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Abstract 23 

Background 24 

The intergenerational transmission of obesity-related traits could propagate an accelerating cycle of obesity, if 25 

parental adiposity causally influences offspring adiposity via intrauterine or periconceptional mechanisms. We aimed 26 

to establish whether associations between parental peri-pregnancy body mass index (BMI) and offspring birth 27 

weight (BW), BMI until 8 years and 8-year eating behaviour are due to genetic confounding. 28 

Methods 29 

We used data from the Norwegian Mother, Father and Child Cohort Study and the Medical Birth Registry of Norway. 30 

We compared the strength of the associations of maternal versus paternal BMI with offspring outcomes, and used 31 

an extended children of twins structural equation model (SEM) to quantify the extent to which associations were 32 

due to genetic confounding (n = 17001 to 85866 children). 33 

Findings 34 

Maternal BMI was more strongly associated than paternal BMI with offspring BW, but the maternal-paternal 35 

difference decreased for offspring BMI after birth. Greater parental BMI was associated with obesity-related 36 

offspring eating behaviours. SEM results indicated that genetic confounding did not explain the association between 37 

parental BMI and offspring BW, but explained the majority of the association with offspring BMI from 6 months 38 

onwards. For 8-year BMI, genetic confounding explained 79% (95% CI: 62%, 95%) of the covariance with maternal 39 

BMI and 94% (95% CI: 72%, 113%) of the covariance with paternal BMI. 40 

Interpretation 41 

We found strong evidence that parent-child BMI associations are primarily due to genetic confounding, arguing 42 

against a strong causal effect of maternal or paternal adiposity on childhood adiposity via intrauterine or 43 

periconceptional mechanisms. 44 

Keywords 45 
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Introduction 47 

The positive observational association between parental body mass index (BMI) and offspring adiposity in childhood 48 

is well replicated (1), but the mechanisms driving this association remain unknown. If greater maternal or paternal 49 

BMI causes greater offspring BMI via prenatal or intrauterine developmental mechanisms, a vicious cycle could 50 

amplify BMI through successive generations and be a major driver of the obesity epidemic (2). It is therefore crucial 51 

to establish why parental BMI is associated with offspring childhood BMI.  52 

Several mechanisms are plausible (Figure 1a). Higher parental BMI could cause higher offspring adiposity through 53 

pre-conception and/or intrauterine developmental mechanisms (the developmental overnutrition hypothesis) (3-6), 54 

with some authors advocating that interventions to maintain women’s preconception BMI at a healthy level be used 55 

as a means to reduce offspring adiposity (1, 3, 7). Because adiposity is highly heritable across the life course (8), 56 

genetic confounding (via the inheritance of parental genetic alleles by the offspring) could result in intergenerational 57 

BMI associations. Non-genetic (environmental) confounding, for example via shared familial socioeconomic position 58 

or parental influences on offspring postnatal food intake and physical activity behaviours, could also contribute to 59 

these associations. 60 

Numerous animal studies purport to provide evidence in favour of the developmental overnutrition hypothesis (9). 61 

Potential biological mechanisms have been elucidated (Figure 1b) (5, 9), including a putatively key role for the 62 

programming of offspring appetite via energy homeostasis brain networks (10). In humans, child appetite traits are 63 

associated with the child’s own BMI (11), and with maternal overweight/obesity (12). However, whether 64 

developmental programming of adiposity and appetite occurs in humans remains unclear. Mendelian randomization 65 

(13), sibling studies (14, 15) and paternal negative exposure control studies (16, 17) suggest that familial 66 

confounding (either genetic or non-genetic) may be an important cause of parent-child BMI associations. However, 67 

such associations are generally unchanged on adjustment for measured variables (18), leaving the specific 68 

confounders unidentified.   69 

We aimed to establish whether associations between peri-pregnancy parental BMI and offspring birth weight, 70 

childhood BMI and appetite-related eating behaviours are due to genetic confounding. We first compared the 71 

strength of the associations of maternal versus paternal BMI with offspring outcomes, which are likely to be similarly 72 

strong if they are primarily due to genetic confounding. We then applied a genetically informed structural equation 73 

model (SEM) to a population-based sample of twins, siblings and half siblings, and their children, to quantify the 74 

relative importance of genetic confounding versus other mechanisms in underpinning intergenerational associations. 75 

