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ABSTRACT 

BACKGROUND Cancer is associated with significant economic impacts. Quantifying the scale of 

these impacts is challenged by confounding variables that jointly influence both cancer status 

and economic outcomes such as healthcare costs and quality of life. Moreover, the increasing 

costs attributed to cancer drug development complicate the cost-effective provision of cancer 

care.  

METHODS We address both challenges in this paper by using germline genetic variation in the 

risk of incident cancer as instrumental variables in Mendelian Randomization analyses of eight 

cancers. We developed causal estimates of the genetically predicted effect of bladder, breast, 

colorectal, lung, multiple myeloma, ovarian, prostate and thyroid cancers on healthcare costs 

and quality adjusted life years (QALYs) using outcome data drawn from the UK Biobank cohort. 

We then used Mendelian Randomization to model a hypothetical population-wide preventative 

intervention based on a repurposed class of anti-diabetic drugs known as sodium-glucose co-

transporter-2 (SGLT2) inhibitors very recently shown to reduce the odds of incident prostate 

cancer.  

RESULTS Genetic liability to prostate cancer and to breast cancer had material causal impacts 

on healthcare costs and QALYs. Mendelian Randomization results for the less common cancers 

were associated with considerable uncertainty. SGLT2 inhibition was unlikely to be a cost-

effective preventative intervention for prostate cancer, although this conclusion depended on 

the price at which these drugs would be offered for a novel anti-cancer indication.  

IMPLICATIONS Our new causal estimates of cancer exposures on health economic outcomes 

may be used as inputs into decision analytic models of cancer interventions such as screening 
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programmes or simulations of longer-term outcomes associated with therapies investigated in 

RCTs with short follow-ups. Our new method allows us to rapidly and efficiently estimate the 

cost-effectiveness of a hypothetical population-scale anti-cancer intervention to inform and 

complement other means of assessing long-term intervention cost-effectiveness. 
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1 Introduction  

Cancer, a major global cause of morbidity and death (1-4), is associated with important 

economic impacts on patients, carers and health systems (5-8). Increases in the average age of 

populations, and improvements in the detection and treatment of cancer, are creating growing 

cohorts of individuals who have received cancer treatment, who are receiving treatment, or 

who may receive some form of cancer intervention for the rest of their lives (6, 9, 10). In turn, 

extended treatment modalities, new adjuvant regimes and increases in the costs of therapies, 

challenge the cost-effective delivery of care for cancer patients (8, 11-16).  

Knowledge of how cancer status affects health economic outcomes such as healthcare cost and 

patient quality of life is central to providing cost-effective care to patients. Conventional study 

designs that examine associations between cancer status and these outcomes can be affected 

by measurement error and by omitted variable bias. Any traits, behaviours, or disease 

processes (including prodromal processes) that influence or are influenced by cancer status are 

likely in most cases to independently influence healthcare costs, quality of life or both.  

For example, risk factors such as cigarette smoking or adverse weight profiles may co-occur, are 

known to independently and jointly influence risk for many cancers (17-21), and have 

quantitatively important causal influences on health economic outcomes (22-25). Cohort 

studies (for example (26)) that attribute costs to cancer patients may account for direct costs 

following a diagnosis of cancer, but cannot reflect all causal impacts associated with liability to 

cancer or cancer diagnoses because in general it is not possible to identify all confounding 

variables, to assess their contribution without measurement error, to condition away their 

influence in quantitative analysis, or to include all downstream causal impacts.  

A further challenge to providing affordable care relates to the high and increasing costs 

associated with anti-cancer pharmacotherapies (27). The inflation-adjusted launch price of 

newly approved cancer drugs in the United States increased at 10% every year between 1995 

and 2013 (28), implying a doubling of prices roughly every 7 years, and amounting to average 
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annual increases of $8,000. Annual average costs for novel anti-cancer drugs in the US are now 

over $100,000 and considerably more where such drugs are taken in combination (13, 29, 30). 

This is despite weak or no evidence of a connection between high prices, development costs 

and therapeutic efficacy for drugs as a whole (31-34). These challenges are not confined to any 

one country (8, 14, 15, 35-38) and serve to emphasize the formidable costs associated with 

developing and remunerating anti-cancer pharmacotherapies.  

Identifying cost-effective cancer therapies, and improving the efficiency of drug development, 

therefore offers considerable promise for improving the value of cancer care. This paper 

addresses both challenges. We report the first use of Mendelian Randomization (39, 40) to 

estimate the causal effect of genetic liability to different site-specific cancers on, respectively, 

healthcare cost and quality of life.  

Mendelian Randomization (39-43) is a type of instrumental variable analysis that relies on the 

natural experiment of quasi-random allocation of genetic variation from parents to children at 

conception. Some of this genetic variation is known to influence susceptibility to cancer and is – 

in principle, and with assumptions that we describe below – independent of post-conception 

influences that would otherwise confound the relationship between cancer status and health 

economic outcomes in conventional analytic modelling. We then use these Mendelian 

Randomization estimates to efficiently assess the cost-effectiveness of a novel and potentially 

affordable population-wide anti-cancer prophylactic drug therapy repurposed from the 

treatment of diabetes. 

Together, these two work strands demonstrate the feasibility of using Mendelian 

Randomization to study the impact of cancer exposures on health economic outcomes, as well 

as the practicality of these methods to rapidly and efficiently estimate the cost-effectiveness of 

anti-cancer interventions to complement, prioritise or inform the design of randomized 

controlled trials or other evaluations of cancer therapies.    

2 Methods 
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2.1 Introduction 

We used Mendelian Randomization to estimate the causal effect of cancer on healthcare costs 

and on quality of life, and in turn, quality adjusted life years. Many introductions to Mendelian 

Randomization are available (39, 41-43). Briefly, Mendelian Randomization relies on Mendel’s 

first (random segregation of alleles at conception) and second (independent assortment of 

alleles) laws of inheritance, which describe how genetic variants are acquired by children from 

their parents. An allele refers to the specific form of genetic variation found a particular 

location in the genome.  

Some of these genetic variants transmitted in this conditionally random manner are known to 

influence the risk of expressing specific phenotypes, including disease phenotypes such as 

cancer. At a population level, the association of genetic variants that influence the risk of, for 

example, a site-specific cancer, permits the statistical identification of groups that differ in the 

levels of their exposure to the risk for that cancer.  

Genetic variants inherited according to Mendelian principles are therefore strong candidates as 

instrumental variables since their association with an exposure of interest can – in principle – 

be demonstrated (ideally from genome wide association studies), thus satisfying the first 

assumption (“relevance”) of valid instrumental variable analysis.  

