 stop reasons from
randomly selected studies not included in the training set. Overall, the performance against the
unseen data was lower but comparable to that of the cross-validated model ( ranging from𝐹

𝑚𝑖𝑐𝑟𝑜

0.70 to 0.83 depending on the choice of the annotator) (Supplementary Table 4), demonstrating
real-world performance and reduced risk of overfitting. Interestingly, the curators demonstrated a
relatively low agreement for many classes where the ML model also showed relatively weak
performance, such as studies stopped due to insufficient data or met endpoint (Supplementary
Methods, Supplementary Figure 12).

Stop reasons reflect operational, clinical and biological constraints

Classification of the 28,842 stopped trials submitted to ClinicalTrials.gov before 27/11/2021 was
performed using our NLP model fine-tuned on all the manually curated sentences
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(Supplementary Table 5). 99% of the trials were classified with at least 1 of the 15 potential reasons
and mapped to one of 6 different higher-level outcomes (Figure 1). “Insufficient enrollment”
remained the most common reason to stop a trial (33.52%), with other reasons prior to the accrual
of any study results also occurring in a large number of studies. A total of 977 trials (3.38%) were
classified as stopped due to “Safety or side effects” and 2,197 studies (7.6%) were stopped due
to negative reasons, such as those questioning the efficacy or value (futility). The relative
frequency of each stop reason varies across clinical phases, reflecting the purposes of each study
(Supplementary Figure 2). For example, studies with negative outcomes were more frequently
reported during Phase II and Phase III, whereas safety or side effect outcomes were proportionally
more frequent in Phase I. Trials stopped due to the relocation of the study or key staff were
instead more frequent in Early Phase I. Of all the studies with a submitted stop reason, 48% were
indicated for oncology, an expected overrepresentation due to the recent inclusion of the stop
reasons in ClinicalTrials.gov. Moreover, oncology studies stopped more frequently due to safety or
side effects and were rarely stopped due to the COVID-19 pandemic (Supplementary Figure 3).
Alternatively, COVID-19 was the reported reason to stop respiratory studies at a higher rate than
any other therapeutic area, possibly indicating increased operational difficulties.

Figure 1: Classification of stopped reasons for 28,842 clinical trials in clinicaltrials.gov. Predicted trial stop reasons
are shown in rows with counts of trials per start year, clinical phase or therapeutic area shown by the colour in each cell.
The outcome groupings of the stopped reasons are shown by means of the colour next to the stopped reason label.
Note that trials start potentially many years before they are stopped.

Availability of genetic support for stopped trials influences the outcome

To better understand the underlying reasons that might have caused the study to fail, we
assessed the availability of different types of potentially causal genetic evidence for the intended
pharmacological targets in the same indication. By using genetic evidence collated by the Open
Targets Platform, we reproduced previous reports indicating that genetically supported studies are
more likely to progress through the clinical pipeline (Figure 2) (Nelson et al., 2015; King, Davis and
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Degner, 2019). Interestingly, we also observed that stopped trials - among all the trials at any
phase - are depleted in genetic support (OR =0.75, p = 6e-60). A similar lack of genetic evidence
was observed for the 3 types of stopped studies: withdrawn, terminated and suspended
(Supplementary Table 6).

When stratifying the stopped studies by reason, trials halted due to negative outcomes - such as
lack of efficacy or futility - displayed a significant decrease of genetic support for the intended
pharmacological target in the same indication (OR = 0.61, p = 6e-18) (Figure 2). The depletion of
evidence on negative outcomes remains consistent when looking at different sources of genetic
evidence in common or rare diseases including genome-wide association studies (GWAS)
processed by the Open Targets Genetics Portal (Ghoussaini et al., 2021), gene burden tests based
on sequencing of large population cohorts (Backman et al., 2021; Wang et al., 2021; Karczewski
et al., 2022), ClinVar (Landrum et al., 2014), ClinGen Gene Validity (McGlaughon et al., 2018),
Genomics England PanelApp (Baker, 2018), gene2phenotype (Thormann et al., 2019), Orphanet
(Rodwell and Aymé, 2015), and Uniprot (UniProt Consortium, 2019) (Supplementary Figure 4).

Other predicted reasons for stopping the trials such as insufficient enrolment, problems with the
study design or business or administrative reasons also present a strong to moderate depletion of
genetic evidence denoting potential reduced support for the therapeutic hypothesis (Figure 2). We
found studies stopped due to coincidental factors such as the COVID-19 pandemic or safety and
side effects have no association with the availability of genetic support for the intended target in
the primary indication.

