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Abstract 29 

Background 30 

Numerous epidemiological studies have documented the adverse health impact of long-term 31 
exposure to fine particulate matter (PM2.5) on mortality even at relatively low levels. However, 32 
methodological challenges remain to consider potential regulatory intervention’s complexity and 33 
provide actionable evidence on the predicted benefits of interventions. We propose the 34 
parametric g-computation as an alternative analytical approach to such challenges.  35 

Method 36 

We applied the parametric g-computation to estimate the cumulative risks of non-accidental 37 
death under different hypothetical intervention strategies targeting long-term exposure to PM2.5

 38 
in the Canadian Community Health Survey cohort from 2005 to 2015. On both relative and 39 
absolute scales, we explored benefits of hypothetical intervention strategies compared to the 40 
natural course that 1) set the simulated exposure value at each follow-up year to a threshold 41 
value if exposure was above the threshold (8.8 µg/m3, 7.04 µg/m3, 5 µg/m3, and 4 µg/m3); and 2) 42 
reduce the simulated exposure value by a percentage (5% and 10%) at each follow-up year. We 43 
used the three-year average PM2.5 concentration with one-year lag at the postal code of 44 
respondents’ annual mailing addresses as their long-term exposure to PM2.5. We considered 45 
baseline and time-varying confounders including demographics, behavior characteristics, income 46 
level, and neighborhood socioeconomic status. We also included the R syntax for reproducibility 47 
and replication.  48 

Results 49 

All hypothetical intervention strategies explored led to lower 11-year cumulative mortality risks 50 
than the estimated value under natural course without intervention, with the smallest reduction of 51 
0.20 per 1000 participants (95% CI: 0.06 to 0.34) under the threshold of 8.8 µg/m3, and the 52 
largest reduction of 3.40 per 1000 participants (95% CI: -0.23 to 7.03) under the relative 53 
reduction of 10% per interval. The reductions in cumulative risk, or numbers of deaths that 54 
would have been prevented if the intervention was employed instead of maintaining status quo, 55 
increased over time but flattened towards the end of follow-up. Estimates among those ≥65 years 56 
were greater with a similar pattern. Our estimates were robust to different model specifications.  57 

Discussion 58 

We found evidence that any intervention further reducing the long-term exposure to PM2.5 would 59 
reduce the cumulative mortality risk, with greater benefits in the older population, even in a 60 
population already exposed to low levels of ambient PM2.5. The parametric g-computation used 61 
in this study provides flexibilities in simulating real world interventions, accommodates time-62 
varying exposure and confounders, and estimates adjusted survival curves with clearer 63 
interpretation and more information than a single hazard ratio, making it a valuable analytical 64 
alternative in air pollution epidemiological research.  65 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.06.23285546doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.06.23285546
http://creativecommons.org/licenses/by-nd/4.0/


Introduction 66 

As collective efforts in previous decades have successfully reduced the level of fine particulate 67 
matter (PM2.5) globally, quantifying the effectiveness of policies that further reduce ambient 68 
PM2.5 is becoming particularly important in supporting evidence-based policymaking. Indeed, 69 
previous studies found consistent evidence of deleterious associations between long-term 70 
exposure to low levels of PM2.5 (e.g., below the current health-based standards or guidelines) and 71 
risk of mortality1–6 and morbidity,7–9 suggesting potential reductions in health burden if the PM2.5 72 
level were to be further reduced.  While the evaluation of exposure-response functions in 73 
existing studies provides important information in understanding the potential effectiveness of 74 
policies, further methodological considerations are required to estimate the potential benefits of 75 
realistic interventions.  76 

First, evidence suggested that the risk associated with the changes in acute exposure to PM2.5 77 
could vary with time,10–13 potentially due to changes in chemical compositions of PM2.5 with 78 
different toxicity and population susceptibility towards PM2.5.

14,15 Similar disparity in toxicity 79 
across long-term exposure to PM2.5 components was also observed,16,17 suggesting that such 80 
temporal changes could exist in risk associated with long-term exposure to PM2.5. In other words, 81 
it is important to use analytical methods flexible enough to incorporate such temporal changes in 82 
estimation of related health burdens. However, existing studies of health impacts of long-term 83 
exposure to PM2.5 generally considered time-fixed exposure and confounders (see Table S1 for a 84 
narrative review of recent studies on health impact of long-term exposure to PM2.5 and their 85 
methodological considerations). Furthermore, the most widely used estimate for exposure-86 
response function in this field is a single hazard ratio (HR) for the follow-up period estimated 87 
with a standard Cox-proportional hazard model (Table S1), which is assumed to be constant over 88 
time and precludes consideration of temporal changes. Although extension of a Cox-proportional 89 
hazard model could provide period-specific HRs that incorporate temporal changes,18 recent 90 
developments in causal inference literature raise concern about the ambiguity in the causal 91 
interpretation of HR and period-specific HRs.19 Specifically, period-specific HRs have a built-in 92 
selection bias because susceptible people exposed to higher PM2.5 are more likely to die early if 93 
PM2.5 truly increases risk of mortality, and are removed from the susceptible population in later 94 
time.20 This differential depletion of susceptible subjects over time can lead to artificially 95 
diminished or even reversed period-specific HR later in study even when the cumulative survival 96 
is still lower among those exposed to higher PM2.5, violating the proportional assumption and 97 
hindering interpretation.21  98 

Second, calculation of health burden related to long-term exposure to PM2.5 commonly employed 99 
exposure-response function previously estimated with the static intervention strategy, where a 100 
fixed change of exposure value was assigned to the entire population.22(chap19) However, the more 101 
flexible and realistic dynamic intervention strategy, where the exposure value was assigned 102 
based on individuals’ history of covariates including exposure, is hard to apply when existing 103 
exposure-response functions are used.22(chap19) Methods capable of incorporating dynamic 104 
intervention strategy to imitate complexities in actual regulatory interventions are needed to 105 
provide direct evidence on effectiveness of air pollution control policies.23 To fill this gap in 106 
knowledge translation, we propose the parametric g-computation as an analytical alternative in 107 
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air pollution epidemiological research, which could better predict the effectiveness of 108 
hypothetical policies while being more flexible in resembling real world interventions.  109 