The second assumption necessary for valid instrumental variable analysis is that the instrument 

be independent of all confounding variables; put differently, that the instrument should be as 

“good as randomly assigned” across different groups defined by confounding variables. This 

assumption cannot be tested, as this requirement encompasses all manner of confounding 

variables, including those are unmeasured, unobserved, and unknown. However, the 

assignment of genetic variants at conception means that postnatal influences are unlikely to 

confound associations of interest, meaning that differences in outcomes between groups 

defined by genetic liability to cancer (in this case) may be more causally attributed to the cancer 

exposure itself. 
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The third assumption for valid instrumental variable analysis, the exclusion restriction, requires 

that the instrument influence the outcome only via the exposure of interest. This is generally 

untestable since it implies independence of the instrument from all outcomes (including 

potential outcomes) conditional on the exposure. Moreover, genetic instrument variables of 

the type used in Mendelian Randomization are very likely to violate this assumption in two 

ways.  

The first potential violation is linkage disequilibrium, which refers to correlation between 

genetic variants which may arise when they are located near to each other on the genome. 

Linkage disequilibrium will violate the exclusion restriction if correlated variants affect the 

outcome other than via the exposure of interest. The second potential violation of the exclusion 

restriction may arise due to pleiotropy, which refers to the effect of a variant on more than one 

phenotype. Pleiotropy will violate the exclusion restriction if these other phenotypes also affect 

the outcome through channels that operate independently of the exposure.  

Below, we describe how we identified genetic variants to serve as instrumental variables for as 

wide a variety of site-specific cancers as possible in our Mendelian Randomization analysis. We 

also describe the steps taken to ensure our results were robust to potential violations of the 

instrumental variable assumptions.  

2.2 Polygenic risk score instrumental variable models 

We developed polygenic risk scores (PRSs) for each cancer, the specific steps in the 

construction of which are described in detail below. The PRSs, which are functions of the 

weighted log-odds of developing each specific cancer, were used as instruments in “just 

identified” two-stage-least square (2SLS) instrumental variable models. “Just identified” models 

have as many instruments as there are exposures whereas “over identified” models have more 

instruments than exposures. We used the ivreg2 package in Stata (version 17.0) with robust 

standard errors to estimate these models.  

In the first stage of the 2SLS model for each cancer, a cancer exposure variable was regressed 

on the PRSs with age at baseline assessment, sex, 40 genetic principal components (to control 
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for the effects of ancestry-related population structure), and UK Biobank recruitment centre as 

covariates. The predicted values of the coefficient on the instrument were then used in the 

second stage regressions with either costs or quality of life as the outcomes. F-statistics from 

the first stage regressions were inspected to assess instrument strength to assess whether the 

PRS for each cancer was sufficiently associated with the observed cancers in the population 

(23).    

Our Mendelian randomization analysis estimates the mean difference in the outcomes using an 

additive structural mean model (24–26), interpreted as the average change in each outcome 

caused by the hypothetical average effect of having the cancer versus not across the population 

(44). This assumes that a constant effect of genetic liability to each cancer on the cost and 

quality of life outcomes. An alternative assumption is to interpret the results as a local average 

treatment effect, which assumes a monotonic effect of genetic variants on each cancer 

exposure (45).  

We compared the Mendelian randomization estimates with estimates from conventional 

separate multivariable linear regressions for QALYs and healthcare costs, with age, sex, 40 

genetic principal components, and recruitment centre as covariates. We performed Hausman 

endogeneity tests (27), in which a small p-value indicates there was evidence the Mendelian 

Randomization and multivariable effect estimates were different, although the power of these 

tests is relatively low (46).   

2.3 Sensitivity analyses 

We conducted a variety of sensitivity analyses. We performed a multivariable adjusted analysis 

with additional variables (Townsend Deprivation Index, household income, highest educational 

qualification, ever smoked, and body mass index), to reduce the risk of confounding in the 

multivariable adjusted analyses. 

We re-ran the main Mendelian Randomization analysis stratified by sex and age group (less 

than 50 years, 50 to 59 years, and 60+ years), both separately and together. We also stratified 

by when the participant was diagnosed with cancer, either before or after recruitment into UK 
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Biobank, as participants who received their cancer diagnosis before recruitment were more 

likely to have smaller healthcare costs associated with diagnosis, and possibly curative 

treatment, but more likely to have greater healthcare costs associated with managing 

progressing cancers, and vice versa for participants who received their cancer diagnosis after 

recruitment. 

We also examined potential violations of the exclusion restriction due to horizontal pleiotropy. 

This occurs when a variant influences the outcome through a channel other than the cancer of 

interest. This may be via another disease, trait, behaviour, or health condition other than the 

cancer specifically under investigation.  

To test for the presence of pleiotropy, we estimated over-identified Mendelian Randomization 

models comprising the individual SNPs used in constructing cancer-specific PRSs. Heterogeneity 

in the effect of these SNPs on the cost and quality of life outcomes could indicate a violation of 

the exclusion restriction.  

Heterogeneity in effect estimates across SNPs can be assessed by comparing Cochran’s Q 

statistic � � ∑ �

���
� ���� � ��������

�	�  to the critical values of a chi-squared distribution. In this 

formula, there are J total SNPs, ����� is the inverse variance weighted (IVW) effect calculated 

for all J SNPs, ��� is the effect estimate for a specific SNP j, and 	
��  the variance of the SNP-

outcome association. The intuition for this formula is that any ��� with a large impact on the 

outcome that different from the overall IVW effect of all SNPs on the outcome may suggest 

multiple pleiotropic channels of influence of that SNP on the outcome not mediated by the 

specific cancer exposure investigated. 

We used consensus methods and a modelling method (47) for our sensitivity analyses, each of 

which embodied different types of assumption about whether and in which respects the 

exclusion restriction may be violated. We first estimated the IVW estimates needed to calculate 

Cochran’s Q statistic, which involved calculating instrumental variable estimates for each SNP 

separately, and then combining them in random-effects meta-analysis with weights determined 
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by the precision of the association between the SNP and the outcomes (healthcare costs and 

quality of life respectively). This assumes no violations of the exclusion restriction or no net 

effect of any such violations on the point estimates.  

