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Abstract: 

Background: Alzheimer's disease (AD) is a complex disorder, and its risk is 

influenced by multiple genetic and environmental factors. In this study, an AD risk 

gene prediction framework based on spatial and temporal features of gene expression 

data (STGE) was proposed. 

Methods: We proposed an AD risk gene prediction framework based on spatial and 

temporal features of gene expression data. The gene expression data of providers of 

different tissues and ages were used as model features. Human genes were classified 

as AD risk or non-risk sets based on information extracted from relevant databases. 

Support vector machine (SVM) models were constructed to capture the expression 

patterns of genes believed to contribute to the risk of AD.  
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Results: The recursive feature elimination (RFE) method was utilized for feature 

selection. Data for 64 tissue-age features were obtained before feature selection, and 

this number was reduced to 19 after RFE was performed. The SVM models were built 

and evaluated using 19 selected and full features. The area under curve (AUC) values 

for the SVM model based on 19 selected features (0.740 [0.690–0.790]) and full 

feature sets (0.730 [0.678–0.769]) were very similar. Fifteen genes predicted to be risk 

genes for AD with a probability greater than 90% were obtained. 

Conclusion: The newly proposed framework performed comparably to previous 

prediction methods based on protein-protein interaction (PPI) network properties. A 

list of 15 candidate genes for AD risk was also generated to provide data support for 

further studies on the genetic etiology of AD.  
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Background: Alzheimer's disease (AD) is a complex disorder, and its risk is 

influenced by multiple genetic and environmental factors. In this study, an AD risk 

gene prediction framework based on spatial and temporal features of gene expression 

data (STGE) was proposed. 

Methods: We proposed an AD risk gene prediction framework based on spatial and 

temporal features of gene expression data. The gene expression data of providers of 

different tissues and ages were used as model features. Human genes were classified 

as AD risk or non-risk sets based on information extracted from relevant databases. 

Support vector machine (SVM) models were constructed to capture the expression 

patterns of genes believed to contribute to the risk of AD.  

Results: The recursive feature elimination (RFE) method was utilized for feature 

selection. Data for 64 tissue-age features were obtained before feature selection, and 

this number was reduced to 19 after RFE was performed. The SVM models were built 

and evaluated using 19 selected and full features. The area under curve (AUC) values 

for the SVM model based on 19 selected features (0.740 [0.690-0.790]) and full 

feature sets (0.730 [0.678-0.769]) were very similar. Fifteen genes predicted to be risk 

genes for AD with a probability greater than 90% were obtained. 

Conclusion: The newly proposed framework performed comparably to previous 

prediction methods based on protein-protein interaction (PPI) network properties. A 

list of 15 candidate genes for AD risk was also generated to provide data support for 

further studies on the genetic etiology of AD.  
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1 Introduction 

Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is 

characterized by cognitive impairment and memory loss. It affected approximately 50 

million people worldwide in 2020, which is expected to increase to 150 million by 

2050 [1]. Advanced age is the most important risk factor for AD [2]. A significant 

increase in the incidence rate of AD was observed in senior citizens after the age of 65 

years [2]. Equal incidence rates of AD were identified for males and females after 

adjusting for age, indicating that sex might not be associated with the risk of AD [2]. 

The pathological features of AD include senile plaques formed by the accumulation of 

β-amyloid protein and neurofibrillary tangles composed of highly phosphorylated τ 

proteins. Several hypotheses have been proposed to explain the pathogenesis of AD, 

including oxidative stress [3], inflammation [3], and DNA damage [4]. However, no 

consensus has yet been reached.  

Previous studies have indicated that AD is a complex disorder, and its risk is 

attributed to multiple genetic and environmental factors [5-6]. In the last decade, 

genome-wide association (GWA) analyses have significantly contributed to the 

genetic etiology of AD [6]. Jansen et al. confirmed 29 risk loci and several relevant 

pathways related to AD through a GWA meta-analysis [7]. In addition, Celeste et al. 

reviewed the relationship between several AD risk genes, including ABCA7, BIN1, 

CASS4, and CD33, and the cellular and neuropathological characteristics of AD [8]. 

