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Abstract (348 words) 

Background: In intensive care unit (ICU) patients with coma and other disorders of 

consciousness (DoC), outcome prediction is key to decision-making regarding 

prognostication, neurorehabilitation, and management of family expectations. Current 

prediction algorithms are largely based on chronic DoC, while multimodal data from acute 

DoC are scarce. Therefore, CONNECT-ME (Consciousness in neurocritical care cohort study 

using EEG and fMRI, NCT02644265) investigates ICU-patients with acute DoC due to 

traumatic and non-traumatic brain injuries, utilizing EEG (resting-state and passive 

paradigms), fMRI (resting-state) and systematic clinical examinations.  

Methods: We previously presented results for a subset of patients (n=87) concerning 

prediction of consciousness levels at ICU discharge. Now, we report 3- and 12-month 

outcomes in an extended cohort (n=123). Favourable outcome was defined as modified 

Rankin Scale ≤3, Cerebral Performance Category ≤2, and Glasgow Outcome Scale-Extended 

≥4. EEG-features included visual-grading, automated spectral categorization, and Support 

Vector Machine (SVM) consciousness classifier. fMRI-features included functional 

connectivity measures from six resting-state networks. Random-Forest and SVM machine 

learning were applied to EEG- and fMRI-features to predict outcomes. Here, Random-Forest 

results are presented as area under the curve (AUC) of receiver operating curves or accuracy. 

Cox proportional regression with in-hospital death as competing risk was used to assess 

independent clinical predictors of time to favourable outcome.  

Results: Between April-2016 and July-2021, we enrolled 123 patients (mean age 51 years, 

42% women). Of 82 (66%) ICU-survivors, 3- and 12-month outcomes were available for 79 

(96%) and 77 (94%), respectively. EEG-features predicted both 3-month (AUC 0.79[0.77-

0.82] and 12-month (0.74[0.71-0.77]) outcomes. fMRI-features appeared to predict 3-month 

outcome (accuracy 0.69-0.78) both alone and when combined with some EEG-features 

(accuracies 0.73-0.84), but not 12-month outcome (larger sample sizes needed). Independent 

clinical predictors of time to favourable outcome were younger age (Hazards-Ratio 1.04[95% 

CI 1.02-1.06]), TBI (1.94[1.04-3.61]), command-following abilities at admission (2.70[1.40-

5.23]), initial brain-imaging without severe pathology (2.42[1.12-5.22]), improving 

consciousness in the ICU (5.76[2.41-15.51]), and favourable visual-graded EEG (2.47[1.46-

4.19]).  
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Conclusion: For the first time, our results indicate that EEG- and fMRI-features and readily 

available clinical data reliably predict short-term outcome of patients with acute DoC, and 

EEG also predicts 12-month outcome after ICU discharge. 
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Introduction  

Since the first report in 2006 of a patient with cognitive-motor dissociation,1 the challenge of 

identifying brain-injured patients with residual consciousness and predicting their long-term 

recovery has stimulated a new field of research. This, however, mostly concerns patients with 

subacute or chronic disorders of consciousness (DoC) in rehabilitation facilities.2,3  

Each year two out of 1000 people fall into a coma and are admitted to an intensive care unit 

(ICU),4 with the key questions being: Who regains consciousness, and who will make a good 

functional outcome? Accurate prediction of long-term functional outcomes of patients with 

acute DoC, including coma, is a major challenge, especially during the early phase in the 

ICU.5 While some DoC survivors enter a state of prolonged unresponsive wakefulness, many 

recover within weeks to months, and a few DoC patients may show signs of recovery even 

years after the brain injury.3,6 Accurate prognostication is hence essential for decision-making 

in the ICU, including decisions about therapeutic management, withdrawal of life-sustaining 

therapy,7–9 resource allocation and rehabilitation, and management of family expectations. 

The first step to improve prognostication of acute DoC patients is accurate determination of 

their levels of consciousness.10 This is important since patients with even minimal clinical 

signs of residual consciousness11,12 have more favourable long-term outcomes (as do those 

with covert consciousness13–15). However, determining consciousness levels by routine 

clinical exams alone is imprecise16 because intermittent signs of consciousness are often 

missed when sensitive systematic ratings scales are omitted.3,10,17  

In previous work, we established that resting-state EEG, EEG with external stimulations and 

resting-state fMRI can accurately predict consciousness levels in patients with acute DoC 

during ICU admission.18 Corroborating our findings, multimodal approaches were 

recommended in a recent review of neuroimaging-based outcome prediction of DoC 

patients.19 However, prognostication of functional recovery of acute DoC is typically limited 

to unimodal approaches and certain patient subcategories.6,14,20,21 Only one study reported 6-

month outcome of acute DoC patients with severe traumatic brain injury (TBI) assessed with 

both EEG and fMRI.22 Research reporting the potential of multimodal approaches to predict 

both early and late functional outcomes of acute DoC patients in the ICU across a wide range 

of brain injuries is, to our knowledge, non-existent.  
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To bridge this knowledge gap, we investigated if a multimodal approach consisting of EEG 

with resting and passive stimulation paradigms, resting-state fMRI, and repeated systematic 

clinical evaluations could accurately predict functional outcomes of acute DoC patients with 

TBI and various non-traumatic brain injuries 3 and 12 months after ICU discharge. 

Materials and methods  

The CONNECT-ME study (‘Consciousness in neurocritical care cohort study using EEG and 

fMRI’, NCT02644265) is a prospective, observational, tertiary center cohort, diagnostic 

phase IIb study. Detailed methods of data acquisition and analysis are described in the study 

protocol23 and a recent paper.18 Results concerning the prediction of consciousness levels in a 

subset of patients (n=87) at ICU discharge have been published elsewhere.18 Here, we 

evaluated 3- and 12-month functional outcomes in an extended patient cohort (n=123). 

Below is a brief overview of the methods. Fig. 1 shows the flow of patients through the 

study. 