We then compared this restrictive baseline model against more models that are robust to 

different types of exclusion restriction violation. We implemented the Mendelian 

Randomization Egger estimator, which is consistent even if all SNPs are pleiotropic provided 

additional assumptions (relating to the association between instrument strength and the direct 

pleiotropic effect of SNPs) are met – see (48, 49). We also implemented a penalized weighted 

median estimator, which is consistent if at least 50% if the SNPs are valid instrumental variables  

(50). We also implemented a weighted mode estimator, which is consistent if the largest 

homogenous cluster of SNPs are valid even if more than 50% of SNPs are invalid as instrumental 

variables (51).  

Note that results from these estimators are on a different scale to the instrumental variable 

estimates obtained from the polygenic risk score models. The over-identified sensitivity 

analyses reflect the measurement scales used for the outcomes in the respective source 

genome-wide association studies (GWASs), which are based on logistic regression. The scale of 

these outcomes therefore reflects a change in costs or quality of life per unit change in the log-

odds of cancer status. These results are on a relative rather than absolute scale, reflecting the 

relative increase in genetic liability to cancer from increasing the number of risk-increasing 

alleles.  By contrast, the effect estimates obtained from the 2SLS just-identified models are 

estimates of genetically influenced changes in disease status in the analysis population.  

2.4 Modelling the cost-effectiveness of a novel anti-cancer intervention 

We used our new estimates of the causal impact of cancer on healthcare cost and QALYs to 

simulate the impact of a new population-wide anti-cancer intervention. Zheng et al (52) used a 

Mendelian Randomization study design to assess the impact of sodium-glucose cotransporter 2 

(SGLT2) inhibitors (a type of oral glucose lowering drug) on prostate cancer risk. Their analysis 

found that SGLT2 inhibition, equivalent to a 1.09% reduction in HbA1c levels, lowered the odds 
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of prostate cancer by 71% (OR=0.29, 95% CI: 0.13 to 0.65) in their primary analysis and by 49% 

in replication analysis (OR=0.51, 95% CI: 0.33 to 0.79). 

In the absence of data on how such the hypothetical SGLT2 intervention would be dosed and 

costed for this new indication, we assumed that it would be offered in the form of 300mg of 

canagliflozin, a particular type of SGLT2 inhibitor. As a monotherapy, a dose of 300mg of 

canagliflozin had a broadly similar (53, 54) impact on HbA1c (approximately a 1% reduction) as 

did the MR estimates in the Zheng et al (52) paper. These comparisons are necessarily rather 

coarse since the Zheng et al (52) estimates relate to a largely unselected population, while the 

effectiveness estimates in the trials relate to effectiveness amongst diabetic patients, are 

dependent (to some degree) on baseline HbA1c levels, and we assume in our analysis no side-

effects from prophylactic treatment with these inhibitors.  

We further note that the Zheng et al (52) estimates pertain to lifelong SGLT2 inhibition, and 

initiation of daily canagliflozin by, for example, the middle to early old age men represented in 

our UK Biobank cohort will likely understate the cost-effectiveness of this intervention. These 

are restrictive assumptions that may not apply to the use of these drugs in a “real-world” 

deployment, but at least serve to indicate how these methodologies can rapidly provide an 

initial estimate of cost-effectiveness for a novel population-wide anti-cancer intervention.  

Our hypothetical intervention therefore assumed that every man in the analysis sample was 

offered and took daily SGLT2 inhibitors (and specifically 300mg of canagliflozin) from their 

recruitment into the UK Biobank cohort. To estimate the causal impact of prostate cancer on 

healthcare cost and QALYs, we needed to estimate 3 quantities: 1) the proportion of men who 

developed prostate cancer, 2) the proportion of men who wouldn’t have developed prostate 

cancer had they received the intervention, and 3) the total healthcare and QALY cost saved by 

preventing those men from developing prostate cancer. Each of these three quantities had 

associated statistical imprecision. 
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For the first quantity, we identified the proportion of all men in UK Biobank who were 

diagnosed with prostate cancer, as well as within different age bands (less than 50 years, 50 to 

59 years, and 60+ years), estimating the relevant standard errors (SE) of each proportion: 

SE � �proportion � �1 � proportion��  

where N is the total number of men (overall, or within each age band).  

For the second quantity, we converted the odds ratios from Zheng et al (52) and the 

proportions estimated in quantity 1 into risk differences: 

Risk difference � � � OR�� � �  � � OR� � �� 

where n is the number of men with prostate cancer, N is the total number of men, and OR is 

the odds ratio. For example, 6,155 of 144,032 men (4.3%) in UK Biobank were diagnosed with 

prostate cancer up to 31 March 2017, so an OR of 0.29 from Zheng et al (52) gives a risk 

difference of -3.0%.  

For the third quantity, we used the relevant multivariable adjusted or Mendelian randomization 

results estimated in section 2.2, both for total annual healthcare costs and QALYs. 

We multiplied the risk difference (quantity 2) by the relevant multivariable adjusted or 

Mendelian randomization estimate (quantity 3) to estimate the annual total healthcare costs 

and QALYs saved by reducing incidence of prostate cancer with the intervention. 

Because each quantity had associated uncertainty, we repeated the hypothetical intervention 

10,000 times, with each quantity taken from a normal distribution with a mean of the effect 

estimate, and a standard deviation of the standard error of the effect estimate. We present the 

median of the resulting estimates as the point estimate for the effect of the intervention, with 

the 2.5 and 97.5 percentiles as the 95% confidence interval. This approach (implicitly) accounts 

for survival up to a median of seven years of follow up.   
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We estimated the cost-effectiveness of SGLT2 inhibition for population-wide prophylaxis of 

incident prostate cancer. Using estimates from our conventional multivariable and Mendelian 

Randomization estimates of the impact of prostate cancer on healthcare costs and quality-

adjusted life years, we compared the impact of SGLT2 inhibition on prostate cancer risk 

assuming that the cost of doing so was equivalent to the cost 300mg of daily canagliflozin.   

We then compared the cost and effect of so doing to a cost-effectiveness threshold of £20,000 

using a net monetary benefit calculation. This threshold is routinely used by the National 

Institute of Health and Care Excellence (NICE) to appraise the value of new medical 

technologies, including pharmacotherapeutic agents.  Under this approach, interventions are 

cost-effective when their incremental benefit (measured as the difference between 

intervention benefits and comparator benefits) scaled by the cost-effectiveness threshold 

exceed incremental costs (measured as the difference between intervention costs and 

comparator costs). We measure benefits in the present context using quality-adjusted life 

years, and compared population-wide SGLT2 inhibition to a “do nothing” comparator, which 

reflects the absence of any accepted pharmacotherapeutic intervention for reducing 

population-wide prostate cancer risk.  