Nevertheless, a recent study indicated that approximately half of the heritability of 

AD remains unaccounted [9]. It is probable that a large number of susceptibility loci 

for AD have not yet been discovered. However, recent studies have indicated that 

larger-scale GWA studies in the future are less cost effective due to the intrinsic 

deficiency rooted in the study design of GWA studies; therefore, it might not be a 

preferable choice for unraveling these hidden genomic regions that contribute to the 

risk of AD [10]. In this sense, prioritizing AD risk genes based on evidence gained 

from different perspectives and then validating these candidate risk genes in 

subsequent candidate gene-based association studies might be an effective strategy for 

discovering more relevant genes for AD risk. In a recent study, Cogill et al. applied 
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machine-learning-based methods using brain developmental gene expression data to 

prioritize high-confidence candidate genes for autism spectrum disorder [11]. This 

study established a feasible analysis pipeline for prioritizing candidate risk genes for 

complex disorders, using spatial and temporal gene expression data.  

Multiple lines of evidence have indicated that the expression of AD risk genes 

has specific spatial and temporal features [12-13]. Extracting and properly 

synthesizing information from these gene expression features might be an effective 

way to prioritize the risk genes for AD. In this study, we aimed to construct and 

evaluate a machine-learning-based model to identify high-confidence risk genes for 

AD using spatial and temporal gene expression data extracted from a publicly 

available database.  

2 Methods 

The statistical analysis pipeline is shown in Figure 1. In this study, we propose an 

AD risk gene prediction framework based on spatial and temporal features of gene 

expression data (STGE). In this analysis framework, the gene expression data of 

providers of different tissues and ages were utilized as model features. Human genes 

were classified as AD risk or non-risk sets and randomly split into training and 

validation sets. Support vector machine (SVM) models were constructed to capture 

the expression patterns of genes that were believed to contribute to the risk of AD in 

the training set, which were then applied to the validation set to evaluate model 

performance. The STGE model was then applied to a gene set with an unknown status 

for AD risk, and a confidence score was assigned to each gene.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.06.23285522doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.06.23285522
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1. Analysis pipeline of the model construction and evaluations 

2.1 Data Extraction 

The data used in the present study were extracted from three publicly available 

databases: the GTEx database (https://gtexportal.org/home/) [14], AlzData database 

(http://www.alzdata.org/) [15], and GWAS catalog (https://www.ebi.ac.uk/gwas/) [16].  

Spatial and temporal expression data for each gene were obtained from the GTEx 

database. Gene expression data related to tissues of the human brain (including the 

cerebellum, cortex, anterior cingulate cortex, hippocampus, substantia nigra, caudate, 

cerebellar hemisphere, frontal cortex, hypothalamus, nucleus accumbens, putamen, 

spinal cord, and amygdala) were extracted. Data from tissue sample providers under 

20 or over 70 years of age were not included. In addition, we also removed tissue 

providers who scored 0 or 4 points on the 4-point Hardy Scale for their death 

classification. Finally, gene expression data in 13 types of brain-related tissues for 

14,697 genes were extracted from 317 tissue sample providers of various ages and 

genders (Supplementary Table S1 and Supplementary Figure S1).  

AlzData is a database for scoring correlations between human genes and the risk 

of AD, based on evidence from high-throughput omics data. The scores ranged from 0 

to 5, with a higher score indicating a stronger correlation between the gene and AD. 

Genes with scores of 4 to 5 were extracted to form the AD risk gene set ("the right 

answer"). For genes with scores of 0 to 3, we supplemented the information from the 
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GWAS catalog and excluded genes related to AD to obtain AD non-risk genes. Finally, 

3,899 genes comprising 340 AD risk genes and 3,559 non-AD risk genes were 

identified.  