Patients and study design  

We prospectively included patients admitted to one of the four ICUs (excluding the neonatal 

ICU) at Rigshospitalet (Campus Blegdamsvej), Copenhagen University Hospital, 

Copenhagen, Denmark between April-2016 and July-2021, and collected demographics, 

clinical status, and data regarding previous medical history. We included ICU patients with 

acute DoC (time from brain injury <31 days), age ≥16 years, Danish or English language 

proficiency, who had a clinical indication for a structural brain MRI ordered by the treating 

physician. Clinical exams, EEG and fMRI were all performed within a 24-hour window or as 

close to this time as possible. We aimed for unsedated patients or for the lowest possible 

sedation levels if patients could not be fully weaned from sedation. Sedation levels were 

graded as “none or minimal”, “low to moderate”, and “high or very high”.18 Patients with 

contraindications for MRI, major pre-morbid neurological deficits (e.g., mental retardation, 

aphasia, or deafness), and/or acute life-threatening conditions with immediate risk of clinical 

deterioration were excluded.  
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Classification of consciousness levels 

We classified patients according to their level of consciousness into coma24,25, unresponsive 

wakefulness syndrome26 (UWS, only reflex behaviour such as spontaneous eye opening), 

minimally conscious state -/+27,28 (MCS-, definite signs of non-reflex behaviour such as 

visual pursuit, localisation to noxious stimuli or relevant emotional response; MCS+, ability 

to follow simple commands repeatedly, but not necessarily consistently), emergence from 

MCS29 (eMCS, reliable two-way communication or functional object use) or locked-in 

syndrome30 (LIS; consistent and reliable communication by rudimentary eye opening), 

applying previously described clinical examination techniques.18 Briefly, consciousness 

levels were determined at the time of enrolment and at ICU discharge using a systematic 

clinical approach including sub-elements of the coma recovery scale revised (CRS-R)17 with 

the addition of Glasgow Coma Scale (GCS)31, and the Full Outline of UnResponsiveness 

(FOUR).32 Furthermore, daily routine neurological exams were performed by the attending 

team of physicians and results accessed from the electronic health records.   

EEG  

Standard 19/25 channel bedside video-EEG (NicoletOne, Natus Medical Inc., Middleton, WI, 

USA) was recorded with electrodes placed according to the international 10/20 system.33 All 

EEGs contained a 10-minute resting-state segment, and for reactivity assessment a segment 

with stimulations including eye opening, calling the patient by their name, noxious stimuli 

applied as pressure to earlobes, fingertips and sternum, and sensory tactile stimuli applied 

with a cotton swap to the nostrils. Investigators performing EEG analyses were unaware of 

patient outcomes.  

EEGs were assessed in three different ways, as described previously;18 (1) manual visual 

analysis by two experienced board-certified neurophysiologists (MHC and AS) scoring the 

EEGs according to the Synek scale34 (level I to V with increasing level indicating increasing 

pathology), (2) ABCD spectral analysis as described by Forgacs et al.35 (with category “A” 

indicating complete corticothalamic disruption and “D” full recovery of corticothalamic 

circuit), and (3) a Support Vector Machine (SVM) based consciousness classifier36 predicting 

the probability of the patient ś consciousness level being at least MCS- (P(MCS)) from 68 

EEG markers derived separately from EEG resting segments and segments with stimulations.  
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fMRI  

A 10-minute resting-state scan session with a T2*-weighted echo-planar imaging BOLD 

fMRI sequence was performed on 1.5 or 3 Tesla MRI-scanners (Siemens, Erlangen, 

Germany) with 20- or 64-channel head coils, respectively. Pre-processing of fMRI data was 

performed using SPM12 in MATLAB v2019a 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) according to our previously described 

method.18 Briefly, denoised regional timeseries were extracted and region-to-region 

functional connectivity estimated by calculating the timewise correlation coefficient 

(Pearson’s rho) between each pair of regional timeseries and applying Fisher's r-to-z 

transformation to the correlation coefficient. A total of 21 within- and between-network 

functional connectivity measures were calculated as the average functional connectivity 

across the set of respective region-to-region pairs for six resting-state networks (i.e., the 

default mode network (DMN), frontoparietal network (FPN), auditory network (AN), 

salience network (SN), sensorimotor network (SMN) and visual network (VN)). Investigators 

assessing fMRI data were unaware of patient outcomes. 

Follow-up data 

We used three outcome scales to assess functional outcome at 3 and 12 months after ICU 

discharge; 1) modified Rankin Scale (mRS),37 2) Glasgow Outcome Scale Extended (GOS-

E)38 and 3) Cerebral Performance Category (CPC),39 respectively (Box S1). The mRS is used 

for evaluation of recovery in stroke patients with focus on the patient´s ability to walk with or 

without assistance.37 The GOS-E is an overall functional outcome scale frequently used to 

collect follow-up data of TBI patients and include other aspects of functional recovery such 

as the ability to work, socialize, and level of emotional deficits.38 Finally, the CPC is an 

evaluation tool to assess level of recovery of cardiac arrest patients with regaining of 

consciousness considered a main aspect.39 By including all three scales, we aimed at 

evaluating different aspects of functional recovery since our study cohort consists of a 

heterogeneous group of patients regarding the cause of brain injury (i.e. stroke, TBI, cardiac 

arrest, and other neurological and medical causes). Functional outcome was determined from 

electronic health records typically based on structural assessments by experienced nursing 

staff at the high-level rehabilitation facility most surviving patients were discharged to. If 

sufficient data was not available from health records; patients, family members or other 

caregivers were contacted by telephone. Favourable outcome was defined as a combination 
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of mRS ≤3 (indicating that patients can walk unassisted), GOS-E ≥4 (indicating that patients 

can take care of themselves alone for at least 8 hours at home) and CPC ≤2 (indicating that 

patients are conscious and independent of others for activities of daily living). Patients who 

died after hospital discharge were included in primary outcome analysis, while patients who 

died during ICU were excluded as were patients lost to follow-up.  

Machine learning algorithms and predictive models 

Two machine learning algorithms where utilized: Random-Forest and Support Vector 

Machine (SVM). This ensured exploiting both linear and non-linear interactions. Algorithms 

were trained to predict binary outcome at 3- and 12-month follow-up. Model’s performance 

was estimated using stratified 5-fold cross-validation (repeated 10 times). A special cross-

validation scheme (leave-one-out cross-validation,40 LOO-CV) was used to evaluate the 

potential of fMRI-features, since the limited fMRI samples available from patients with 

follow-up outcome did not allow to obtain reliable estimates with 5-fold CV.  Algorithms’ 

hyperparameters were selected using nested-cross validation and a grid-search procedure. 