3 Data  

3.1 Study population 

UK Biobank is a population-based health research resource consisting of over 500,000 people, 

who were recruited between the years 2006 and 2010 from 22 centres across the UK (6). We 

used medical data from hospital episode statistics (HES) linked to all participants up to 31st 

March 2015, and primary care (general practice) data linked to approximately 31% of UK 

Biobank participants registered with GP surgeries using EMIS Health (EMIS Web) and TPP 

(SystmOne) software systems, up to 31st March 2017. The study design, participants and quality 

control methods have been described in detail previously (7–9). UK Biobank received ethics 

approval from the Research Ethics Committee (REC reference for UK Biobank is 11/NW/0382). 

Further information on genotyping is available in (10). 
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We restricted the main analysis to unrelated individuals of white British ancestry (to avoid 

confounding by population stratification) living in England or Wales at recruitment. In our 

sample, 38% of participants had primary care data. 

3.2 Identification of cancers and creation of polygenic risk scores  

We used UK Biobank as the source of our outcome data, the creation of which is described 

below. To avoid biases from sample overlap (55), we searched for genome-wide association 

studies (GWASs) on any type of cancer not using data from UK Biobank cohort. We searched 

the MR Base (mrbase.org) database of GWASs and the Elizabeth Blackwell Institute GWAS 

catalogue to identify cancers with at least clumped 2 single nucleotide polymorphisms (SNPs) 

associated with the cancer.  

We also restricted our analysis to cancers with specific international classification of disease 

(ICD) codes at one decimal place, for example, multiple myeloma is coded as “230.0” in ICD-9, 

and “C90.0” in ICD-10. Where we found multiple GWAS for the same cancer, we preferentially 

used the GWAS with the most participants. 

For each cancer, we clumped the genome-wide significant SNPs at an R
2 threshold of 0.001 

within a 10,000 kilobase window. We searched for proxies for all SNPs not in UK Biobank using 

the European subsample of 1,000 genomes as a reference panel (with a lower R2 limit of 0.6) 

(11). We used all included SNPs to construct PRS for each cancer, calculated as the weighted 

sum of the SNP effect alleles for all SNPs associated with each cancer, with each SNP weighted 

by the regression coefficient from the corresponding GWAS.  

For some cancers, we found multiple GWASs which had subgroups of cancer as the outcome. In 

these cases, we created PRSs for the main cancer (e.g. breast cancer) as well as the available 

subgroups (e.g. ER+ and ER- breast cancers). There was insufficient detail in the ICD codes to 

determine the subgroup of cancer for all participants in UK Biobank, and as consequence the 

exposure used in the main analyses and reported below was for the general (e.g. breast cancer) 

exposure rather than its subtypes. In Supplementary Table S3 we also report Mendelian 

Randomization analysis using the available cancer subgroups.  
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Following this process, the following cancers were available to be analysed: bladder, breast, 

colorectal, lung, multiple myeloma, ovarian, prostate and thyroid. Box 1 contains details for all 

PRS we generated for these cancers, including the source GWAS, the number of SNPs in the 

PRS, and the R2 value of the PRS and the cancer from logistic regression with no covariates. 

Supplementary Table 1 contains details for all SNPs used these PRSs. We created PRS for 8 

cancers that had suitable GWAS, with an additional 13 PRS for subgroups of these cancers (2 for 

breast cancer, 2 for lung cancer, 9 for ovarian cancer), see Box 1.  

Box 1: Creation of cancer polygenic risk scores 

Cancer Subgroup GWAS SNPs R
2 

Bladder All 
Figueroa et al (56) 

(2013) 
10 0.57% 

Breast 

All 
Michailidou et al 

(2017) (57) 

139 2.54% 

ER- 105 0.56% 

ER+ 36 2.38% 

Colorectal All 
Schumacher et al 

(2015) (58) 
8 0.30% 

Lung 

All 
Wang et al  (2014) 

(59) 

5 0.08% 

Adenocarcinoma 2 0.11% 

Squamous cell 4 0.13% 

Multiple 

myeloma 
All 

Mitchell et al (2016) 

(60) 
13 0.72% 

Ovarian 

All 

Phelan et al (2017) 

(61) 

12 0.20% 

Clear cell 1 0.01% 

Low malignant potential 4 0.10% 

Mucinous, invasive 3 0.002% 

Mucinous, invasive, low malignant 

potential 
5 0.001% 

Mucinous, low malignant potential 4 0.002% 

Serous, high grade 15 0.24% 

Serous, high and low grade 15 0.25% 

Serous, low grade, low malignant 

potential 
8 0.16% 

Serous, low malignant potential 3 0.10% 

Prostate All 
Schumacher et al 

(2018) (62) 
123 4.04% 

Thyroid All 
Gudmundsson et al 

(2017) (63) 
8 1.54% 

Notes: GWAS: genome wide association study. SNP: Single nucleotide polymorphism. ER- and ER+: Estrogen receptor 

negative (ER-) and estrogen receptor positive (ER+). The “All” categories indicates main analyses and other indicates 

additional analyses, using GWAS for subgroups of cancer, although the exposure was all cancers in the respective 

category. R
2
 indicates the pseudo R

2
 from a logistic regression of the cancer on its PRS, with no other included 

covariates.   

 

We used age, sex and UK Biobank recruitment centre reported at the UK Biobank baseline 

assessment as covariables, as well as 40 genetic principal components derived by UK Biobank to 

control for population stratification (35). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.06.23285521doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.06.23285521
http://creativecommons.org/licenses/by/4.0/


15 

 

Public 

3.3 Estimation of quality-adjusted life years  

We created health-related quality of life for all participants in UK Biobank from recruitment 

until March 2017. The details of how these data were constructed are given in Harrison et al 

(64). In brief, we used the data on quality of life in Sullivan et al (65) for 240 health conditions 

to create person-specific quality of life scores for every individual for all participants per day in 

UK Biobank from recruitment to 31 March 2017 or death, whichever came first. We multiplied 

the results for QALYs by 100 to give the percentage of a QALY changed by having versus not 

having the cancer. Note that the QALY estimates represent the change in QALYs over an 

average year of follow-up; that is, they are not cumulative over time.  

These health conditions were recorded in primary care records, hospital records (hospital 

episode statistics) or self-reported in the baseline UK Biobank recruitment questionnaire. These 

data were averaged over years of follow-up to create quality-adjusted life years (QALYs) for 

each individual. The full list of health conditions used to create these QALYs is reported in 

Supplementary Table 2, alongside the ICD-9, ICD-10, Read version 2 and 3 codes (for primary 

care) associated with each condition.  