G-computation (also known as g-formula) is a generalization of non-parametric standardization 110 
developed under the potential outcome framework for causal inference,24 and parametric g-111 
computation is a variation that employs parametric modeling. Under the consistency (i.e., the 112 
exposure is defined unambiguously, and all exposed individuals receive the same version of 113 
treatment),22(chap3),25 exchangeability (i.e., no unmeasured confounding or informative 114 
censoring),25 and positivity (i.e., probability of receiving every exposure conditioning on 115 
confounders is greater than zero) assumptions,22(chap3) and a time-to-event outcome setting, g-116 
computation can provide marginal causal risk estimates at each follow-up time point under 117 
hypothetical intervention strategies (i.e. adjusted survival curves), while allowing other 118 
population characteristics to be altered according to the intervention.26 Particularly, parametric g-119 
computation excels in estimating adjusted survival curves under dynamic intervention strategies. 120 
In other words, g-computation can directly answer causal questions such as: how many lives 121 
could we save if we promulgate a policy that further reduces air pollution to levels lower than the 122 
current standard among those whose exposure were above the current standard, compared to 123 
maintaining the status quo? Although parametric g-computation has been widely applied in other 124 
fields of epidemiology,27–30 application in air pollution studies remains limited. Previous 125 
applications in this field either focused on a small cohort in occupational settings,31–33 or 126 
modelled simple air pollution changes on asthmatic outcomes among children (i.e. not 127 
considering time-varying confounding nor changes in effect estimates over time).34,35  128 

In this study, we aim to demonstrate the use of parametric g-computation to evaluate the 129 
effectiveness of hypothetical intervention strategies targeting long-term exposure to PM2.5 on 130 
reducing mortality using a Canadian cohort experiencing low PM2.5 exposure from 2005 to 2015. 131 
This analytical alternative can account for previously unaddressed complexities, refine the effect 132 
estimates with less restrictive identification conditions and provide estimates more intuitive to 133 
policy makers. 134 

Methods 135 

Study population 136 

We created a retrospective cohort with respondents to the Canadian Community Health Survey 137 
(CCHS) from three enrolling cycles in the years of 2000/2001, 2003 and 2005, respectively.36–38 138 
CCHS is a national cross-sectional survey collecting health status, heath care utilization and 139 
health determinants information of the Canadian population, covering the population 12 years 140 
and over in the ten provinces and the three territories. The survey excluded individuals living on 141 
reserves and other Aboriginal settlements, full-time members of the Canadian Forces, the 142 
institutionalized population, and residents of certain remote regions.  143 

Among CCHS respondents who gave permission to share and link their information with other 144 
administrative datasets, we obtained their mailing address history and death records through 145 
December 31st, 2015 via Statistics Canada’s Social Data Linkage Environment, using 146 
probabilistic methods based on common identifiers.2,39 We focused on non-accidental death as 147 
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outcome (International Classification of Diseases ninth revision codes 001 to 799 and 148 
International Classification of Diseases tenth revision codes A to R) in this study. To facilitate 149 
pooling of results across cycles, we restricted the cohort to participants who were alive on 150 
January 1st, 2005 and used this date as the start of follow-up for all cycles. We also restricted our 151 
cohort to individuals older than 25 years and younger than 80 years in 2005 thus all cohort 152 
participants were adults and followed for 11 years or till death. Besides, we dropped respondents 153 
without data for covariates including exposure in 2005. This study was approved by the Health 154 
Canada-Public Health Agency of Canada Research Ethics Board.   155 

Exposure assessment 156 

To estimate respondents’ long-term exposure to PM2.5, we utilized the ground-level PM2.5 157 
concentrations from V4.NA.02.MAPLE of the Atmospheric Composition Analysis Group of 158 
Washington University,40 which covers all of North America below 70oN. The 0.01° × 0.01° 159 
(roughly equivalent to 1×1km2 at the latitudes where most Canadians live) annual estimates of 160 
PM2.5 from 2001 to 2015 were derived using satellite retrievals of aerosol optical depth and 161 
chemical transport model simulations, and calibrated with ground-based observations using 162 
geographically weighted regression.41 The annual estimates of PM2.5 closely agree with long-163 
term cross-validated ground measurements at fixed-site monitors (n=2,312) across North 164 
America (R2=0.70).41 Using the ground-level PM2.5 concentration surfaces described above, we 165 
first assigned the annual PM2.5 concentration of the grid cell into which the postal code centroid 166 
falls as the postal code specific annual PM2.5 concentrations. Then we calculated respondents’ 167 
annual long-term exposure to PM2.5 as three-year average postal code specific PM2.5 168 
concentrations with one-year lag based on their mailing address history (e.g., a respondent’s 169 
long-term exposure to PM2.5 in 2013 is the average of their postal code specific PM2.5 170 
concentrations in 2010, 2011 and 2012).2 We utilized three-year average with one-year lag to 171 
represent long-term exposure of PM2.5 so that the exposure always precedes the outcome and the 172 
timeframe is consistent with the regulatory review of Canadian Ambient Air Quality Standards 173 
for annual PM2.5.

42 This metric of long-term exposure to PM2.5 was widely used in previous 174 
Canada based studies of long-term health impacts of PM2.5.

2,43,44 175 

Covariates other than exposure 176 

In this section we summarized the data sources and meaning of covariates in this study while the 177 
covariate selection to control for in our model will be discussed in the statistical analysis section. 178 
We used covariates to describe the collection of exposure, time-fixed confounders, and time-179 
varying confounders in this study. Baseline characteristics of respondents were ascertained at the 180 
time of enrollment into CCHS via self-report and were processed using the same method as 181 
previous studies,2,43 including sex, age (converted to value in 2005), body mass index, marital 182 
status, immigrant status, visible minority, indigenous status, smoking status, alcohol 183 
consumption, consumption of fruits and vegetables, leisure physical activity, working status, and 184 
educational attainment (details of variable categorization in Table 1). By using 2005 as the start 185 
of follow-up time for all individuals, we assumed that all baseline characteristics other than age 186 
ascertained at the time of enrollment would remain the same through the entire follow-up period.  187 
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We also obtained characteristics of the respondents and their neighborhoods through linkage 188 
with administrative datasets using similar methods as previous studies.2,43 Specifically, we 189 
obtained annual income quintile of respondents through linkage with tax data based on common 190 
identifiers.43 For person-years with missing annual family income, we imputed them with the 191 
nearest prior values and the proportions of missing are 5.21%, 4.97% and 4.69% for Cycle 192 
2000/2001, 2003 and 2005, respectively. We also obtained annual characteristics of 193 
neighborhoods through linkage with census data from the nearest census year based on 194 
respondents’ mailing address postal codes, including community size at census metropolitan area 195 
level and four Canadian Marginalization Index at census dissemination area level. The Canadian 196 
Marginalization Index summarizes dissemination area-level socioeconomic status into four 197 
dimensions using principal component analysis to reduce the dimensionality of census data: the 198 
immigration and visible minority index combines information on proportion of recent 199 
immigrants and proportion of people self-identify as visible minority; the households and 200 
dwellings index combines information on types and density of residential accommodations and 201 
family structure characteristics; the material resources index combines information on access to 202 
and attainment of basic material needs; and the age and labour force index combines information 203 
on participation in labour force and proportion of seniors.45 Last, we obtained airshed (six 204 
distinct regions of Canada that cut cross jurisdictional boundaries and showed similar air quality 205 
characteristics and air movement patterns within each region) to capture large scale spatial 206 
variation,46 and urban form information of respondents’ neighborhoods in 2005 to capture 207 
urbanicity of participants’ residence, through linkage with census data.2 208 