Both unimodal models based on single features (EEG- or fMRI-features) and multimodal 

models based on a combination of several features (e.g., combination of EEG- and fMRI-

features) were developed with main outcome measures as binary targets. In total, ten different 

predictive models (I-X) were developed and tested with each algorithm. Same-sample models 

were tested for head-to-head comparison of EEG-features but could not be tested with fMRI-

features due to the low number of available patients with the full set of EEG-features, fMRI-

features, and outcome measures. Prediction performance of models evaluated with 5-fold CV 

were assessed with area under the curve (AUC) of receiver operating characteristic (ROC) 

curves, sensitivity and positive predictive value (PPV), while performance of the LOO-CV 

models including fMRI-features were assessed with the accuracy measure (ratio of correctly 

predicted samples over total samples). AUC, sensitivity and PPV estimates are reported as 

mean [95% CI] and accuracies as a number between 0-1. The models hence predict the 

precision with which favourable outcomes can be distinguished from unfavourable outcomes. 

All machine learning analyses were done using Julearn and scikit-learn.41 

Outcome measures 

Our primary target outcome was binary outcome at 3- and 12-month follow-up. Time to 

favourable outcome was considered a secondary outcome.  
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Statistical analysis  

Quantitative data are expressed as mean ± standard deviation (SD) or median (IQR) and 

group comparisons assessed with Student t-test, Mann-Whitney-U, or Kruskal-Wallis test. 

Categorical data are expressed as numbers (percentages) and compared using chi-squared test 

or Fisher’s exact test. Cox proportional hazards regression model with in-hospital death 

considered as a competing risk is used for the assessment of important predictors of time to 

favourable outcome. Multicollinearity analysis was performed, and variable inflation factor 

assessed to avoid high level of correlation between the variables in the regression model. 

Results are expressed as hazards ratio (HR) with corresponding 95% confidence intervals 

(CI) and p-values. The statistical software R version 4.2.0 (2022-04-22) was used for 

statistical analysis. 

Data availability  

fMRI data cannot be made fully anonymous and are not publicly available. Other data will be 

shared upon reasonable request. The code used in the predictive models is available at 

https://github.com/fraimondo/connectme-followup.  

Ethics  

This study was approved by The Danish Data Protection Agency (RH-2016-191, I-Suite 

nr:04760) and the Ethics Committee of the Capital Region of Denmark (File-nr.:H-

16040845). Written consent was waived because all data were acquired during routine 

clinical work-up. CONNECT-ME is registered with clinicaltrials.org (NCT02644265). 

Results  

Demographics and clinical characteristics 

We included 123 patients (mean age 51±19 years; 51 (42%) women), of whom 82 (67%) 

were discharged alive from the ICU (Fig. 1 and Table 1). Of the 41 deaths in the ICU, 37 

(90%) occurred after withdrawal of life-sustaining therapy. Advanced age, preadmission 

comorbidity, cardiac arrest as cause of ICU admission (OR 10.4 [2.46-78.3]), lower GCS 

motor score at admission, lower total GCS and FOUR score at study enrolment, lower 
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consciousness levels at study enrolment and shorter duration of ICU admission were all 

significantly associated with death in the ICU (all P < 0.05, see also Table 1). EEG was 

available from 122 (99%) patients, while fMRI was available from 67 (54%) patients. The 

proportion of patients with fMRI did not differ between those who died in the ICU and 

patients discharged alive. 

Functional outcome and time to favourable outcome 

Of the 82 patients discharged alive from the ICU, functional outcome was available from 79 

(96%) at 3 months and from 77 (94%) at 12 months (Fig. 1). Thirteen patients (16%) died 

prior to 12-month follow-up, of whom eight were dead by 3-month follow-up. Of the 79 

patients with 3-month follow-up data, 26 (33%) had a mRS score of ≤3, 24 (30%) a CPC 

score of ≤2 and 33 (42%) a GOS-E score of ≥4. Of the 77 patients with 12-month follow-up 

data, 32 (42%) had a mRS score ≤3, 33 (43%) a CPC score ≤2, and 44 (57%) a GOS-E score 

≥4. Overall, 24 (30%) of the 79 patients had favourable outcome (i.e., favourable functional 

outcome according to all three outcome scales) at 3 months, and 31 (40%) of 77 at 12 

months. Patients with an unfavourable outcome at both 3 and 12 months were more likely to 

be discharged from hospital to a high-level rehabilitation facility or another care facility such 

as a nursing home rather than to their own home. Clinical characteristics and comparison of 

patients with favourable and unfavourable 3- and 12-month functional outcomes are shown in 

Table 2. As illustrated by Fig. 2, variables independently predicting time to favourable 

outcome were younger age (HR 1.04 [95% CI 1.02-1.06]), TBI as cause of ICU admission 

(HR 1.94 [1.04-3.61]), ability to follow commands at admission (HR 2.70 [1.40-5.23]), 

improving consciousness level during the stay in the ICU (HR 5.76 [2.14-15.51]) and initial 

brain-imaging without severe pathology (HR 2.42 [1.12-5.22]). Furthermore, favourable 

visual EEG grading (i.e., Synek score I or II) (HR 2.47 [1.46-4.19]) was also an independent 

predictor of time to favourable outcome (Fig. 2).  

Machine learning predictive models 

Below are results from Random-Forest predictive models, while results from SVM models 

are presented in the Supplementary file (Table S1 and Fig. S1-2). 

EEG-features and functional outcome 
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Of the predictive models based on individual EEG-features (i.e., Synek score, ABCD 

categories and P(MCS)), only the Synek score could predict functional outcome at both 3-

month (AUC 0.65 [0.61-0.69], PPV 0.43 [0.38-0.47], sensitivity 0.47 [0.44-0.50]) and 12-

month (AUC 0.66 [0.63-0.69], PPV 0.64 [0.61-0.68], sensitivity 0.42 [0.42-0.43]). The model 

based on ABCD categories could not predict 3-month outcome (AUC 0.38 [0.34-0.42], PPV 

0.13 [0.08-0.17], sensitivity 0.24 [0.15-0.33]) but could predict 12-month outcome (AUC 

0.60 [0.57-0.62], PPV 0.59 [0.50-0.68], sensitivity 0.21 [0.19-0.23]), while the models based 

on P(MCS) could predict 3-month outcome (AUC 0.64 [0.63-0.67], PPV 0.43 [0.38-0.47], 

sensitivity 0.47 [0.44-0.50]) but not 12-month outcome (AUC 0.63 [0.61-0.69], PPV 0.32 

[0.29-0.34], sensitivity 0.62 [0.58-0.66]) (see also Table 3 and Fig. 3, models I to III). Head-

to-head comparison of the same-sample models based on individual EEG-features showed 

that models based on Synek score outperformed the ABCD model in predicting 3-month 

outcome (AUCSynek 0.70 [0.69-0.71], AUCABCD 0.40 [0.33-0.46]) and the P=(MCS) model at 

12-month outcome (AUCSynek 0.73 [0.71-0.75], AUCP(MCS) 0.54 [0.50-0.59]) (see also Table 

3 and Fig. 4, model Ia compared to model IIa and IIIa).  