3.4 Estimation of healthcare costs  

We have previously reported our approach to creating healthcare cost for the UK Biobank 

cohort (22, 66).  Briefly, we created healthcare costs from records of procedure and diagnosis 

codes recorded in Hospital Episode Statistics linked to the UK Biobank cohort. This 

encompassed all inpatient care (for which patients occupy a bed but do not necessarily stay 

overnight) for publicly funded care in NHS hospitals from recruitment into UK Biobank to 31 

March 2015. We used these data to calculate inpatient hospital costs per-patient per year of 

follow-up. Primary care costs from recruitment into UK Biobank until 31 March 2017 were 

estimated from the costs of primary care consultations and from the cost of prescribed drugs 

(as of November 2019). Further details on the construction of primary care costs are given in 

Harrison et al (64).  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.06.23285521doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.06.23285521
http://creativecommons.org/licenses/by/4.0/


16 

 

Public 

We combined annual primary and secondary care healthcare costs to create a total annual 

healthcare cost figure per person for each year of follow up. This comprised costs related to 

inpatient hospital care episodes, primary care appointments and primary care drug 

prescriptions. Primary care data were available for 38% of the sample. We used multiple 

imputation by chained equations to impute primary care healthcare costs and other outcomes 

where data were missing. We created 100 imputed datasets (16) and analysed these datasets 

using Rubin’s rules. Other elements of care, such as emergency care and private healthcare 

undertaken in private facilities, were not available as outcomes for this cohort. Including these 

costs would likely increase the overall size of our total cost estimate per person but is very 

unlikely to alter the magnitude of the associations we estimate in conventional or Mendelian 

Randomization models.  

The price for 300mg of canagliflozin, used as an exemplar SGLT2 inhibitor to model the cost-

effectiveness of offering a population wide intervention to reduce prostate cancer risk, was 

taken from the 2019 NHS drug tariff price (67). The monthly price for 30 canagliflozin tablets of 

£39.20 was grossed up to give an annual cost figure of £470.   

All costs used in our analysis were expressed in 2019 prices. Cost data not expressed in 2019 

prices were inflated to this price level using the NHS cost inflation index (68).  

3.5 Data and code availability 

The empirical dataset will be archived with UK Biobank and made available to individuals who 

obtain the necessary permissions from the study’s data access committees. The code used to 

clean and analyse the data is available here: https://github.com/sean-harrison-bristol/  

4 Results  

4.1 Introduction  

We analysed data on 310,913 unrelated individuals, of whom 166,981 (53.7%) were female. 

Mean age at recruitment was 56.9 years (standard deviation: 8 years), and participants were 

followed up for a mean of 8.1 years (standard deviation 0.8 years). Median annual total 
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healthcare costs per person were £601 (interquartile range: £212 to £1,217). The most 

prevalent cancer we examined in UK Biobank was breast cancer (6.6% of women), followed by 

prostate cancer (4.3% of men), colorectal cancer (1.4%), bladder cancer (0.7%), lung cancer 

(0.7%), ovarian cancer (0.7% of women), multiple myeloma (0.2%), and thyroid cancer (0.2%). 
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Table 1 Summary of analysis sample  

Variable All Men Women 

N 310,913 144,032 166,881 

Age at recruitment, years [Mean (SD)] 56.9 (7.99) 57.1 (8.10) 56.7 (7.90) 

Years of follow-up [Mean (SD)] 8.1 (0.80) 8.1 (0.80) 8.1 (0.80) 

Participants with complete primary care data [N (%)] 96,331 (30.98) 44,671 (31.01) 51,660 (30.96) 

Death before 31
st

 March 2017 [N (%)] 10,519 (3.38) 6,447 (4.48) 4,072 (2.44) 

Average QALYs per year (predicted) [Median (IQR)] 0.78 (0.65 to 0.89) 0.78 (0.65 to 0.89) 0.78 (0.65 to 0.88) 

Annual Total Healthcare costs [Median (IQR)] £601 (£212 to £1,217) £605 (£206 to £1,240) £596 (£216 to £1,199) 

Average Primary Healthcare costs per year [Median (IQR)] £375 (£128 to £738) £375 (£120 to £745) £375 (£135 to £733) 

Average Secondary Healthcare costs per year [Median (IQR)] £88 (£0 to £494) £90 (£0 to £502) £87 (£0 to £487) 

Breast Cancer [N (%), female only]   10,987 (6.58) 

Bladder Cancer [N (%)] 2,096 (0.67) 1,592 (1.11) 504 (0.30) 

Colorectal Cancer [N (%)] 4,473 (1.44) 2,575 (1.79) 1,898 (1.14) 

Lung Cancer [N (%)] 2,065 (0.66) 1,126 (0.78) 939 (0.56) 

Multiple Myeloma [N (%)] 541 (0.17) 319 (0.22) 222 (0.13) 

Ovarian Cancer [N (%), female only]   1,114 (0.67) 

Prostate Cancer [N (%), male only]  6,155 (4.27)  

Thyroid Cancer [N (%)] 453 (0.15) 112 (0.08) 341 (0.20) 

*Notes: SD: Standard deviation. IQR: Interquartile range.  Results from imputed data, median & IQR are the medians of the 100 

imputed medians/IQRs 

4.2 Results of main analysis  

Estimates from conventional multivariable analysis indicated that cancer diagnoses reduced 

annual QALYs per person and increased annual healthcare costs per person (Table 2). The 

quantitative impacts were material for all cancers; the largest absolute impacts for QALYs arose 

in relation to lung cancer and multiple myeloma for healthcare costs.  
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 Table 2: Results from the multivariable adjusted analyses 

Exposure Outcome Beta (95% CI) 

Bladder Cancer 

QALYs per year -12.42% (-13.37% to -11.47%) 

Total healthcare costs per year £1,346 (£1,282 to £1,410) 

Breast Cancer 

QALYs per year -4.73% (-5.14% to -4.31%) 

Total healthcare costs per year £704 (£676 to £732) 

Colorectal Cancer 

QALYs per year -11.20% (-11.87% to -10.53%) 

Total healthcare costs per year £1,402 (£1,358 to £1,446) 

Lung Cancer 

QALYs per year -25.89% (-26.87% to -24.91%) 

Total healthcare costs per year £1,564 (£1,499 to £1,629) 

Multiple Myeloma 

QALYs per year -18.06% (-19.90% to -16.22%) 

Total healthcare costs per year £3,488 (£3,363 to £3,612) 

Ovarian Cancer 

QALYs per year -11.04% (-12.28% to -9.79%) 

Total healthcare costs per year £1,431 (£1,347 to £1,516) 

Prostate Cancer 

QALYs per year -4.89% (-5.45% to -4.32%) 

Total healthcare costs per year £552 (£512 to £592) 

Thyroid Cancer 

QALYs per year -5.20% (-7.19% to -3.22%) 

Total healthcare costs per year £686 (£549 to £822) 

Notes: CI: confidence interval; QALY: quality-adjusted life year.  