2.2 Model Construction and Evaluation 

The SVM models were constructed based on spatial and temporal gene 

expression data extracted from relevant databases using the e1071 package of the R 

project. Gene expression data were first grouped by the tissue type and age of the 

tissue providers. The median expression level of each gene in the tissue type age 

group was calculated and used as features in the SVM models. A total of 64 brain 

tissue-related features were obtained for model construction (Supplementary Table 

S2). The dataset was randomly divided into training and validation sets in a ratio of 

7:3. There were 238 AD risk genes and 2,491 AD non-risk genes in the training set. 

The SMOTE function in the DMwR package was used to balance gene numbers. 

Feature selection was conducted using the caret package, and 19 features were 

selected based on recursive feature elimination (RFE). Accuracy and Kappa statistics 

were chosen as the evaluation indicators to estimate the performance of the selected 

features, and we chose the feature set with both the greatest value and least variance 

to build the SVM model. Parameter optimization was performed using a grid search 

strategy. Parameters including model accuracy, specificity, sensitivity, and area under 

the curve (AUC) were utilized to evaluate the performance of the SVM model. The R 

packages pROC and ROCR were used to draw the ROC curve and calculate the AUC, 

respectively. The R package ggplot2 was used for data visualization.  

3 Results 

3.1 Feature selection based on recursive feature elimination 

RFE was used for feature selection. Data for 64 tissue-age features were obtained 

before feature selection, and this number was reduced to 19 after RFE was performed. 

SVM models based on each of these 19 features (the gene expression levels were 

obtained by median values of samples) were built and evaluated for accuracy, 

specificity, sensitivity, and AUC (Table 1). The feature with the highest AUC was the 

human tissue of the brain cerebellum at the age of 40–49 (AUC=0.688).  
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Table 1. The mean accuracy, sensitivity, specificity and AUC of each model built by 

each selected feature from the RFE method 

Tissue Age Accuracy Sensitivity Specificity AUC 

Brain-Cerebellum 40-49 0.604 0.657 0.599 0.688 

Brain-Amygdala 50-59 0.768 0.441 0.799 0.684 

Brain-Frontal Cortex BA9 50-59 0.657 0.598 0.663 0.683 

Brain-Anterior cingulate cortex BA24 30-39 0.67 0.559 0.681 0.683 

Brain-Putamen basal ganglia 30-39 0.645 0.569 0.653 0.682 

Brain-Anterior cingulate cortex BA24 40-49 0.701 0.529 0.717 0.678 

Brain-Cerebellum 60-69 0.551 0.676 0.539 0.674 

Brain-Cerebellar Hemisphere 60-69 0.689 0.549 0.702 0.667 

Brain-Frontal Cortex BA9 60-69 0.644 0.520 0.656 0.665 

Brain-Substantia nigra 40-49 0.715 0.500 0.736 0.664 

Brain-Putamen basal ganglia 60-69 0.691 0.520 0.707 0.655 

Brain-Caudate basal ganglia 30-39 0.695 0.559 0.708 0.640 

Brain-Anterior cingulate cortex BA24 50-59 0.733 0.461 0.759 0.636 

Brain-Cerebellum 30-39 0.770 0.461 0.800 0.633 

Brain-Substantia nigra 60-69 0.774 0.461 0.803 0.628 

Brain-Amygdala 60-69 0.736 0.480 0.760 0.626 

Brain-Nucleus accumbens basal ganglia 40-49 0.564 0.598 0.561 0.621 

Brain-Nucleus accumbens basal ganglia 60-69 0.561 0.539 0.563 0.606 

Brain-Hypothalamus 30-39 0.555 0.52 0.558 0.604 

3.2 Comparison between SVM models built by selected and full feature sets 

SVM models were built and evaluated using 19 selected and full features (Table 2 

and Figure 2). The AUC values for the SVM model based on 19 selected features 

(0.74 [0.690-0.790]) and full feature sets (0.730 [0.678-0.769]) were very similar. To 

evaluate model robustness, we also constructed these modes based on the mean 

expression level of each gene in the tissue type age group. In addition, to examine the 

potential effects of sex, SVM models were constructed based on the expression data 
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from male and female samples. The results are summarized in Supplementary Table 

S3. There are no significant differences when mean values were utilized compared to 

median values. The model performance based on males or females was also very 

similar to that of models constructed using all samples.  