All models based on different combination of EEG-features (Fig. 3 and Table 3, models IV-

VII and IVa-VIIa) could predict functional outcome at both 3- and 12-month follow-up. The 

best combination of AUC, PPV and sensitivity for prediction of both outcomes was achieved 

with the model based on the combination of Synek score, ABCD categories and P(MCS) (3-

month outcome: AUC 0.79 [0.77-0.82], PPV 0.59 [0.54-0.65], sensitivity 0.38 [0.33-0.44]; 

12-month outcome: AUC 0.74 [0.71-0.77], PPV 0.68 [0.62-0.74], sensitivity 0.51 [0.47-

0.56]) (see also Fig. 3 and Table 3, model VI). When comparing the combined EEG same-

sample models, all the models performed equally well (Table 2 and Fig 3, models IVa-VIIa).  

fMRI functional connectivity and functional outcome 

Due to limited number of samples with both fMRI data and outcome measures (n=45, see 

also Fig. 1), predictive models including fMRI FC was tested with LOO-CV procedure 

(Table 3 and Table S1, models VIII-X). fMRI FC measures tested with both random-forest 

and SVM algorithm showed evidence suggesting that predicting 3-month outcome is possible 

(random-forest model VIII: accuracy 0.69; SVM model VIII: accuracy 0.78), but not 12-

month outcome (random-forest model VIII: accuracy 0.47; SVM model VIII: accuracy 0.47). 

More samples are required to confirm and correctly estimate the performance of such models.  
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Combined EEG- and fMRI-features and functional outcome 

We evaluated prediction of 3- and 12-month functional outcomes with the combination of 

fMRI FC with Synek score (n=45) or P(MCS) derived from EEG markers-r (n=44) as 

depicted in Table 3 (models IX and X). Both combined models showed evidence that 

predicting 3-month outcome is possible, with accuracies between 0.73-0.84 but not 12-month 

outcome (Table 3 and S1, models IX and X), regardless of which algorithm was used.  

Discussion  

In this, to our knowledge, first prospective multimodal cohort study including 123 ICU 

patients with acute DoC from various underlying conditions, we show that machine learning 

algorithms applied to EEG- and fMRI-features obtained soon after ICU admission can predict 

3-month functional outcome, while 12-month outcome can only be predicted by EEG-

features. Furthermore, we have identified important, readily available, independent predictive 

clinical variables of time to favourable recovery.  

EEG-features in combination, as well as EEG Synek score as an individual model, predicted 

both 3- and 12-month functional outcomes (Fig. 3 and Table 3), whereas all models based on 

fMRI functional connectivity measures could only predict 3-month outcome (Table 3). EEG 

recordings were available from 77 patients with outcome measures at both 3 and 12 months, 

while we only had fMRI sequences from 45 of these patients, thus resulting in a substantially 

reduced amount of data available for the fMRI-feature models. While the quality of the data 

that underly machine learning models is crucial, data quantity is also important because 

datasets with many variables but limited number of samples introduce high level of variance, 

rendering the models imbalanced.42 Despite our relatively large population of acute DoC 

patients, our results, especially those including fMRI-features, should therefore be interpreted 

with caution, until further validation from ongoing multicentre studies.43 These factors may 

also explain the relatively low PPV and sensitivities despite high AUCs of the combined EEG 

models, which were based on data from patients with a complete dataset including all EEG-

features (n=58).  

Despite the abovementioned limitations, we could show that most EEG-features predicted 

both early and late functional outcomes individually and in various combinations (Fig. 3 and 

Table 3). This is an important finding because EEG is much more available in the ICU than 
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advanced neuroimaging such as fMRI, and EEG-features like ours can be easily implemented 

in an ICU setting. 

When comparing the individual EEG-features head-to-head with the same-sample models 

(Fig. 4 and Table 3), we found that the Synek score outperformed the ABCD categories for 

the prediction of short-term outcome and that the SVM classifier derived P(MCS) 

outperformed the ABCD categories for the prediction of long-term outcome. This finding 

may be explained by the fact that the Synek score was assessed manually by two board-

certified electroencephalographers with many years of experience with ICU EEG, while the 

ABCD and P(MCS) features were developed in patient groups that differed from ours (i.e., 

homogenous cardiac arrest35 and chronic DoC cohorts36 vs. acute DoC cohort with 

heterogeneous brain injuries). Furthermore, visual analysis of EEGs is routinely used for 

prognostication in ICU populations like the present cohort, which may also explain the higher 

performance of the models based on Synek score. Still, we could show that combining 

different EEG-features resulted in the best predictive performance of the models, regardless 

of the algorithm used (Table 3 and Table S1). These are important findings because most 

ICU sites with acute DoC patients do not have the resources to perform advanced EEG 

assessment using machine learning classifiers. These sites can thus safely rely on experienced 

electroencephalographers using established criteria for visual EEG analyses instead. If the 

necessary electroencephalographer expertise is unavailable, however, external data-driven 

analysis of EEGs may become a suitable option for those sites in the near future. 

Models including fMRI-features were tested with a LOO-CV procedure due to the limited 

number of available samples. Results indicate that fMRI FC both alone and in combination 

with some EEG-features may be useful to predict early functional outcome at 3 months 

(Table 3), but not (yet) late outcome at 12 months. The LOO-CV procedure limits data waste 

and is therefore primarily used for small datasets, but a major limitation is that the results are 

prone to optimistic interpretation and therefore need external validation in larger datasets.40  

In the first paper from the CONNECT-ME study,18 we found that EEG and fMRI-features 

predicted levels of consciousness of acute DoC patients at the time of ICU discharge. 

Importantly, EEG and fMRI were performed without active consciousness paradigms, thus 

patients likely had different degrees of residual consciousness (e.g., including those who 

could not have participated in active paradigms44). Collectively, our findings indicate that 

both EEG and fMRI have the potential not only to predict level of consciousness during ICU 

admission18 but also to predict functional outcome of patients with brain injury of various 
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causes resulting in acute DoC in the early phase of hospitalization and (EEG, at least) up to 

one year after discharge from the ICU.  