Hypothetical intervention strategies 209 

In this study, we explored three types of intervention strategies: 1) applying the simulated value 210 
of time-varying covariates without any intervention (natural course); 2) setting the simulated 211 
long-term exposure to PM2.5 value at each follow-up year to a threshold value if PM2.5 was 212 
higher than the threshold (threshold intervention); and 3) reducing the simulated PM2.5 value by a 213 
fixed percentage at each interval (i.e., follow-up year) (relative reduction intervention). 214 
Threshold values explored are the current Canadian Ambient Air Quality Standards for PM2.5 of 215 
8.8 µg/m3, 80% of the current Canadian Ambient Air Quality Standards for PM2.5 (or 7.04 216 
µg/m3), the new World Health Organization (WHO) air quality guideline of 5 μg/m3, and a PM2.5 217 
level that was further below the WHO guideline (4 µg/m3). Interval-specific relative reduction 218 
values explored are 10% and 5% per interval. To avoid extensive model extrapolation, we 219 
restricted the relative reduction intervention so that subjects with exposure below 1.8 µg/m3, the 220 
background PM2.5 level in Canada,47 will not be further reduced. The first type of intervention 221 
strategy represents the predicted covariates based on the observed data without intervening and 222 
serves as the reference for other strategies. The second and the third are dynamic intervention 223 
strategies that incorporate the impact of intervention on covariates during earlier time points 224 
while simulating covariates in later time points.  225 

Statistical analysis  226 

We applied parametric g-computation with different hypothetical intervention strategies 227 
targeting long-term exposure to PM2.5 to understand the benefits of intervention strategies on 228 
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cumulative risk of non-accidental death. We conducted g-computation analysis for each 229 
enrollment cycle separately and pooled the results across cycles using meta-regression. Briefly, 230 
we estimated the cumulative mortality risk at each follow-up year standardized to the distribution 231 
of the confounders and long-term exposure to PM2.5 in the study population, with all time-232 
varying covariates (confounders and PM2.5) conditioned on covariates history, with and without 233 
intervention on PM2.5 (i.e., adjusted survival curves). Next, we calculated the differences in 234 
cumulative mortality risks between the natural course and other intervention strategies on both 235 
absolute and relative scales to provide estimates for the benefits of hypothetical intervention 236 
strategies compared to maintaining status quo. We pooled results with fixed-effect meta-237 
regression, which calculates a weighted average of cycle specific estimates with weights equal to 238 
the inverse of the variance using the “meta” package.48  239 

The proof of parametric g-computation are described extensively elsewhere,22(chap21),29 and 240 
detailed description of how to implement such an approach in a setting similar to our study was 241 
previously published,28 with available R package for easy implementation.49 However, since the 242 
application of parametric g-computation is limited in air pollution studies, we include a diagram 243 
(Figure 1) to summarize the four steps that carry out the g-computation in a time-to-event setting 244 
with time-varying exposure and confounders, and describe the steps in details below.  245 

Steps to implement parametric g-computation 246 

In Step 1, we fitted a pooled logistic model (i.e., discrete-time hazard model) and adjusted for 247 
baseline characteristics, time-varying characteristics, quadratic function of year and interaction 248 
between long-term exposure to PM2.5 and categorical year. The pooled logistic model estimated 249 
the probability of death during the year conditioning on survival till the start of the year given all 250 
covariates (including PM2.5), which allowed the conditional probability of death and its 251 
association with PM2.5 to vary over year. We chose confounders to control for in the outcome 252 
model based on substantive knowledge of the relationship between long-term PM2.5 and 253 
mortality as summarized in the simplified directed acyclic graph (Figure S1). We included a full 254 
list of covariates in Table 1 with specific forms of covariates in Table 2. We included both 255 
individual socioeconomic status indicators (e.g., education and family income) and community 256 
socioeconomic status indicators (e.g., Canadian Marginalization Index for dissemination area) to 257 
fully capture the variation in socioeconomic status among cohort participants, which is a major 258 
source of residual confounding. We also included individual behavior indicators like dietary and 259 
exercise patterns, which are strong risk factors for mortality, precede the exposure, and might 260 
share common unmeasured causes with the exposure, even though they might not directly cause 261 
the exposure.50 To note, in the setting when only time-fixed covariates were used, we could 262 
estimate marginal adjusted survival curves directly using outputs from this pooled logistic model 263 
by predicting the probability of death standardized to the distributions of covariates under the 264 
intervention of interest (e.g., setting the baseline level of exposure to a specific value while 265 
keeping all baseline covariates the same as observed for all participants).19,51 However, in our 266 
study setting of time-varying covariates and time-to-event outcome, we also need to model time-267 
varying covariates (including PM2.5) so that we could simulate time-varying covariates at all 268 
follow-up years for all participants, especially for periods after participants’ death.28,29  269 
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In Step 2, we modeled the time-varying covariates (including PM2.5) using linear regressions 270 
while including variables such as previous-year value of the covariate of interest, baseline 271 
characteristics, same-year values of time-varying covariates set to occur before the covariate of 272 
interest, and quadratic function of time. The choice of independent variables in covariate models 273 
are based on substantive knowledge as summarized in the simplified directed acyclic graph 274 
(Figure S1). We summarized the list of all covariates in Table 1 and the specific forms of 275 
covariates included in covariate models in Table 2. We set the sequence of time-varying 276 
covariates as community size, income, immigration and visible minority, material resources, 277 
households and dwellings, age and labour force and long-term exposure to PM2.5. Since previous 278 
studies using different cycles of CCHS found a supra-linear PM2.5-mortality association,2,43,52,53 279 
we used natural logarithm transformed long-term exposure to PM2.5 as the independent variable 280 
in both the outcome and covariate model in the main analysis. 281 

In Step 3, we simulated new datasets based on the intervention strategies. For each intervention, 282 
we randomly sampled 10,000 subjects from the cohort with replacement (i.e., Monte Carlo 283 
sampling) and created an empty dataset of all sampled subjects for all follow-up years till the end 284 
of period of interest (normally the end of follow-up as in this study but extrapolation is possible 285 
with extra assumptions). We only simulated new datasets for 10,000 subjects instead of the 286 
number of participants in study cohorts (~60,000 participants in each cohort) to save 287 
computation time and similar practice was conducted before with smaller cohort.29 Next, we 288 
assigned the baseline values of all covariates (values of baseline covariates and values of time-289 
varying covariates at start of follow-up ) in each simulated dataset to the same as its original 290 
dataset, then altered the relevant covariate values based on the intervention strategy (e.g., setting 291 
the baseline long-term exposure to PM2.5 to 5 μg/m3 if it is higher than 5 μg/m3 in the threshold 292 
intervention of 5 μg/m3 but could include other covariates if needed). Last, we simulated time-293 
varying covariates at each year after baseline based on their history with covariate models 294 
estimated in the second step and altered the covariates based on the intervention strategy. 295 