Table 2. The average accuracy, sensitivity, specificity and AUC of the two models 

based on ten-fold cross validation 

 
selected feature set full feature set 

Accuracy  0.756±0.016 0.754±0.023 

Sensitivity 0.588±0.069 0.500±0.054 

Specificity  0.772±0.016 0.778±0.021 

AUC(95%CI) 0.740(0.690-0.790) 0.730(0.678-0.769) 

 

 

Figure 2. ROC curves of the SVM models constructed based on the median gene 

expression levels in different tissue-age groups 

3.3 Risk genes of AD predicted by the SVM model 

Based on the SVM models constructed using tissue-age-specific gene expression 
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data, the risk contributions to AD onset and development were evaluated for 10,798 

genes that were not included in the model construction and evaluations (the external 

gene set). Fifteen genes predicted to be risk genes for AD with a probability greater 

than 90% were obtained (Table 3). GUCY1B3 had the highest confidence score as a 

risk gene for AD (0.93). To further investigate this gene set, we examined the gene 

expression patterns of these 15 genes in the human brain and made a heatmap 

showing in Supplementary Figure S2. In addition, 191 risk genes for AD with a 

probability greater than 80% are shown in Supplementary Table S4.  

Table 3. Genes predicted by the SVM model with their confidence score, location, 

length(bp) and biotype 

Genes Confidence Location Length (bp) Type 

SIX3 0.911 2p21 4,370 protein coding 

EFEMP1 0.904 2p16.1 58,197 protein coding 

GUCY1B3 0.939 4p32.1 48,820 protein coding 

MTPN 0.921 7q33 50,600 protein coding 

ACTR3B 0.904 7q36.2 311,231 protein coding 

BAG3 0.932 10q26.11 26,440 protein coding 

INPP5A 0.924 10q26.3 245,697 protein coding 

LRRC10B 0.917 11q12.2 2,270 protein coding 

ELMOD1 0.914 11q22.3 75,771 protein coding 

DRD2 0.900 11q23.2 66,087 protein coding 

GABRA5 0.922 15q12 82,490 protein coding 

PITPNM3 0.916 17p13.2-p13.1 105,293 protein coding 

SEZ6 0.909 17q11.2 51,540 protein coding 

ICAM5 0.922 19p13.2 7,428 protein coding 

CSDC2 0.916 22q13.2 16,732 protein coding 

4 Discussion 

In the present study, we propose a novel machine-learning-based analysis 

pipeline using data extracted from the GTEx database to prioritize candidate AD risk 
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genes. The performance measured by the AUC of the SVM models was promising, 

and a list of 15 candidate AD risk genes was presented according to the prediction 

model. In the last decade, several studies have been published to identify candidate 

AD risk genes, and most of these studies were based on protein–protein interaction 

(PPI) networks to identify hub genes using GWA data. The model performance 

measured by the AUC of these previous studies ranged from 0.63–0.78 depending on 

different settings. Unlike these previous studies, the STGE framework was used to 

predict AD candidate genes based on the spatial and temporal features of AD risk 

gene expression. The performance of our model (AUC=0.74) was comparable to that 

of previous studies. In this sense, the present study proposed and validated an 

alternative framework for prioritizing risk genes for AD. In the future, an analysis 

framework integrating information from gene expression features and PPI network 

properties might be a promising method to further promote the accuracy and 

effectiveness of prediction models for prioritizing candidate AD risk genes.  