In line with a recent study about recovery trajectories of patients with cognitive motor 

dissociation,14 we additionally identified readily available clinical features as independent 

predictors of time to favourable functional outcome (Fig. 2). In our heterogenous patient 

cohort reflecting a real-life ICU setting, we confirmed that TBI is related to earlier recovery. 

Furthermore, patients who were younger, could follow commands at ICU admission, had no 

severe pathology on initial brain imaging, and showed improving consciousness level in the 

ICU, also recovered earlier. Similarly, patients with favourable functional outcomes at 3 and 

12 months were more likely to be discharged directly to their own home, while patients with 

unfavourable outcome were more often discharged to rehabilitation facilities and nursing 

homes (Table 2). This is explained by the fact that patients with more severe injuries needed 

higher level of care and were thus discharged to facilities with higher level of rehabilitation 

resources. All these findings can help clinicians when guiding patient families about the 

prospects of recovery, including the time it takes to achieve a good recovery.  

Strengths and limitations 

Several limitations need to be considered. As a single center study, CONNECT-ME is 

susceptible to sampling bias. A relatively large number of patients (33%) died in the ICU, 

most due to withdrawal of life-sustaining therapy because of a presumed poor prognosis. 

While the current study included 123 patients, data from only 77 patients were available for 

the final analysis of 12-month outcomes. Thus, the remaining cohort with available follow-up 

data consisted of patients who were expected to regain better functional outcome. This 

skewed the dataset used in the machine learning models. The predictive performance of these 

models may hence have been biased in that they lacked the (potential) clinical trajectories of 

patients who had life-sustaining therapy withdrawn. To account for this bias to some extent, 

in our analysis of independent variables related to time to favourable outcome we included 

in-hospital death as a competing risk in the multivariate Cox proportional hazards regression 

model. Still, death due to withdrawal of life-sustaining therapy in the ICU remains an 

important limitation and cannot be fully accounted for when studying ICU-patients with acute 

severe brain injury and DoC. Since EEG is more available in ICU than fMRI, it is routinely 

used for prognostication of acute DoC patients, especially of those admitted post-cardiac 
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arrest.45 Excluding patients who died in the ICU may therefore have decreased the 

performance of the EEG models as well.  

MRI scans are logistically very challenging to obtain in the ICU and are thus less often 

performed than EEG, which might be yet another selection bias, affecting the fMRI models 

owing to exclusion of patients without available fMRI. However, in our cohort, we found no 

statistically significant difference in the frequency with which fMRI was performed when 

comparing patients who died in the ICU to those who were discharged alive (Table 1), or 

when comparing patients with favourable outcome to those with unfavourable outcome 

(Table 2), suggesting this might be of lesser importance to the overall results. Our study 

population is a heterogeneous group of patients with various causes of DoC, rendering 

subgroup analysis unreliable due to the low number of patients in each group. Thus, further 

validation is needed to confirm our findings. 

On the positive side, our findings are generalizable to a real-life ICU setting and acute DoC 

patients with various causes of brain injury. We also evaluated functional outcome in our 

cohort by using three different outcome scales designed for stroke (mRS),37 TBI (GOS-E)46 

and cardiac arrest (CPC)39 patients to account for the heterogenicity of our patients. Owing to 

logistical challenges and resources needed for advanced data analyses, to our knowledge, no 

previous EEG/fMRI study has managed to investigate acute DoC in a larger ICU cohort or 

with a longer follow-up than ours. 

Conclusion  

We show that EEG early during ICU admission predicted both 3- and 12-month functional 

outcomes of acute DoC patients with various causes of brain injury, and that fMRI resting-

state measures might be useful to predict 3-month outcome. Furthermore, young age, TBI, 

initial brain imaging without severe pathology, ability to follow commands during ICU 

admission, improving consciousness level during the ICU stay, as well as favourable visual 

EEG grading, all independently predicted shorter time to favourable functional outcome. In 

sum, we suggest that combining EEG- and fMRI-based machine learning models with readily 

available clinical data allows for reliable short-term outcome prediction of patients with coma 

and other acute DoC and potentially can predict long-term outcome up to one year after ICU 

discharge. 
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Figure legends 

Figure 1. Study flowchart, data assessment strategy and death in ICU. (A) 123 acute 

DoC patients were included, of whom 41 died during ICU admission. Of the 82 patients 

discharged alive, 10 (12%) patients were discharged directly to their own home, 20 (24%) to 

other care facilities such as nursing homes, and the remaining 52 (63%) to a high-level 

neurorehabilitation facility. Three-month follow-up data was available from 79 (96%) 

patients, and 12-month follow-up data from 77 (94%) patients. (B) Full sets of 3- and 12-

month follow-up data were available for 77 (94%) patients. EEG recordings were available 

from all patients (blue box), while fMRI resting-state sequences were available from 45 

(58%) patients (purple box). EEGs were analysed with three different approaches; 1) visual 

manual analysis and scoring according to the Synek scale, 2) automated spectral analysis 

according to the ABCD model, and 3) a machine learning based SVM consciousness 

classifier resulting in the probability of being at least in a minimal conscious state (P(MCS)) 

and 68 EEG markers derived from segments of resting-state EEG (EEG markers-r). Two 

different machine learning algorithms (i.e., Random-Forest and SVM) were used to conduct 

seven different predictive models based on EEG features (i.e., models I to VII) and three 

different models including fMRI features with or without EEG features (i.e., models VIII to 

X). Models including fMRI features were assessed with additional LOO-CV procedure due to 

the limited number of available samples. (C) This part depicts the proportion of patients in 

coma or UWS who either awoke to at least MCS- (i.e., regained consciousness to some 

degree) or died during ICU admission. At time 0 (admission to the ICU) none of the patients 

were awake (0%) and all were alive (100%). The red line shows the proportion of patients 

who died in the ICU, and the green line shows the proportion of patients who awoke from 

coma or UWS in the ICU. During ICU admission, a total of 41 patients (33%) died, while 82 

(67%) survived, of whom 73 (59%) awoke prior to ICU discharge. The area between the red 

and green line indicates the proportion of patients (7%) who remained in coma or UWS at 