In Step 4, with the simulated datasets and outcome model from the first step, we calculated for 296 
each subject the probability of dying during each year conditioning on surviving to the beginning 297 
of this year, standardized to the distribution of the confounders and long-term exposure to PM2.5 298 
under the intervention strategies, regardless of their observed outcomes. Next, we calculated for 299 
each subject the cumulative mortality risk at each year as the cumulative sum of the 300 
abovementioned conditional probability of mortality times the probability of surviving till the 301 
beginning of the time interval. The estimated cumulative morality risk at each year is the average 302 
of estimates from all subjects for all hypothetical interventions. We also calculated the absolute 303 
difference in cumulative morality risk and percentage change in cumulative morality risk with 304 
estimated cumulative morality risk from natural course as reference.  305 

Besides, we calculated the 95% confidence intervals (CI) for all estimates using standard errors 306 
from 200 bootstrap iterations.54 In each iteration, we randomly sampled the same number of 307 
participants as in the original cohort with replacement and ran the four steps described above to 308 
calculate cumulative mortality risks under intervention strategies. We chose this number of 309 
iteration because we were constrained by available computational resources (>1h of 310 
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computational time for each bootstrap iteration), and the original application of parametric g-311 
computation in time-varying covariates and time-to-event setting used the same number.29 Future 312 
studies with more computational resources might consider larger number of bootstrap iteration.   313 

Sensitivity analyses 314 

To test the robustness of our results to model misspecification, we considered a number of 315 
different model specifications for both outcome and covariate models including: 1) reordering 316 
the sequence of time-varying covariates in covariate models by moving age and labour force to 317 
before the other Canadian Marginalization Index, moving income to after Canadian 318 
Marginalization Index, and moving PM2.5 to the first place among all covariates; 2) extending the 319 
extent of history modeled by including previous year and two-year previous values of all the 320 
time-varying covariates in the covariate models other than just the previous-year value of the 321 
covariate of interest; and 3) including time-varying covariates other than long-term PM2.5 as 322 
categorical in the outcome model and using the multinomial logistic model for them in covariate 323 
model instead of modeling them as continuous with bounds using linear model (see Table 2 for 324 
details of model specifications for each time-varying covariates in main analysis). We also 325 
visually evaluated the simulated and observed adjusted survival curves and histories of 326 
covariates under no intervention in the main analysis as a heuristic check of model 327 
misspecification.27 328 

Next, to facilitate comparison with previous studies, we used long-term PM2.5 in original scale in 329 
all models as sensitivity analysis, which assumed the same log-linear PM2.5-mortality association 330 
used in other cohorts4,7 instead of the supra-linear one supported by previous studies of different 331 
cycles of the CCHS cohort.2,43,52,53 Besides, we also ran a Cox-proportional hazard model with 332 
the same specification as the outcome model in our main analysis except that we included no 333 
time variable and used long-term PM2.5 in original scale, which assumed a log-linear PM2.5-334 
mortality association.  335 

Last, since most deaths occurred among older individuals and age could modify the health 336 
impact of long-term exposure to PM2.5, we conducted a subset analysis restricted to cohort 337 
participants aged ≥65 years at the time of enrollment. Since it took up to 24 hours to run one 338 
round of sensitivity analysis without bootstrapping, we were unable to perform bootstrapping to 339 
calculate CIs for sensitivity analyses due to computational constraints and did not present 340 
variances for our estimates. We pooled cycle-specific estimates from sensitivity analyses by 341 
averaging the estimates in each cycle. All analyses were done in R version 4.0.555 with the 342 
“gfoRmula” package.49 The R code to replicate these analyses and a simulated dataset are 343 
available at the following link:  https://github.com/suthlam/cchs_g_computation.git.  344 

Results 345 

We observed 6,475 (10.4%), 6,525 (10.5%), and 6,135 (9.2%) non-accidental deaths in the 11 346 
years of follow-up starting from 2005 among the three cycles of CCHS cohorts of 62,365, 62,380, 347 
and 66,385 participants, respectively (Table 1). The three cycle cohorts were comparable in all 348 
descriptive statistics (Table 1). Without any hypothetical intervention, the observed average 349 
long-term exposure to PM2.5 in three cycles of our cohort decreased slightly from 6.4 ± 2.2 350 
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µg/m3, 6.5 ± 2.3 µg/m3, 6.5 ± 2.3 µg/m3 in 2005 to 5.8 ± 2.0 µg/m3, 6.0 ± 2.0 µg/m3, and 6.0 ± 351 
2.0 µg/m3 in 2015, respectively (Table 1). 352 

All hypothetical intervention strategies explored in this study led to lower 11-year cumulative 353 
mortality risks than the estimated value under a natural course without intervention, 102.5 per 354 
1000 participants (95% confidence interval (CI): 100.3 to 104.8 per 1000 participants). The 355 
reductions in 11-year cumulative mortality risks from the natural course were 0.20 per 1000 356 
participants (95% CI: 0.06 to 0.34 per 1000 participants) under the threshold of 8.8 µg/m3, 0.63 357 
per 1000 participants (95% CI: 0.18 to 1.07 per 1000 participants) under the threshold of 7.04 358 
µg/m3, 1.87 per 1000 participants (95% CI: 0.53 to 3.21 per 1000 participants) under the 359 
threshold of 5 µg/m3, 3.08 per 1000 participants (95% CI: 0.85 to 5.31 per 1000 participants) 360 
under the threshold of 4 µg/m3, 1.68 per 1000 participants (95% CI: -0.15 to 3.51 per 1000 361 
participants) under the relative reduction of 5% per interval, and 3.40 per 1000 participants (95% 362 
CI: -0.23 to 7.03 per 1000 participants) under the relative reduction of 10% per interval. To note, 363 
the reduction in 11-year cumulative mortality risks could also be interpreted as the number of 364 
deaths that would have been prevented if the intervention was employed instead of maintaining 365 
status quo. Changes in relative scale showed similar pattern (Table 3). To fulfill the four 366 
threshold intervention strategies, averages of 18.7%, 38.3%, 72.0% and 91.4% of subjects 367 
experienced change in their natural course exposure every year, respectively, while 100% had 368 
their exposure changed under the two relative reduction intervention strategies (Table 3). The 369 
corresponding reductions in average simulated PM2.5 from the start of follow-up to the end of 370 
year 11 ranged from 0.13 to 1.87 µg/m3 for threshold intervention strategies, and 1.25 to 2.18 371 
µg/m3 for relative reduction intervention strategies (Table 3). Across all strategies, we observed 372 
steady expansions in differences of yearly cumulative mortality risks between the natural course 373 
and other strategies until the 7th year of follow-up, after which the differences remain constant 374 
and shrink during the last year of follow-up (Figure 2 with numeric results in Table S2). In the 375 
main analysis, we pooled estimates of yearly cumulative mortality risks across cycles using 376 
random-effect meta-regression and pooled estimates of differences (absolute and relative scale) 377 
in cumulative mortality risks using fixed-effect meta-regression. Cycle-specific results with 378 
corresponding I2 values are summarized in Figure S2 with numeric results in Table S3. 379 