Table 3 presents the Mendelian Randomization estimates for the same cancer exposures and 

outcomes.  The estimates were relatively precise for breast cancer, showing a clear healthcare 

cost and reduction in QALYs (£798 per year, 95% CI: £549 to £1,048 and -5.51% QALYs per year, 

95% CI: -9.32% to -1.70%), and for prostate  cancer, which had much lower healthcare costs and 

change in QALYs (£134 per year, 95% CI: -£217 to £485 per year, and -2.68% QALYS per year, 

95% CI: -7.48% to 2.12%).  

Estimates were imprecise for all other cancers. The Mendelian randomization estimates are 

necessarily less precise than the corresponding conventional estimates, since their precision is a 

function of the amount of variance in each cancer exposure explained by the respective 

polygenic risk score.   
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Table 3: Results from the Mendelian randomization analyses 

Exposure Outcome Beta (95% CI) 

Bladder Cancer 

QALYs per year 1.83% (-42.23% to 45.88%) 

Total healthcare costs per year £445 (£-2,569 to £3,459) 

Breast Cancer 

QALYs per year -5.51% (-9.32% to -1.70%) 

Total healthcare costs per year £798 (£549 to £1,048) 

Colorectal Cancer 

QALYs per year -21.38% (-51.70% to 8.94%) 

Total healthcare costs per year £1,917 (£-181 to £4,016) 

Lung Cancer 

QALYs per year -49.39% (-163.32% to 64.55%) 

Total healthcare costs per year £2,732 (£-5,045 to £10,508) 

Multiple Myeloma 

QALYs per year -80.90% (-220.04% to 58.25%) 

Total healthcare costs per year £10,720 (£1,308 to £20,133) 

Ovarian Cancer 

QALYs per year -100.16% (-213.00% to 12.68%) 

Total healthcare costs per year £4,779 (£-2,289 to £11,847) 

Prostate Cancer 

QALYs per year -2.68% (-7.48% to 2.12%) 

Total healthcare costs per year £134 (£-217 to £485) 

Thyroid Cancer 

QALYs per year -94.41% (-207.80% to 18.98%) 

Total healthcare costs per year £12,071 (£4,332 to £19,810) 

Notes: CI: confidence interval; QALY: quality-adjusted life year.  

F statistics were lowest for lung (F-statistic = 21) and ovarian (F-statistic = 25) cancers, 

suggesting possible weak instrument bias, but very high for prostate (F-statistic = 1,727) and 

breast (F-statistic = 1,824) cancers, see Supplementary table S4. This suggests little evidence for 

weak instrument bias for those exposures for which the most precise estimates were obtained 

in the main analysis.  

The multivariable adjusted analyses were generally consistent with the Mendelian 

randomization analyses, with relatively little evidence from endogeneity tests for differences 

(except for thyroid cancer), see Supplementary Table S6. Large cost impacts were apparent for 

multiple myeloma and thyroid cancer which differed drastically from the multivariable adjusted 

estimates for these cancers. Although no evidence of horizontal pleiotropy was observed for 

either exposure (see Supplementary Table S3), it is possible that genetic variants for both 

cancers indicate such large cost impacts because they may be associated with a heritable factor 

that is upstream of each cancer exposure that itself increases costs.  
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4.3 Mendelian Randomization sensitivity analysis  

We found little evidence of pleiotropy in the Mendelian Randomization estimates for breast 

and prostate cancer, suggesting little evidence that the exclusion restriction was violated. The 

p-values for SNP heterogeneity were between 0.59 and 1.00 for Cochran’s Q statistic, and 

estimates from IVW, Egger, penalized weighted median, and weighted mode Mendelian 

Randomization estimates were all broadly similar, see Supplementary Table S3. There was little 

evidence of pleiotropy for the other exposures, although the number of SNPS available for 

analysis for these other cancers was smaller than for prostate and breast cancer.  

We examined results stratified by sex (Supplementary Table S4). However, as the most precise 

estimates were for breast and prostate cancer (each affecting predominantly one sex), there 

was little evidence of differences between sexes for any other cancer. We also examined results 

split by both age and diagnosis time (pre- or post-baseline) see Supplementary Table S4. For 

breast cancer, the effect of breast cancer on QALYs per year was higher but more imprecise for 

both cancers diagnosed pre-baseline and post-baseline, whereas total healthcare costs per year 

were highest for cancers diagnosed post-baseline (Mendelian randomization estimate: £2,300 

per year, 95% CI: £1,575 to £3,026).  

For prostate cancer, there was little difference in the effects on healthcare costs and QALYs per 

year when split by either diagnosis time or age. There was little difference in the effects on 

healthcare costs and QALYs per year when split by age.  

4.4 Evaluating the impact of SGLT2 inhibition on prostate cancer risk 

We used the Mendelian Randomization estimates of the effect of genetic liability to prostate 

cancer on healthcare costs and QALYs to model the impact of SGLT2 inhibition. Our 

hypothetical intervention assumed that every man in the analysis sample was offered daily 

SGLT2 inhibitors from the start of follow-up in UK Biobank. Since there are no population-wide 

prophylactic pharmacotherapeutic agents which are known to reduce prostate cancer 

incidence, we assessed these effects against a do nothing” comparator. Given odds ratios for 

incidence of prostate cancer of 0.29 (95% CI=0.13 to 0.65) and 0.51 (95% CI: 0.33 to 0.79) 
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drawn from Zheng et al (52), we then applied our new conventional multivariable and 

Mendelian Randomization estimates, accounting for associated uncertainty, of the effect of 

genetic liability to prostate cancer on healthcare costs and QALYs to model cost-effectiveness of 

population wide SGLT2 inhibition in this cohort of men against a “do-nothing” comparator. 

Results for the analyses using an OR of 0.29 (95% CI=0.13 to 0.65) for the intervention for total 

healthcare costs and QALYs for different age groups are shown in Table 4. As a sensitivity 

analysis, we also repeated this analysis assuming the more conservative OR (0.51, 95% CI: 0.33 

to 0.79 .of the replication analysis in Zheng et al (52) and report our findings in Supplementary 

Table S5.  