Although most patients with AD experience the first symptom in their mid-60s, 

previous studies have indicated that changes in the molecular levels occur at a much 

earlier stage [17-18]. A previously published family-based longitudinal study has 

shown that familial AD may have a long prodromal phase of several years [19]. A 

recent cohort study also indicated that plasma phospho-tau181 levels were much 

higher from 16 years prior to the onset of AD symptoms in AD patients with specific 

DNA mutations [20-21]. The results of the current study offer new evidence at the 

gene expression level for prodromal changes in AD patients. Although AD is a 

late-onset disorder, more than half of the selected features were obtained from sample 

providers before the age of 60 years. Five of the 19 features, including tissues of the 

anterior cingulate cortex, putamen basal ganglia, caudate basal ganglia, cerebellum, 

and hypothalamus, were obtained from providers who are 30–39 years old. In 

accordance with multiple lines of previous evidence, these findings indicate that 

molecular-level changes might be identified several years before early symptoms 

appear in patients with AD. Nevertheless, since a couple of the AD risk genes used in 

this study were extracted from studies focusing on early-onset AD, we need to be 
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cautious in interpreting these results. Future research using longitudinal data might 

provide more clues for identifying prodromal biomarkers for AD and, in turn, shed 

light on early screening and prevention of this complex neurodegenerative disorder. 

Among the 15 candidate genes identified through STGE, a few are of particular 

interest. Sine oculis homeobox homolog 3 (SIX3) encodes a type of transcription 

factor belonging to the sine oculis homeobox transcription factor family [22]. 

Multiple lines of evidence based on animal models have linked this locus to brain 

development [22-23]. A recent GWA study associated genetic polymorphisms of SIX3 

with math ability, and its weakening was considered a sign of the progression of AD 

patients [24]. Actin-related protein 3B (ACTR3B) encodes a member of the 

actin-related protein (ARP) family, which might regulate and induce cell shape 

changes and motility [25]. Several previous studies have linked ACTR3B to brain 

aging progression, although no direct GWA study has validated the connection 

between genetic polymorphisms of these loci and AD [25-26]. In addition, multiple 

animal models and population-based evidence have been published for dopamine 

receptor D2 (DRD2) and gamma-aminobutyric acid type A receptor subunit alpha 5 

(GABRA5) being associated with brain-related disorders and traits, including 

schizophrenia, bipolar disorder, Parkinson 's disorder, and neurotransmission [27-30]. 

In a recent study, Blum et al. concluded that the DRD2 Taq1A A1 allele might 

increase the risk of Alzheimer's aging in African Americans by integrating and 

reviewing previously published data [31]. Additionally, the genes BAG Cochaperone 

3 (BAG3), inositol polyphosphate-5-phosphatase A (INPP5A), seizure related 6 

homolog (SEZ6), and intercellular adhesion molecule 5 (ICAM5) are involved in the 

progression of AD has been proposed in several functional studies using animal 

models [32-36]. Within these genes, through proteomic study, BAG3 may affect AD 

by influencing the interpretation of Aβ and tau protein, and patients with AD have 

much lower levels of SEZ6 in their cerebrospinal fluid than those without dementia 

[37-38]. Further in vivo and in vitro studies are needed to validate the functional 

connections between the risk of AD and the genes on the predicted list.  

The current study has several limitations. First, there is still much space for the 
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promotion of STGE, although the performance of STGE is comparable to that of 

previous models based on PPI network properties. In addition, as bioinformatics data 

mining is based on publicly available databases, the completeness of the current work 

might be limited owing to data availability. The gene expression data in the brain 

substantia nigra in the age group of 30–39 years were unavailable from the database; 

therefore, this feature was not included in the model construction and evaluation. 

Furthermore, only protein-coding genes were examined in the current study, although 

non-coding RNA have been shown to play an important role in the pathogenesis of 

complex disorders [39].  

In summary, in the present study, an efficient analysis framework based on spatial 

and temporal features of gene expression was proposed to prioritize AD risk genes. 

The newly proposed framework performed comparably to previous prediction 

methods based on PPI network properties. A list of 15 candidate genes for AD risk 

was also generated to provide data support for further studies on the genetic etiology 

of AD.  
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