The observed associations between clinical trial outcomes and the availability of genetic support
remain consistent when considering genetic information in mouse models (Figure 2). Stopped
trials due to negative factors present the weakest support among all predicted reasons (OR = 0.7,
p = 4e-11) when genetic evidence is defined as the presence of a murine model in which the drug
target homologous gene knockout causes a phenotype that mimics the indication as reported by
the IMPC (Muñoz-Fuentes et al., 2018).
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Figure 2. Association between the availability of genetic evidence and clinical trial outcomes. Genetic evidence
support for clinical trials either from human genetics studies (panel a) or IMPC mouse knockouts that phenocopy the
human disease (panel b). The panels show the odds ratio of support for the target-disease hypothesis from genetics
evidence for all clinical trials split by phase (top row), stopped clinical trials (centre row) and stopped clinical trials split
by higher level stopping reason (bottom row). Significant odds ratios > 1 are enriched and <1 are depleted for genetic
evidence in each subclass of trial. Significance levels: **** p < 1e-4; ***p < 1e-3; ** p < 1e-2; * p < 0.05; “ns” not
significant.

Genetically constrained targets anticipate safety-associated stopped trials

Analysis of the classified stop reasons indicates that oncology trials are 2.4 times more likely to
stop because of safety or side effects (OR = 2.14, p = 8.1e-79, Figure 3). Moreover, for all trials
predicted to stop due to safety concerns we found a significant enrichment in targets associated
with driver events reported by COSMIC (Bamford et al., 2004), ClinVar (Landrum et al., 2014) or
IntOgen (Gundem et al., 2010) (Supplementary Figure 5). Examining the target properties, we
found that studies targeting genes highly constrained in natural populations (GnomAD pLOEUF
16th percentile) are 1.5 times more likely to stop due to safety concerns (Karczewski and Francioli,
2017). Furthermore, the risk of stopping because of safety declines as the genetic constraint of
the target decreases. Similarly, we identified a 1.4-fold increased risk of stopping due to safety
concerns when the targeted gene is classified as loss-of-function intolerant (pLi > 0.9). We also
identified functional genomic features that inform on increased safety risk. A similar 1.4-fold
increased risk is observed for genes expressed with low tissue specificity according to the human
protein atlas (Uhlén et al., 2015). Instead, studies targeting tissue-enriched genes show a
lower-than-expected (OR = 0.83, p = 6.8e-4) likelihood of stopping due to safety. Finally, targets
physically interacting with 10 or more different partners according to the IntAct database (mi score
> 0.42) present an increased risk of stopping due to safety.
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Figure 3. Risk of stopping a clinical trial due to safety or side effects examined by therapeutic area and target
properties. Odds ratio (OR) > 1 represents increased risk of study stopping and OR < 1 protection against stopping.
Clinical trials are split by therapeutic area (oncology vs others) in the top section, by types of tissue specificity (second
section), relative genetic constraint of the target (LOEUF, middle section), Intolerance to loss of function (LOF) mutations
(penultimate section) and by network connectivity (bottom section).
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Discussion
Genetic evidence is increasingly leveraged by the pharmaceutical industry to add support to the
therapeutic hypothesis (Barrett, Dunham and Birney, 2015; Morgan et al., 2018; Wu et al., 2021;
Fernando et al., 2022). Adding to previous observations on the role of genetic factors in the overall
trial success (Nelson et al., 2015), (Nelson et al., 2015; King, Davis and Degner, 2019), we
exploited under-utilised data from clinical trial records to better understand the opposite outcome:
why clinical trials stop. While the availability of genetic evidence might inform future success,
failure remains the most common outcome of clinical studies and - to our knowledge - no
systematic evidence exists on the relevance of genetics to de-risk negative results.

Recent reports indicate that 79% of clinical studies fail because of the lack of efficacy or safety
(Dowden and Munro, 2019). Our analysis indicates that within the 7.4% of studies that stop early
- due to withdrawal, termination or suspension - the proportion of trials that failed because of
efficacy or safety is only 10.4%. Stopped studies are more likely to fail due to early coincidental
factors not necessarily linked to biological plausibility e.g. the PI relocates or insufficient
enrollment in the trial. Notwithstanding the reduced relative risk of efficacy and safety as the main
causes for stopping the trial, these studies provide a significant body of unsuccessful results likely
explained by a weak therapeutic hypothesis. Continued expansion of the recording of negative
results from clinical trials, including stoppages, will be valuable. To assist in this effort, we will
continue to update the classification of stopped studies through the Open Targets Platform
(https://platform.opentargets.org) (Ochoa et al., 2023). Further investigation of the study outcomes
for completed studies could expand our understanding of the reasons behind unsuccessful trials,
particularly after the accrual of the study results.