Table 4: Results from the SGLT2 intervention analysis compared to a “do nothing” comparator 

Age group Outcome Analysis Method Effect estimate (95% CI) 

All 

Annual total healthcare costs 
Mendelian randomisation £463.45 (£444.11 to £481.33) 

Multivariable adjusted £451.47 (£446.71 to £460.80) 

QALYs per year 
Mendelian randomisation 0.13% (-0.1% to 0.4%) 

Multivariable adjusted 0.09% (0.04% to 0.13%) 

Net monetary benefit at cost-

effectiveness threshold of £20,000 

Mendelian randomisation -£438 (-£494 to -£372) 

Multivariable adjusted -£433 (-£452 to -£422) 

<50 years 

Annual total healthcare costs 
Mendelian randomisation £477.28 (£459.55 to £497.65) 

Multivariable adjusted £468.75 (£467.81 to £469.55) 

QALYs per year 
Mendelian randomisation -0.06% (-0.28% to 0.15%) 

Multivariable adjusted 0% (-0.01% to 0.02%) 

Net monetary benefit at cost-

effectiveness threshold of £20,000 

Mendelian randomisation -£488 (-£545 to -£438) 

Multivariable adjusted -£468 (-£470 to -£465) 

50 to 59 years 

Annual total healthcare costs 
Mendelian randomisation £468.29   (£446.21 to £490.54) 

Multivariable adjusted £459.01 (£455.51 to £464.69) 

QALYs per year 
Mendelian randomisation 0.02% (-0.3% to 0.37%) 

Multivariable adjusted 0.05% (0.02% to 0.09%) 

Net monetary benefit at cost-

effectiveness threshold of £20,000 

Mendelian randomisation -£462 (-£539 to -£385) 

Multivariable adjusted -£448 (-£460 to -£439) 

60+ years 

Annual total healthcare costs 
Mendelian randomisation £448.79 (£414.55-£478.39) 

Multivariable adjusted £439.30   (£430.51 to £455.37) 

QALYs per year 
Mendelian randomisation 0.33% (-0.07% to 0.81%) 

Multivariable adjusted 0.15% (0.07% to 0.22%) 

Net monetary benefit at cost-

effectiveness threshold of £20,000 

Mendelian randomisation -£384 (-£477 to -£268) 

Multivariable adjusted -£409 (-£441 to -£388) 
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Notes: CI: confidence interval; QALY: quality-adjusted life year.  

 

Under the assumptions of this analysis, the provision of SGLT2 inhibition as a prophylactic 

population wide intervention dominates the “do nothing” status quo for men at risk of prostate 

cancer in the sense that it lowers healthcare costs and increases quality adjusted life years, but 

only if offered at zero cost (see Supplementary Table S6). This does not hold once the costs of 

the drugs themselves are accounted for (Table 4). Net monetary benefit becomes positive only 

if the SGLT2 inhibition drugs are offered at very modest prices; for example, under the “All” 

scenario above, the drug becomes just cost-effective (in the sense of resulting in a positive net 

monetary benefit when accounting for other costs and the associated quality of life impacts) at 

an annual cost of approximately £32.  

5 Discussion 

We developed the first Mendelian Randomization estimates of the impact of cancer status on 

healthcare cost and on quality of life, the two outcomes necessary to undertake a 

comprehensive economic evaluation of any intervention. We studied the impacts of bladder, 

breast, colorectal, lung, multiple myeloma, ovarian, prostate and thyroid cancers on these 

outcomes.  

The Mendelian Randomization estimates are less likely to be biased by confounding from 

omitted variables and reverse causation than conventional analytic study designs such as those 

based on cohort studies or decision-analytic simulation models using observational effect 

estimates (4). We used the largest available GWASs to identify cancer exposures without 

restriction on site. Our outcome data were drawn from the large UK Biobank study which has 

comprehensive linked data which permitted the calculation of patient-level healthcare costs, 

quality of life and disease status over many years.  

The estimates will be particularly relevant to cost-effectiveness models evaluating the impact of 

cancer on healthcare costs and on quality of life. The policy evaluation element of our paper 

provides an example of how these types of estimates may be used to simulate the long-term 
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impacts of anti-cancer intervention in the absence of, or in advance of, a randomized controlled 

trial. These methods could also be used to prioritize future randomized controlled trials by 

identifying therapies most likely to be cost-effective.   

Adjusted multivariable estimates indicated material impacts of cancer status on healthcare 

costs and quality of life for all 8 included cancers. Estimates from the Mendelian Randomization 

models were much more imprecise, although genetic liability to breast and prostate cancers 

was associated with reductions in QALYs and increases in healthcare cost. There was little 

evidence for heterogeneity and pleiotropy in violation of the exclusion restriction between 

SNPs for these cancers. Summary Mendelian randomization sensitivity estimates were similar 

to each other and broadly consistent with the main PRS estimates, indicating the same causal 

effect was likely being identified in each model without gross bias from violations of the 

exclusion restriction.  

The results from the Mendelian Randomization analyses on cost and QALY outcomes are local 

average treatment effect estimates that represent the effect of lifelong exposure to higher 

germline genetic liability to each respective cancer. The results of the analysis cannot therefore 

be interpreted as, for example, the impact on costs of reducing cancer risk at any particular 

timepoint in the life course. Instead, they represent the impact on cost and QALY outcomes 

from changing long-term germline risk in this population for each specific cancer. They may not 

correspond to the magnitude of changes in these outcomes that would be observed through 

some other modification of cancer risk through, for example, manipulation of environmental 

influences on cancer risk (69).  

The cancer risks we modelled reflect the risks of incident disease. Our analysis includes SNPs 

that may influence both incidence and progression. For some cancers, especially prostate 

cancer, identifying aggressive cancer is arguably more important than understanding incidence 

since most tumours in (for example) the prostate do not influence overall survival (70). 

However, tumours that do not affect survival may still influence cost and quality of life and their 

influence will be reflected in our estimates. Nevertheless, there would be value in updating this 
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analysis when large GWASs with an explicit focus on cancer progression and aggression are 

made available.  

Healthcare costs were estimated from inpatient care episodes, primary care consultations and 

primary care drug prescriptions obtained or imputed from electronic primary care records. 

Follow-up was two years shorter for secondary care costs than primary care costs but was 

averaged over years of follow-up and should not have affected results. We did not capture all 

costs, including private care delivered in private healthcare facilities or outpatient care, neither 

of which were available for this cohort. This suggests our results may underestimate the costs 

associated with cancer. 