ICU discharge. a including 8 patients who died prior to 3-month follow-up; b including 13 

patients who died prior to 12-month follow-up; * all EEG models were also tested with same-

sample data for head-to-head comparison (see also Table 3) 
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Figure 2. Predictors of time to favourable outcome. This figure depicts independent 

variables predicting time to favourable outcome (i.e., GOS-E≥4, mRS≤3 and CPC≤2). Death 

in ICU (n=41) was treated as a competing risk in a multivariate Cox proportional regression 

model. Younger age, patients with TBI, ability to follow commands at admission, improving 

consciousness level during ICU, no severe pathology at admission brain imaging, and 

favourable visual grading of EEG (i.e., Synek score I or II) were all independent predictors of 

earlier recovery. *Of all 123 included patients, one patient without EEG was excluded from 

this analysis. #Severe pathology on brain imaging was defined as Fisher grade ≥3 (for 

subarachnoid hemorrhage), Marshall classification ≥3 (for TBI), hemorrhage volume ≥30mL 

(for intracerebral hemorrhage), strategic hemorrhage or infarct in brainstem (for ischemic 

stroke or infratentorial hemorrhage), any visible sign of anoxic brain injury on CT scan (for 

cardiac arrest), global cortical edema (for patients with brain edema), brain tumors with 

midline compression, compression of basal cisterns and/or signs of hydrocephalus (for 

patients with any type of brain tumor) 
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Figure 3. Random-Forest EEG models with maximum available data predicting 3- and 

12-month outcomes. Boxplots illustrating model performances (AUCs) of RF-models based 

on EEG-features predicting 3-month (blue) and 12-month (orange) functional outcomes. 

Each model is based on the maximum amount of data available (see also Fig. 1). Of the 

unimodal models (I-III), only model I based on the Synek score could predict both 3- and 

12-month outcomes. The highest AUC for predicting both outcomes (AUC3-month 0.79 [0.77-

0.82]; AUC12-month 0.74 [0.71-0.77]) were obtained with the combined model (V) based on 

combination of three EEG-features (i.e., Synek score, ABCD categories and EEG markers-r 

derived from the SVM consciousness classifier). Overall, this figure shows that while Synek 

score was the only unimodal EEG-model that predicted both 3- and 12-month functional 

outcomes, all models based on a combination of EEG-features (IV-VII) could predict both 3- 

and 12-month outcomes with AUCs above chance level. A similar pattern was observed for 

SVM machine-learning models (see Fig. S1). Individual EEG Random-Forest models: 

I=Synek, II=ABCD, III=P(MCS) C. Combined EEG Random-Forest models: IV=Synek + 

ABCD, V=Synek + ABCD + EEG markers-r, VI= Synek + ABCD + P(MCS) and VII= 

Synek + ABCD + P(MCS) + EEG markers-r 
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Figure 4. Random-Forest EEG models with same sample data predicting 3- and 12-

month outcomes. Boxplots illustrating model performances (AUCs) of machine-learning 

models based on EEG-features predicting 3-month (blue) and 12-month (orange) functional 

outcomes. Each model is based on the same samples (n=58) for head-to-head comparison of 

EEG-features. Of the unimodal models (Ia-IIIa), model Ia based on Synek score 

outperformed model IIa based on ABCD categories in predicting 3-month outcome 

(AUCSynek 0.70 [0.69-0.74] vs. AUCABCD 0.38 [0.31-0.45]). In predicting 12-month outcome, 

model Ia outperformed model IIIa which was based on P(MCS) measures (AUCSynek 0.70 

[0.69-0.74] vs. AUCP(MCS) 0.54 [0.50-0.59]). Of the combined models based on at least three 

EEG features (Va-VIIa), all models could predict 3- and 12-month outcomes, and none 

outperformed the others. A similar pattern was observed for SVM machine-learning models 

(see Fig. S2). Individual same-sample EEG Random-Forest models: Ia=Synek, IIa=ABCD, 

IIIa=P(MCS) C. Combined same-sample EEG Random-Forest models: IVa=Synek + 

ABCD, Va=Synek + ABCD + EEG markers-r, VIa= Synek + ABCD + P(MCS) and VIIa= 

Synek + ABCD + P(MCS) + EEG markers-r 
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Table 1 Demographics and clinical characteristics of study population, and comparison of patients 
discharged alive from patients who died in the ICU 

Basic characteristics All 
(n=123) 

Discharged alive from ICU  
(n=82) 

Death in ICU  
(n=41) 

P 

 
Age, years 51 (19) 48 (19) 58 (18) 0.004 
Female sex 51 (42%) 36 (44%) 15 (37%) 0.447 
Prehospital comorbiditiesa     

Any 88 (72%) 54 (66%) 34 (83%) 0.048 
Cardiopulmonary 46 (37%) 28 (34%) 18 (44%) 0.301 
Neurological  30 (24%) 24 (29%) 13 (32%) 0.780 
Psychiatric 23 (19%) 17 (21%) 6 (15%) 0.431 
Otherb 60 (49%) 29 (35%) 22 (54%) 0.057 

mRS prior to admission 0 (0-1) 0 (0-1) 0 (0-1.5) 0.366 
Cause of admission     

Traumatic brain injury 35 (29%) 23 (28%) 12 (29%) 0.883 
Ischemic stroke  12 (10%) 6 (7%) 6 (15%) 0.223 
Cardiac arrest 11 (9%) 2 (2%) 9 (22%) 0.001 
Subarachnoid 
haemorrhage 

7 (6%) 7 (9%) 0 (0%) - 

Intracerebral 
haemorrhage 

9 (7%) 7 (9%) 2 (5%) 0.504 

Epilepsy 6 (5%) 5 (6%) 1 (2%) 0.428 
Other, neurologyc 20 (16%) 15 (18%) 5 (12%) 0.407 
Other, medical/ surgicald 23 (19%) 17 (21%) 6 (15%) 0.431 

Injury onset to study enrolment, 
days 

15 (14) 17 (15) 11 (11) 0.053 

Severe pathology on brain 
imaging at admissione 

48 (39%) 31 (38%) 17 (42%) 0.698 

fMRI available 67 (54%) 48 (58%) 19 (46%) 0.209 
Behavioural scales     
GCS motor score at admission 1 (1-6) 4 (1-6) 1 (1-5) 0.026 
GCS total score at enrolment 

6 (5-9) 7 (6-10) 5 (3-6) 
<0.00

1 
FOUR total score at enrolment 

8 (6-10) 9 (7-12) 6 (5-8) 
<0.00

1 
Consciousness level at study 
enrolment 

    

Coma/UWS 
73 (59%) 35 (43%) 38 (93%) 