Heuristic checks of model fitting in the main analysis support the robustness of our estimates: 1) 380 
the cumulative mortality risk estimated by parametric g-computation under the natural course 381 
closely tracked the value observed (Figure S3); and 2) the observed mean values of all time-382 
varying covariates were similar to those simulated under the natural course over time (Figure S3). 383 
To note, since participants had no time-varying covariates recorded after their death while we 384 
simulated participants’ time-varying covariates for all years, differences between observed and 385 
simulated covariates are expected, especially later in the study period. Furthermore, sensitivity 386 
analyses with different model specifications (different sequence of time-varying covariate, extent 387 
of history modeled, and parametrization of time-varying confounders) resulted in similar 388 
estimates as the main analysis (Figure 3, numeric results in Table S4).  389 

When assuming a log-linear PM2.5-mortality association in the sensitivity analysis (compared to 390 
the supra-linear association assumed in main analysis by log-transforming the exposure), 391 
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reductions in 11-year cumulative mortality risks comparing other intervention strategies to the 392 
natural course ranged from 0.01 per 1000 participants to 1.65 per 1000 participants, slightly 393 
smaller than main analysis assuming a supra-linear PM2.5-mortality association (log-transformed 394 
PM2.5 used as exposure in modeling) (Table S4). The Cox model assuming a log-linear PM2.5-395 
mortality association found 15.6% (95% CI: 4.0 to 28.5%) increase in hazard of death per 10 396 
µg/m3 increase in PM2.5. When focusing on cohort participants ≥65 years at the start of follow-up, 397 
reductions in 11-year cumulative mortality risks comparing other intervention strategies to the 398 
natural course ranged from 0.49 per 1000 participants to 7.07 per 1000 participants (Table S4), 399 
which is larger than the main analysis using the general population ≥35 years.  400 

Discussion 401 

In this study, we applied the parametric g-computation as an analytical alternative that is 402 
particularly valuable for air pollution epidemiological research, especially for evaluating specific 403 
intervention strategies. With application in a large Canadian cohort, we demonstrated how to 404 
incorporate consideration of complex time structure in the data and how to calculate causally 405 
interpretable cumulative risk estimates over the follow-up time (i.e., adjusted survival curves) 406 
with parametric g-computation. We described that any intervention further reducing the long-407 
term exposure to PM2.5 would reduce the cumulative mortality risk, even in a region with 408 
relatively low levels of ambient PM2.5. Such reduction in cumulative risk increased over time and 409 
flattened towards the end of follow-up on both relative and absolute scales. The older population 410 
also experienced greater benefits from the explored hypothetical intervention strategies than the 411 
general population. 412 

Numerous observational studies found positive associations between long-term exposure to 413 
PM2.5 and non-accidental mortality. A meta-analysis reported a pooled effect estimate of 6% (95% 414 
CI: 4 to 8%) increase in hazard of death per 10 µg/m3 increase in PM2.5 (HR-1).5 A recent study 415 
in a similar Canadian cohort from 2000 to 2012 found 11% (95% CI: 4 to 18%) increase in 416 
hazard of non-accidental death per 10 µg/m3 increase in chronic exposure to PM2.5 with a Cox 417 
proportional hazard model.2 Our sensitivity analysis using Cox model without time-varying 418 
coefficients found similar numeric results [15.6% (95% CI: 4.0 to 28.5%)]. Although we can’t 419 
directly compare our estimates from the main analysis to previous results given the difference in 420 
interventions explored, the consistent reductions in cumulative mortality risk over follow-up time 421 
across intervention strategies when compared to natural course in this study lend further support 422 
to previous findings that PM2.5 is detrimental to health even at levels below current standards. 423 
For example, we identified a 0.19% (95% CI: 0.05 to 0.33%) decrease in 11-year cumulative 424 
mortality risk comparing the hypothetical intervention strategy with threshold of 8.8 µg/m3 to 425 
natural course, which provided evidence of health benefits from policies that further reduce the 426 
air pollution level to below current Canada standard of 8.8 µg/m3, which is lower than the 12 427 
µg/m3 standard of U.S. explored by previous studies.4,9 To facilitate comparison with previous 428 
studies assuming a log-linear PM2.5-mortality association, we included sensitivity analysis using 429 
PM2.5 on the normal scale and found reduced cumulative mortality risks in all hypothetical 430 
interventions compared to maintaining status quo but the numeric values are smaller than those 431 
in the main analysis. The observed difference in the numeric values of analysis assuming log-432 
linear association and analysis assuming supra-linear association is a combination of difference 433 
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in how the exposure-response relationship is modeled and how the exposure model performs. 434 
However, given the existing evidence in Canadian cohorts and similarity between observed 435 
survival curve and estimated survival curve using parametric g-computation under no 436 
intervention in the main analysis,2,43,52,53 we have confidence in the validity of results assuming a 437 
supra-linear association.  438 

More importantly, we demonstrated how to incorporate more flexibilities in simulating real 439 
world interventions with g-computation in this study and provide intuitive estimates for benefits 440 
of such interventions. Taking the hypothetical intervention strategy with threshold of the current 441 
Canadian Ambient Air Quality Standards as an example, the average long-term exposure to 442 
PM2.5 in 2005 was around 6.5 µg/m3, below the standard of 8.8 µg/m3. However, some cohort 443 
participants were exposed to PM2.5 levels higher than 8.8 µg/m3 during some years of follow-up 444 
and our hypothetical intervention only affected these subject-years by reducing their exposure to 445 
8.8 µg/m3, which represented a three-cycle average of 18.7% of subjects across all years. Since 446 
the observed PM2.5 levels decreased without any intervention in our study, fewer subjects were 447 
directly intervened on in later years under threshold intervention strategies, which explained the 448 
flattened differences in cumulative risks between intervention strategies in later years. However, 449 
all time-varying covariates after the intervention on PM2.5 would change accordingly due to the 450 
intervention on PM2.5, thus influencing future outcomes as well. Such dynamic intervention 451 
strategy incorporated considerations of people who could be intervened on and are more realistic 452 
than the static intervention strategy commonly employed in health burden estimation with 453 
traditional exposure-response function, which sets change in exposure at a fixed value for all 454 
individuals throughout the period of interest. Besides, although we only provided differences in 455 
cumulative risk as compared to the natural course, it is easy to estimate differences between any 456 
two hypothetical intervention strategies. 457 