Despite its size, UK Biobank is not representative of the UK population as self-selected 

participants tend to be wealthier and healthier compared to wider population from which it 

was recruited (31). It is possible, although we cannot demonstrate, that our Mendelian 

Randomization results have underestimated the costs and quality of life impacts of cancer, 

since wealthier and healthier people may have more capacity and material resources to 

ameliorate the detrimental effects on healthcare cost and quality of life of increased genetic 

liability to cancer. The scale of this type of selection and any associated bias is unknown, but 

may have less significance for our conclusions than biases arising from violations of the 

instrumental variable assumptions (71, 72), for which we separately report sensitivity analyses 

and for more biologically distal exposures (73) than we study.  We controlled for genetic 

principal components in our analysis; there is evidence that this may not control for all 

remaining population or geographic structure (74, 75) (33), both which could give rise to 

residual biases.  

Although Mendelian randomization is likely to be less affected by confounding and reverse 

causality than conventional multivariable adjusted analyses, our analysis of a sample of 

unrelated individuals may give rise to further biases from dynastic effects and assortative 

mating.  Dynastic effects refer to the influence of parental genotype on offspring phenotype. 

Parents (and both their transmitted and untransmitted alleles) may influence the environment 

in which their children are raised and could confound the SNP-cancer associations we estimate 
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later in the life of these offspring. Given that health costs are measured in middle to early old 

age, these impacts are probably modest, if present at all. Assortative mating refers to non-

random mating; that is, individuals may preferentially mate (even if inadvertently) with others 

possessing alleles that increases the risk of cancer. This will tend to create clusters of similar 

alleles in particular environments and may re-introduce environmental confounding otherwise 

avoided in Mendelian Randomization. 

Within-family Mendelian randomization studies can account for some of these biases. 

However, we did not have the statistical power to conduct these analyses since the binary 

cancer exposures we studied affected relatively few people in UK Biobank (76). In any event, 

there are as yet no large cohort of family trios that have reached middle and early old age that 

would have enabled this analysis for our UK Biobank cohort, and the magnitude of potential 

biases may from these sources may not be large for the cancer exposures that we study. For 

more visible traits such as BMI (77, 78) and biologically distal phenotypes such as education 

(79) there is robust evidence of for family-related effects assortative mating and dynastic 

effects (80), but it is less clear if these processes have any significance for the cancer exposures 

studied here.  

We measured the quality of life of UK Biobank participants by assigning quality of life 

decrements associated with 240 specific health conditions. This permitted the calculation and 

use of QALYs as an outcome. We note that, amongst these conditions, are some (but not all) of 

the cancers that we also study as exposures (specifically bladder, breast, colon, lung, and 

prostate – see Supplementary Table S2). This creates a modest degree of circularity, but we 

don’t consider this as problematic because the cancers we study contribute relatively little 

variance in QALYs across the full sample given their prevalence, although this variation is still 

sufficient to identify the causal effects of exposure to these cancer in the Mendelian 

Randomization analysis. Moreover, these Mendelian Randomization estimates should also in 

principle account for any other health conditions downstream of the specific cancer exposures 

we study and which would otherwise be omitted from conventional multivariable analysis.     
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We used both conventional multivariable and Mendelian Randomization estimates to assess 

the potential cost-effectiveness of a hypothetical population-wide prophylactic intervention for 

prostate cancer based on SGLT2 inhibition. Assuming the costs of this intervention would be as 

for 300mg canagliflozin, this intervention was unlikely to be cost-effective at this price under 

the assumptions of that analysis which included (but were not limited) to reductions in the 

odds of prostate cancer based on the findings of Zheng et al (52), and the absence of side 

effects.   

Even given these limitations, we consider that these analyses demonstrate at least two 

important conclusions. The first is to lend support for the conduct of a randomized controlled 

trial of SGLT2 inhibitors. The work of Zheng et al (52) indicated that they may have substantial 

impacts on the odds of prostate cancer, and are the sole pharmacotherapy to demonstrate 

such an impact as a prophylactic for incident prostate cancer. Although the present work 

demonstrates that such an intervention is unlikely to be cost-effective, this conclusion depends 

on the price at which the rights holders of SGLT2 inhibitors would offer the drug for a novel 

prostate cancer indication.  

The second conclusion is that the methods we have developed and applied here for the first 

time represent a feasible and rapid way of assessing the cost-effectiveness of both novel and 

established interventions. These methods are an alternative but complementary approach to, 

for example, Markov cohort simulations and related study designs that seek to model the long-

term impact of exposures and interventions on health economic outcomes. We do not consider 

these methods as an alternative to fully articulated RCTs but they do offer considerable 

promise as a means of rapidly and efficiently prioritising targets for investigation in subsequent 

RCTs, provided sufficient genetic evidence for the specific target of interest (see e.g. (81) )  

exists to enable robust Mendelian Randomization analysis.  

6 Conclusion 

We estimated the causal impact of liability to eight cancers on healthcare costs and on quality-

adjusted life years using a Mendelian Randomization study design using data drawn from large 
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genome-wide association studies and from the UK Biobank cohort. We identified impacts from 

genetic liability to prostate cancer amongst men and breast cancer amongst women on both 

healthcare costs and quality-adjusted life years. These results were concordant with those 

obtained from pleiotropy-robust estimators and when stratifying by age and sex. Mendelian 

Randomization results from less common cancers were imprecise.  

We also used both conventional multivariable and Mendelian Randomization results to assess 

the impact of hypothetical population-wide preventative intervention to reduce the risk of 

prostate cancer based on the repurposing of SGLT2 inhibitors. Both sets of estimates indicated 

that this intervention was unlikely to be cost-effective if drugs were priced as for their current 

anti-diabetes indication.  

Robust evidence of the causal impact of cancer exposures on health economic outcomes may 

be used as inputs into decision analytic models of cancer interventions such as screening 

programmes or simulations of longer-term outcomes associated with therapies investigated in 

RCTs with short follow-ups. We also demonstrated a method to rapidly and efficiently estimate 

the cost-effectiveness of a hypothetical population-scale anti-cancer intervention to inform and 

complement other means of assessing long-term intervention cost-effectiveness. These 

estimates and methods will contribute to ongoing debates about managing the economic 

impacts of cancer in the face of changes in cancer incidence, cancer survivorship, population 

structure, and ongoing debates about the costs of cancer drug development and the 

remuneration of anti-cancer therapies.     
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