<0.00
1 

MCS- or above 50 (41%) 47 (57%) 3 (7%) - 
Duration of ICU admission, days 31 (26) 35 (28) 22 (16) 0.006 
Cause of death in ICU, WLST 37 (30%) - 37 (90%) - 
Discharged from hospital to (n = 
82) 

    

Home 10 (8%) 10 (12%) - - 
Rehabilitation facility 52 (42%) 52 (63%) - - 
Other care facility 20 (16%) 20 (24%) - - 

3-month functional outcome    - - 
Favourable 24 (20%) 24 (29%) - - 
Unfavourable 55 (45%) 55 (67%) - - 
No data 3 (2%) 3 (4%) - - 

12-month functional outcome    - - 
Favourable 31 (25%) 31 (38%) - - 
Unfavourable 46 (37%) 46 (56%) - - 
No data  5 (4%) 5 (6%) - - 

Data presented as n (%), mean (SD), and median (IQR) 
aPatients could have more than one comorbidity. bOther comorbidities included diabetes mellitus, 
other endocrine, cancer, fibromyalgia, inflammatory bowel disease, MGUS, cirrhosis, osteoporosis, 
chronic nephropathy, and arthritis. cOther causes, neurology included autoimmune encephalitis, 
brain tumor, hydrocephalus and shunt revision, meningoencephalitis, autoimmune encephalitis, 
global cerebral oedema, cerebral venous thrombosis, myasthenic crisis, and anoxic ischemic brain 
damage due to drowning or strangulation. dOther causes, medical or surgical included hypo- or 
hyperglycemia, acute respiratory failure, aortic dissection or ruptured aortic aneurysm, perforated 
diverticulitis and sepsis, ileus and sepsis, pulmonary embolism, and carbon monoxide poisoning. 
eSevere pathology on brain imaging was defined as Fisher grade ≥3 (for subarachnoid hemorrhage), 
Marshall classification ≥3 (for TBI), hemorrhage volume ≥30mL (for intracerebral hemorrhage), 
strategic brainstem lesions (for ischemic stroke or infratentorial hemorrhage), any visible sign of 
anoxic brain injury on CT scan (for cardiac arrest), global cortical edema (for patients with brain 
edema), midline compression, compression of basal cisterns and/or visible signs of hydrocephalus 
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(for patients with any type of brain tumor). Bold values indicate statistically significance 
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Table 2 Comparison of patients with favourable and unfavourable 3- and 12-month functional outcomes 

Basic characteristics 3-month outcome (n=79) 12-month outcome (n=77) 

 
Favourable 

(n=24) 
Unfavourable 

(n=55) P Favourable 
(n=31) 

Unfavourable 
(n=46) P 

Age, years 
43 (19) 49 (19) 0.189 38 (16) 54 (18) 

<0.00
1 

Female sex 11 (46%) 24 (44%) 0.858 14 (45%) 21 (46%) 0.968 
Preadmission comorbiditiesa       

Any 16 (67%) 36 (66%) 0.927 17 (55%) 35 (76%) 0.059 
Cardiopulmonary 7 (29%) 19 (35%) 0.658 6 (19%) 20 (44%) 0.030 
Neurological  3 (13%) 21 (38%) 0.022 5 (16%) 19 (42%) 0.021 
Psychiatric 10 (42%) 7 (13%) 0.007 11 (36%) 6 (13%) 0.026 
Other medicalb 8 (33%) 20 (36%) 0.809 7 (23%) 21 (46%) 0.042 

mRS prior to admission 0 (0-0.5) 0 (0-1) 0.098 0 (0-0) 1 (0-2) 0.005 
Clinical characteristics  
Cause of admission       

Traumatic brain injury 6 (25%) 16 (29%) 0.729 10 (32%) 11 (24%) 0.434 
Ischemic stroke  1 (4%) 5 (9%) 0,509 2 (6%) 4 (9%) 0.758 
Cardiac arrest 0 (0%) 2 (4%) 1.000 0 (0%) 2 (4%) 0.513 
Subarachnoid 
haemorrhage 

0 (0%) 7 (13%) 0.094 1 (3%) 6 (13%) 0.165 

Intracerebral 
haemorrhage 

0 (0%) 7 (13%) 0.094 0 (0%) 7 (15%) 0.037 

Epilepsy 2 (8%) 3 (5%) 0,644 1 (3%) 4 (9%) 0.395 
Other, neurologyc 8 (33%) 7 (13%) 0.045 8 (26%) 7 (15%) 0.270 
Other, medical/ surgicald 7 (29%) 8 (15%) 0.150 9 (29%) 5 (11%) 0.054 

Severe pathology on brain imaging 
at admissione 

3 (13%) 28 (51%) 0.001 6 (19%) 25 (54%) 0.002 

fMRI available 11 (46%) 35 (64%) 0.153 19 (61%) 27 (59%) 0.827 
Behavioural scales       

GCS motor score at 
admission 

6 (4-6) 3 (1-6) 0.013 5 (1-6) 4 (1-6) 0.500 

GCS total score at 
enrolment 

6.5 (5-10) 7 (6-10) 0.492 8 (5-10) 7 (6-9.75) 0.762 

FOUR total score at 
enrolment 

8.5 (7-12) 9 (7-12) 0.306 9 (7-12) 8.5 (7-12) 0.243 

Consciousness level at study 
enrolment 

  0.878   0.388 

Coma/UWS 10 (42%) 24 (44%) - 11 (36%) 21 (46%) - 
MCS- or above 14 (58%) 31 (56%) - 20 (65%) 25 (54%) - 

Consciousness level at ICU 
discharge 

  0.104   0.023 

Coma/UWS 1 (4%) 10 (18%) - 1 (3%) 10 (22%) - 
MCS- or above 23 (96%) 45 (82%) - 30 (97%) 36 (78%) - 

Duration of ICU admission, days 
24 (20) 41 (31) 0.022 31 (30) 39 (28) 

1.01 
(0.99-
1.03) 

Discharged from hospital to  
  

<0.00
1   0.009 

Home 9 (38%) 1 (2%) - 8 (26%) 1 (2%) - 
Rehabilitation facility 6 (25%) 10 (19%) - 5 (16%) 11 (24%) - 
Other care facility 9 (38%) 43 (80%) - 18 (58%) 33 (73%) - 