Furthermore, the estimated cumulative risks over the follow-up time by g-computation (i.e., 458 
adjusted survival curves) and corresponding comparisons of values between different 459 
hypothetical interventions provided clearer causal interpretation and more information than a 460 
single HR or period-specific HRs, which is generally used in air pollution studies (Table S1). In 461 
the context of health impacts from chronic exposure to PM2.5, HR can change over time since the 462 
toxicity of PM2.5 (e.g., chemical composition of PM2.5) and susceptibility of population to PM2.5 463 
could change over time, while standard Cox model assumed constant HR and period-specific HR 464 
from extensions of Cox had built-in bias that led to ambiguity in causal interpretation.56 On the 465 
other hand, the cumulative mortality risks estimated in this study avoided such ambiguity in 466 
interpretation while also demonstrating the change of intervention effect over time.19 Also, 467 
obtaining the casually interpretable absolute differences in cumulative risks between hypothetical 468 
intervention strategies over time could be particularly helpful for comparing different scenarios 469 
regarding public health benefits.57 Besides, if policies affecting air pollutants such as PM2.5 could 470 
further affect prognostic covariates influencing both future PM2.5 levels and health outcomes 471 
(commonly referred to as exposure-confounder feedback), traditional regression methods based 472 
on adjustment in a multivariable model would fail and lead to biased estimates for the effect 473 
while g-computation is designed to particularly solve this problem.24,26,58 An example of such 474 
exposure-confounder feedback is that people might move due to high level of PM2.5 in their 475 
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current community and subsequently change the characteristics of their community of residence, 476 
while the characteristics of their current community also affect the level of PM2.5 and probability 477 
of death. Controlling for such community characteristics is necessary for confounding control 478 
but doing so with traditional methods will remove the indirect effect mediated through 479 
community characteristics and introduce collider-stratification bias59 if any unmeasured 480 
confounder of the community characteristics and death exists.58 However, making moving 481 
decision based on community level of PM2.5 is unlikely in countries with relatively low PM2.5 482 
like Canada and exposure-confounder feedback is expected to be negligible in our study, but it is 483 
possible in countries with higher PM2.5. 484 

This study has a few limitations that need to be acknowledged. First, parametric g-computation 485 
can only account for measured confounders and lack of conditional exchangeability (i.e., residual 486 
confounding) might exist due to unmeasured confounders or measurement errors of existing 487 
confounders, regardless of our extensive list of confounders considered based on substantive 488 
knowledge on risk factors of PM2.5 exposure and death (Figure S1). For example, we assumed 489 
many individual behavior, demographic, and socioeconomic variables to be time-invariant (e.g., 490 
employment status and body mass index) due to data availability (these variables were only 491 
reported once at the time of enrollment) while they likely changed over the study period. 492 
However, we also included time-varying individual income and community demographic and 493 
socioeconomic variables in our models, which mitigated the concern of residual confounding 494 
from these baseline variables. Besides, like other cohort studies of air pollution, we utilized 495 
postal-code level PM2.5 levels as surrogates for individual exposure to PM2.5, which might 496 
introduce exposure misclassification.60 Recent studies showed that such bias may either not bias 497 
effect estimates 61 or bias these estimates towards the null,62 making our estimates more 498 
conservative. 499 

Second, although we explored different model specifications and found similar results in 500 
sensitivity analyses, we cannot rule out the possibility of model misspecification, especially 501 
given the fact that parametric g-computation requires correct model specification of both the 502 
outcome and covariate models to achieve unbiased results. Notably, McGrath et al. demonstrated 503 
that the “g-null paradox”, a form of model misspecification that was traditionally believed to 504 
cause false rejection of null hypothesis under sharp null effect,63 is unavoidable in parametric g-505 
computation even when the sharp null hypothesis does not hold, and recommended more flexible 506 
models in analysis.64 However, the magnitude of bias depends on the extent of exposure-507 
confounder feedback and time-varying confounding. In the context of this study, we would 508 
expect relatively small exposure-confounder feedback thus less concern over g-null paradox. 509 
Also, consistent results from sensitivity analysis using more flexible models supported the 510 
robustness of our results.  511 

Third, being an active research field, the existing R package for parametric g-computation does 512 
not support features like incorporation of spline functions of time-varying covariates in the 513 
model, direct estimation of randomized interventional strategy,65 model fit checking with 514 
significance tests, or bias analysis. However, the current package provided enough flexibility for 515 
our study to employ flexible models that mitigated the possibility of violating the positivity 516 
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assumption via model extrapolation. For example, we were able to incorporate flexible supra-517 
linear PM2.5-mortality association and temporal changes in the conditional probability of 518 
mortality in the estimation as supported by previous studies, incorporate restricted cubic spline 519 
function of baseline age in all models, and conduct sensitivity analysis with categorical time-520 
varying confounders. Besides, although not relevant to our cohort since we had the all-cause 521 
mortality as the outcome and no loss to follow-up, right censoring and informative loss to 522 
follow-up could be handled by parametric g-computation and the existing R package by 523 
simulating data on participants as though they had not been censored.66It is worth mentioning 524 
that other methods could also handle the methodological considerations that g-computation 525 
addresses—consideration of complex time structure and reporting of adjusted survival curves—526 
and have been applied in air pollution epidemiological research, including Inverse Probability of 527 
Treatment Weighting (IPTW).6 Furthermore, some recent approaches such as the targeted 528 
maximum likelihood estimation can also be used to directly evaluate individualized dynamic 529 
intervention strategies of continuous exposures and provide doubly robust estimates that are less 530 
vulnerable to model misspecification with valid statistical inference when data-531 
adaptive/machine-learning methods are incorporated.67,68 532 

Finally, PM2.5 is a mixture of varying chemical components and toxicity and is generated from 533 
different sources of emissions (e.g. traffic, industries, and wildfires). In this paper, we focused on 534 
PM2.5 without distinguishing the PM2.5 composition nor the sources of emissions. This 535 
potentially violated the consistency assumption (i.e. no-multiple-versions-of-treatment and all 536 
exposed individuals received the same version of treatment). If there is any unmeasured 537 
confounder of the “version of treatment” and outcome relationship, the effect estimates could be 538 
biased according to a recent simulation study, with magnitude and direction of such bias 539 
depending on the strength of confounding.69 In future studies, it would be important to consider 540 
the possible differential toxicity of PM2.5 components and define hypothetical interventions 541 
targeting different sources of PM2.5 emissions separately. 542 

Conclusion  543 

This study demonstrated the benefits of using parametric g-computation as an analytical 544 
alternative for air pollution epidemiological research, especially for evaluating the potential 545 
effects of realistic dynamic intervention strategies in the time-to-event setting with time-varying 546 
exposure and confounders. With a large Canadian cohort, we calculated causally interpretable 547 
cumulative risk estimates over the follow-up time and corresponding benefits compared to 548 
maintaining status quo. We also found that any intervention further reducing the long-term 549 
exposure to PM2.5 would reduce the cumulative mortality risk from maintaining the status quo, 550 
even in a population already exposed to relatively low levels of ambient PM2.5.  551 
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Table 1. Descriptive statistics for participants of the Canadian Community Health Survey cohort 
at the start of follow-up (2005) by cycle.  