Our analysis exploits the classified stop reasons to understand the relative importance of the
causes leading to failed studies. By using a case-control approach, we conclude that genetic
support is not only predictive of clinical trial progression but also protective of early trial stoppage.
We illustrate different ways in which genetic causality and genetic constraint can de-risk the target
selection process. However, many stopped trials, even for efficacy and safety reasons, might be
explained by factors beyond the intended pharmacological target. Off-target effects,
pharmacokinetics, drug delivery or toxicology are other risks not considered in this study that
might also explain a set of negative outcomes. Another limitation of our study is that the reasons
submitted to ClinicalTrials.gov might only represent a fraction of all the reasons contributing to the
decision to halt the study. For example, we found that studies classified as stopped due to patient
recruitment manifest weaker genetic support, an observation that we did not anticipate due to the
lack of an obvious link between enrollment and biological plausibility. Hence, we hypothesise a
fraction of the stopped trials might present an overall lack of confidence in the therapeutic
hypothesis, independently of the reported reason.

This study showcases how reflecting on past failures can inform on the relative importance of the
risks associated with early target identification and prioritisation. Although clinical trial success is
a discrete outcome, failure needs to be understood as a breakdown of many possible causes. A
proper set of positive and negative outcomes such as the ones introduced in this work represent
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the groundwork necessary to implement quantitative or semi-automatic models to objectively
de-risk any future studies.
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BERT - Bidirectional Encoder Representations from Transformers

ClinGen - The Clinical Genome

ClinVar - Clinically relevant Variants

COSMIC - Catalogue of Somatic Mutations in Cancer

gnomAD - The Genome Aggregation Database
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Methods
In order to redefine the stop reason ontology provided by Pak et al., we trained a Long-Short Term
Memory Network (LSTM) to create a representation for each reason and calculated pair-wise
cosine similarities of the resulting embeddings after averaging all examples in the same class
(Supplementary Methods). Similar classes with low number of sentences were grouped together
when accounting for similar reasons (Supplementary Table 1). To train our multiclass multilabel
stop reason classifier, we fine-tuned a BERT uncased pre-trained model with a one-layer
feed-forward classifier for the task of predicting the termination reasons. Training set
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(https://huggingface.co/datasets/opentargets/clinical_trial_reason_to_stop) as well as the resulting
model (https://huggingface.co/opentargets/stop_reasons_classificator_multi_label) are available in
hugging face for interactive inspection.

To collate the genetic support for each clinical trial the bioactive molecules in each study were
mapped to their intended pharmacological targets using the mechanism of action curated by the
ChEMBL database (Gaulton et al., 2017). Genetic support for human and mouse models for the
exact indication was extracted from 13 different sources covering rare, common and somatic
indications integrated by the Open Targets Platform (Ochoa et al., 2023). Significance of each
case-control study was computed using a Fisher Exact test on all clinical trials independently of
their status or whether they are stopped. Genetic information was propagated to ancestors in the
Experimental Factor Ontology to account for differences on curation. Code to reproduce the
analysis is available in https://github.com/opentargets/stopReasons.
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Supplementary Tables
Supplementary Table 1. Pak et al. manual curation of stopped studies .

Supplementary Table 2. Curated reasons assigned to be due to COVID-19 pandemic

Supplementary Table 3. Model performance on Pak et al. + COVID-19 and tested on Pak et al. +
COVID-19

Supplementary Table 4. Model performance trained on Pak et al. + Covid-19 data and tested on
unseen data by annotator

Supplementary Table 5. NLP model classification of stopped studies

Supplementary Table 6 . Case-control test results for all combinations of exposures and
outcomes.
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Supplementary Figures

Supplementary Figure 1: Hierarchical clustering of stop reason similarity based on curation from Pak et al. Distances
were estimated as the cosine similarity of the averaged embeddings (see Supplementary Methods).
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Supplementary Figure 2. Percentage of stopped studies predicted to be due halted due to study or staff move, safety
or side effects or negative reasons (e.g. efficacy) by clinical trial phase as reported by ClinicalTrials.gov.

Supplementary Figure 3. Percentage of stopped trials predicted to be halted due to Safety or side effects or the
COVID-19 pandemic by predominant therapeutic area. Indications with multiple possible therapeutic areas were
associated with the most severe area (e.g. Oncology).
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Supplementary Figure 4. Association between the availability of genetic evidence and clinical trial outcomes by
genetic data source. X-axis displays the respective odds ratio and y-axis groups the studies by phase (top row),
stopped clinical trials (centre row) and stopped clinical trials split by high-level stopping reason (bottom row).
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Supplementary Figure 5. Association between the availability of genetic evidence and clinical trial outcomes by
somatic data source. X-axis displays the respective odds ratio and y-axis groups the studies by phase (top row),
stopped clinical trials (centre row) and stopped clinical trials split by high-level stopping reason (bottom row).
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