Data presented as n (%), mean (SD), and median (IQR) 
aPatients could have more than one comorbidity. bOther comorbidities included diabetes mellitus, other endocrine, 
cancer, fibromyalgia, inflammatory bowel disease, MGUS, cirrhosis, osteoporosis, chronic nephropathy and arthritis. 
cOther causes, neurology included autoimmune encephalitis, brain tumor, hydrocephalus and shunt revision, 
meningoencephalitis, autoimmune encephalitis, global cerebral oedema, cerebral venous thrombosis, myasthenic 
crisis, and anoxic ischemic brain damage due to drowning or strangulation. dOther causes, medical or surgical 
included hypo- or hyperglycemia, acute respiratory failure, aortic dissection or ruptured aortic aneurysm, 
perforated diverticulitis and sepsis, ileus and sepsis, pulmonary embolism, and carbon monoxide poisoning. eSevere 
pathology on brain imaging was defined as Fisher grade ≥3 (for subarachnoid hemorrhage), Marshall classification 
≥3 (for traumatic brain injury), hemorrhage volume ≥30mL (for intracerebral hemorrhage), strategic brainstem lesions 
(for ischemic stroke or infratentorial hemorrhage), any visible sign of anoxic brain injury on CT scan (for cardiac 
arrest), global cortical edema (for patients with brain edema), midline compression, compression of basal cisterns 
and/or visible signs of hydrocephalus (for patients with any type of brain tumor). Bold values indicate statistically 
significance 
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Table 3 Prediction performance of EEG- and fMRI-features in predicting 3- and 12-month functional outcome 

Random-Forest EEG-models based on all available data 
 3-month 12-month 

Mode
l 

Features N AUC 
Positive 

predictive 
value 

Sensitivity AUC 
Positive 

predictive 
value 

Sensitivity 

I  
Synek 

77 0.65 [0.61-0.69] 0.43 [0.38-0.47] 
0.47 [0.44-
0.50] 

0.66 [0.63-0.69] 0.64 [0.61-
0.68] 

0.42 [0.42-
0.43] 

II  
ABCD 

66 
0.38 [0.34-0.42] 0.13 [0.08-0.17] 0.24 [0.15-

0.33] 
0.60 [0.57-0.62] 0.59 [0.50-

0.68] 
0.21 [0.19-
0.23] 

III  
P(MCS) 

68 0.64 [0.63-0.67] 0.32 [0.29-0.34] 
0.62 [0.58-
0.66] 

0.51 [0.48-0.54] 0.39 [0.29-
0.50] 

0.22 [0.20-
0.26] 

IV  
Synek, ABCD 

66 0.59 [0.57-61] 0.46 [0.40-0.52] 
0.46 [0.43-
0.49] 

0.72 [0.70-0.74] 0.62 [0.57-
0.67] 

0.55 [0.50-
0.61] 

V  
Synek, ABCD, EEG markers-r 

64 0.79 [0.77-0.82] 0.59 [0.54-0.65] 
0.38 [0.33-
0.44] 

0.74 [0.71-0.77] 0.68 [0.62-
0.74] 

0.51 [0.47-
0.56] 

VI  
Synek, ABCD, P(MCS) 

58 0.68 [0.64-0.71] 0.27 [0.18-0.37] 
0.33 [0.22-
0.44] 

0.71 [0.69-0.75] 
0.56 [051-061] 

0.41 [0.36-
0.45] 

VII  
Synek, ABCD, P(MCS), EEG 
markers-r 58 0.72 [0.66-0.78] 0.32 [0.20-0.44] 

0.21 [0.13-
0.30] 

0.66 [0.61-0.71] 0.53 [0.47-
0.59] 

0.43 [0.36-
0.50] 

Random-Forest EEG-models based on same sample data 

Ia  
Synek 

58 
0.70 [0.69-0.71] 

0.38 [0.31-0.45] 
0.53 [0.51-
0.56] 0.73 [0.71-0.75] 

0.53 [0.45-
0.62] 

0.54 [0.46-
0.62] 

IIa  
ABCD 

58 
0.40 [0.33-0.46] 

0.08 [0.03-0.12] 
0.17 [0.09-
0.25] 0.66 [0.65-0.67] 

0.56 [0.46-
0.67] 

0.26 [0.24-
0.27] 

IIIa  
P(MCS) 

58 
0.65 [0.61-0.69] 

0.26 [0.19-0.33] 

0.50 [0.38-
0.62] 0.54 [0.50-0.59] 

0.42 [0.35-
0.51] 

0.23 [0.20-
0.26] 

IVa  
Synek, ABCD 

58 
0.57 [0.51-0.63] 

0.28 [0.20-0.35] 

0.40 [0.36-
0.45] 0. 74 [0.71-0.77] 

0.54 [0.48-
0.61] 

0.52 [0.47-
0.58] 

Va  
Synek, ABCD, EEG markers-r 

58 
0.74 [0.68-0.79] 

0.30 [0.22-0.39] 

0.19 [0.14-
0.25] 0.67 [0.62-0.72] 

0.53 [0.46-
0.60] 

0.42 [0.38-
0.45] 

VIa  
Synek, ABCD, P(MCS) 

58 
0.68 [0.64-0.71] 

0.29 [0.20-0.38] 

0.38 [0.26-
0.49] 0.71 [0.67-0.75] 

0.54 [0.49-
0.60] 

0.42 [0.37-
0.47] 

VIIa  
Synek, ABCD, P(MCS), EEG 
markers-r 58 

0.71 [0.65-0.78] 

0.24 [0.18-0.30] 

0.18 [0.13-
0.23] 0.66 [0.62-0.70] 

0.49 [0.43-
0.55] 

0.40 [0.35-
0.46] 

Random Forest fMRI-model with LOO-CV procedure 
 Accuracy: 3-month outcome Accuracy: 12-month outcome 
VIII fMRI FC 45 0.69 0.47 
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IX  fMRI FC, Synek 45 0.75 0.42 
X  fMRI FC, P(MCS)rest 44 0.76 0.45 

EEG markers-r = 68 EEG markers derived from the EEG resting segments, P(MCS) = Support Vector Machine classifier indicating probability of consciousness 
derived from EEG markers from the full EEG, LOO-CV = Leave-One-Out Cross-Validation, FC = functional connectivity, P(MCS)rest = Support Vector Machine 
classifier indicating probability of consciousness derived from EEG markers from the EEG resting segments. Numbers in brackets indicate 95% CI. Bold values 
indicate AUCs or accuracy ≥ 0.70 
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