Characteristics Cycle 2000/2001 Cycle 2003 Cycle 2005 
Cohort size 62365a 62380a 66835a 
Non-accidental deaths (%) 6475 (10.4) 6525 (10.5) 6135 (9.2) 
Time-fixed covariates 
Age [mean (SD)], years 52.1 (13.4) 52.1 (14.4) 50.9 (14.9) 
Sex, % 
  Female 45.2 45.9 46.2 
  Male 54.8 54.1 53.8 
BMI, % 
  Normal weight (18.5–24.9) 37.5 32.2 32.0 
  Overweight (25.0–29.9) 36.7 39.8 39.8 
  Obese 1 (30.0–34.9) 16.4 19.1 18.9 
  Obese 2 (≥ 35) 6.8 8.1 8.4 
  Underweight (< 18.5) 2.6 0.8 0.9 
Marital status, % 
  Married or common-law 65.9 64.3 63.0 
  Separated, widowed, or divorced 19.6 20.8 20.8 
  Single 14.5 14.9 16.2 
Immigrant status, % 
  Immigrant 10.7 11.3 11.6 
    Time lived in Canada among 
immigrants [mean (SD)], years 

37.4 (13.3) 36.8 (13.9) 35.7 (14.1) 

  Non-immigrant 89.3 88.7 88.4 
Visible minority status, % 
  Visible minority 5.4 6.3 4.4 
  Not a visible minority 94.6 93.7 95.6 
Indigenous status, % 
  Indigenous 1.8 2.3 0b 
  Non-indigenous 98.2 97.7 100 
Smoking status, % 
  Never smoker 26.8 27.6 29.0 
  Occasional smoker 44.5 47.7 47.1 
  Smoke under 10 cigarettes/day 3.8 4.3 4.2 
  Smoke 11-20 cigarettes/day 6.0 5.6 5.7 
  Smoke 20+ cigarettes/day 10.9 9.0 8.6 
  Former smoker 8.0 5.8 5.4 
Alcohol consumption, % 
  Never drinker 4.4 4.2 4.1 
  Occasional drinker 13.1 13.7 13.6 
  Regular drinker, binging unknown 20.3 18.7 18.2 
  Regular, non-binge drinker 29.4 31.0 30.4 
  Regular, binge drinker 26.9 26.7 27.3 
  Former drinker 5.9 5.7 6.4 
Daily consumption of fruits and vegetables, % 
  Under 5 servings/day 64.7 59.6 29.9 
  5–10 servings/day 32.4 37.0 19.6 
  10+ servings/day 2.9 3.4 1.6 
  Choose to not answerc NA NA 48.9 
Employment status, % 
  Employed 66.6 62.3 61.8 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.06.23285546doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.06.23285546
http://creativecommons.org/licenses/by-nd/4.0/


  Not employed 2.6 2.6 2.3 
  Not in work force 30.8 35.1 35.9 
Education, % 
  No high school diploma 24.1 22.4 20.6 
  High school 18.9 18.0 15.4 
  Any post-secondary 42.0 42.5 46.1 
  University 15.0 17.1 17.9 
Leisure time physical activity, % 
  Active 21.2 24.0 23.4 
  Moderately active 25.4 26.4 26.7 
  Inactive 53.4 49.6 49.9 
Urban form, % 
  Active urban core 6.2 7.0 7.0 
  Transit reliant suburb 3.9 4.3 4.6 
  Auto reliant suburb or no data 26.5 29.4 29.3 
  Exurb 4.8 5.0 4.8 
  Non-CMA/CAd 58.6 54.3 54.3 
Airshed, %    
  Western 12.0 10.7 10.4 
  Prairie 16.0 14.9 13.5 
  Western Central 9.1 8.6 7.8 
  Southern Atlantic 17.2 14.6 17.3 
  East Central 44.1 49.3 48.9 
  Northern 1.6 1.9 2.1 
Time-varying covariates 
Community size, % 

Population > 1,500,000 13.5 14.7 16.9 
Population 500,000-1,499,999 10.3 11.9 10.4 
Population 100,000-499,999 20.4 21.0 19.7 
Population 30,000-99,999 14.7 13.2 12.4 
Population 10,000-29,999 7.4 7.0 7.5 
Non-CMA/CAd 33.7 32.2 33.1 

Annual family income quintile, % 
1st quintile (lowest) 19.0 19.1 19.3 
2nd quintile 19.7 19.3 19.1 
3rd quintile 19.9 19.8 19.5 
4th quintile 20.7 20.4 20.8 
5th quintile (highest) 20.7 21.4 21.3 

Canadian marginalization index—age and labour force, % 
1st quintile (lowest marginalization) 14.4 15.3 14.8 
2nd quintile 13.5 13.6 13.7 
3rd quintile 13.7 13.9 14.1 
4th quintile 22.2 20.9 20.8 
5th quintile (highest marginalization) 36.2 36.3 36.6 

Canadian marginalization index—material resources, % 
1st quintile (lowest marginalization) 15.5 15.7 15.2 
2nd quintile 16.8 16.9 17.0 
3rd quintile 20.8 20.8 20.2 
4th quintile 18.1 17.8 17.0 
5th quintile (highest marginalization) 28.8 28.8 30.6 

Canadian marginalization index—immigration and visible minority, % 
1st quintile (lowest marginalization) 42.6 41.4 41.8 
2nd quintile 26.9 26.9 26.5 
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3rd quintile 17.0 17.3 15.9 
4th quintile 8.5 9.0 9.9 
5th quintile (highest marginalization) 5.0 5.4 5.9 

Canadian marginalization index—households and dwellings, % 
1st quintile (lowest marginalization) 22.7 21.2 21.7 
2nd quintile 28.3 27.7 27.1 
3rd quintile 21.0 21.7 21.0 
4th quintile 17.3 17.8 17.6 
5th quintile (highest marginalization) 10.7 11.6 11.8 

Average PM2.5 of previous three years 
[mean (SD)], µg/m3 

6.4 (2.2) 6.5 (2.3) 6.5 (2.3) 

Average PM2.5 of previous three years 
[median (minimum, 25th percentile, 
75th percentile, maximum)], µg/m3 

5.9 (1.7, 15.0, 4.6, 
7.8) 

6.1 (1.7, 4.7, 8.1, 
15.0) 

6.1 (1.6, 4.6, 8.2, 
15.0) 

Note:  BMI, Body Mass Index; PM2.5, particulate matter < 2.5 μm diameter.  

aRounded to the nearest 5 or 0 in the last digit to protect privacy 

bWe did not include the indigenous status indicator in models of Cycle 2005.  

cConsumption of fruit and vegetable was listed with an additional option in Cycle 2005 but not in the 
other two cycles. 

dNot categorized as census metropolitan area (CMA) or census agglomeration status (CA) and likely in 
rural area. 
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Table 2. Details for covariate formats and model types for both outcome and covariate models in 
main analysis. 

Variable Name Type as independent variable Type as dependent variable and 
corresponding model used 

Time-fixed covariates 
Age in 2005a Restricted cubic spline function 

with 5 knots 
Not predicted 

Sex Binary Not predicted 
BMI  5 categories Not predicted 
Marital status 3 categories Not predicted 
Immigrant An indicator for immigrant and a 

interaction term between the 
indicator and a continuous variable 
for years in Canada among 
immigrants 

Not predicted 

Visible minority Binary Not predicted 
Indigenous status Binary Not predicted 
Smoking status 6 categories Not predicted 
Alcohol consumption 6 categories Not predicted 
Daily consumption of fruit and 
vegetables 

4 categories Not predicted 

Leisure time physical activity 3 categories Not predicted 
Employment status 3 categories Not predicted 
Education attainment 4 categories Not predicted 
Urban form 5 categories Not predicted 
Air shed 6 categories Not predicted 
Time-varying covariates 
Time Year and quadratic term of Yearb Not predicted 
Community size Continuous Bounded normalc (1 to 6) and 

linear regression 
Annual family income quintile Continuous Bounded normal (1 to 5) and linear 

regression 
Canadian Marginalization Index for 
immigration and visible minority  

Continuous Bounded normal (1 to 5) and linear 
regression 

Canadian Marginalization Index for 
material resources 

Continuous Bounded normal (1 to 5) and linear 
regression 

Canadian Marginalization Index for 
households and dwellings 

Continuous Bounded normal (1 to 5) and linear 
regression 

Canadian Marginalization Index for 
age and labour force  

Continuous Bounded normal (1 to 5) and linear 
regression 

Three-year average PM2.5 
concentration with one-year lag 

Natural logarithm transformed Normal with linear regression 

Note:  BMI, Body Mass Index; PM2.5, particulate matter < 2.5 μm diameter.  

aIn subset analysis restricted to cohort participants older or equal to 65 years, we used restricted cubic 
spline function with 3 knots for age. 

bCategorical year was used in the interaction terms between time and the exposure. 

cVariables with bounded normal category was modeled and simulated by using the standardized value 
(subtracting the minimum value and dividing by the range) in linear regression. Simulated values that fall 
outside the observed range are set to the minimum or maximum of the observed range. 
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Table 3. Summaries of estimated 11-year cumulative mortality risk under different intervention 
strategies pooled across cycles and differences in estimated risk compared to natural course in 
relative and absolute scale, and corresponding average simulated PM2.5 and proportion of 
subjects with exposure changed for all intervention strategies.  

Intervention 
strategy 

11-year CMR 
( per 1000 

participants) 
(95% CI) 

Difference in 11-
year CMR ( per 

1000 participants) 
(95% CI) 

Percentage 
change in 11-year 
CMR (95% CI) 

Average 
percentage of 
subjects with 

exposure 
changeda 

Average 
simulated 

PM2.5 

concentration 
(µg/m3)a 

Natural course 102.5 (100.3, 
104.8) 

Reference Reference 0 5.62 

Threshold of 
8.8 µg/m3  

102.3 (100.1, 
104.6) 

-0.20 (-0.34, -0.06) -0.19 (-0.33, -0.05) 18.7 5.49 

Threshold of 
7.04 µg/m3 

102.0 (99.7, 104.2) -0.63 (-1.07, -0.18) -0.60 (-1.03, -0.17) 38.3 5.21 

Threshold of 5 
µg/m3 

100.9 (98.4, 103.5) -1.87 (-3.21, -0.53) -1.79 (-3.11, -0.48) 72.0 4.42 

Threshold of 4 
µg/m3 

99.8 (96.7, 102.9) -3.08 (-5.31, -0.85) -2.95 (-5.14, -0.77) 91.4 3.75 

5% reduction 
per interval 

101.4 (98.6, 104.2) -1.68 (-3.51, 0.15) -1.61 (-3.40, 0.17) 100 4.37 

10% reduction 
per interval 

99.8 (95.6, 103.9) -3.40 (-7.03, 0.23) -3.27 (-6.81, 0.28) 100 3.44 

Note:  CMR: Cumulative Mortality Risk; PM2.5, particulate matter < 2.5 μm diameter. 

aThis is the three-cycle average of the mean value across all years. 
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Figure 1. Diagram of g-computation with time-to-event outcome and time-varying covariates. 
Arrow indicates information needed from previous box. 
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Figure 2. Differences in yearly cumulative mortality risks pooled across cycles comparing 
different intervention strategies to natural course, with weights equal to the inverse of variance. 
Numeric results are presented in Table S2.  

 

Note: T8.8, threshold value (reduced to threshold value if above) set at the current Canadian 
Ambient Air Quality Standards for PM2.5 of 8.8 µg/m3; T7.04: threshold value set at 80% of the 
current Canadian Ambient Air Quality Standards for PM2.5 (or 7.04 µg/m3); T5: threshold value 
set at the new World Health Organization guideline of 5 µg/m3; T4: threshold value set at a 
PM2.5 level that was further below the World Health Organization guideline (4 µg/m3); R90: 
yearly relative reduction values set at 10% per interval; and R95: yearly relative reduction values 
set at 5% per interval. 
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Figure 3. Differences in 11-year cumulative mortality risks comparing different intervention 
strategies to natural course for main analysis and sensitivity analyses. Numeric results are 
presented in Table 3 and Table S4.  

 

Note: T8.8, threshold value (reduced to threshold value if above) set at the current Canadian 
Ambient Air Quality Standards for PM2.5 of 8.8 µg/m3; T7.04: threshold value set at 80% of the 
current Canadian Ambient Air Quality Standards for PM2.5 (or 7.04 µg/m3); T5: threshold value 
set at the new World Health Organization guideline of 5 µg/m3; T4: threshold value set at a 
PM2.5 level that was further below the World Health Organization guideline (4 µg/m3); R90: 
yearly relative reduction values set at 10% per interval; R95: yearly relative reduction values set 
at 5% per interval; O1: placing Canadian Marginalization Index-age and labour force before the 
other Canadian Marginalization Index in occurring sequence of time-varying covariate; O2: 
moving income to after Canadian Marginalization Index in occurring sequence of time-varying 
covariate; O3: moving PM2.5 to the first in occurring sequence of time-varying covariate; TV: 
adding all time-varying covariates of previous year and two-year previous to covariate model; 
Cat: including time-varying covariates other than long-term PM2.5 as categorical in outcome 
model and using multinomial logistic model for them in covariate model; Org: using long-term 
PM2.5 in original scale in all models; and 65+: subset analysis restricted to cohort participants 
older or equal to 65 years. 
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