Based on prior evidence (13-19) we hypothesized that genetic confounding would not explain the associations of 76 

parental BMI with offspring birth weight , but would be a major driver of associations with offspring childhood BMI. 77 
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Figure 1: (a) Directed acyclic graph (DAG) showing three plausible mechanisms for associations between parental BM78 

offspring weight, BMI and appetite traits. *We define non-genetic (environmental) confounding as confounding that doe79 

involve the offspring’s own genotype (non-genetic confounding could therefore still involve parental genetic effects, i.e. ef80 

of parental genotype on offspring outcomes independently of offspring genotype, via the offspring’s environment). Examp81 

non-genetic confounding include shared familial socioeconomic position or parental influences on offspring postnatal 82 

intake and physical activity behaviours. To the extent that postnatal parental BMI per se causally influences offspring outco83 

after birth (e.g. by influencing feeding- and exercise-related parenting practices), this would constitute a postnatal causal e84 

rather than non-genetic confounding. (b) Conceptual diagram showing putative biological mechanisms by which parenta85 

could have intrauterine or periconceptional causal effects on offspring outcomes. Arrows denote potential causal effects,86 

outlined boxes denote variables analysed in the present study. The intent is to non-exhaustively show some key variables87 

relationships that have been hypothesized in the literature 88 
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Methods 89 

Study design and participants 90 

We analysed data from the Norwegian Mother, Father and Child Cohort Study (MoBa; described in detail elsewhere 91 

(20)), a prospective population-based birth cohort conducted by the Norwegian Institute of Public Health, and used 92 

data from the Medical Birth Registry of Norway (MBRN), a national health registry containing information about all 93 

births in Norway (21). Pregnant women were recruited at 50 out of 52 hospital maternity units in Norway, on 94 

attendance of a routine antenatal ultrasound scan offered to all Norwegian women at around 17 weeks of gestation. 95 

41% of invitees participated, resulting in a total sample of around 114,500 children born between 1999 and 2009, 96 

along with around 95,200 mothers and 75,200 fathers. We used version 11 of the quality assured data files released 97 

for research in 2018, and analysed only live-born offspring. Flowcharts detailing sample selection are presented in 98 

Supplementary information S1. The establishment of MoBa and initial data collection was based on a license from 99 

the Norwegian Data Protection Agency and approval from The Regional Committees for Medical and Health 00 

Research Ethics. The MoBa cohort is currently regulated by the Norwegian Health Registry Act. The current study 01 

was approved by The Regional Committees for Medical and Health Research Ethics (REK 2013/863). 02 

Exposures and outcomes 03 

The exposures were maternal pre-pregnancy BMI and paternal BMI during pregnancy, calculated from weight and 04 

height reported by the parents at the first study questionnaire (around 17 weeks gestation). Maternal height and 05 

pre-pregnancy weight were reported by the mothers, and paternal weight and height were reported by the fathers 06 

(for 35% of measurements), or by the mothers when paternal report was unavailable (Pearson’s r = 0.98 between 07 

maternally and paternally reported paternal weight and height). 08 

Offspring outcomes included birth weight and BMI assessed between age 6 months and 8 years, and appetite-09 

related eating behaviour traits assessed at age 8 years via the Child Eating Behaviour Questionnaire (CEBQ) (22). 10 

Birth weight and length were from the MBRN. Mothers completed regular questionnaires when their children were 11 

aged between 6 months and 8 years, from which the child’s weight and height at age 6 months and 1, 2, 3, 5, and 8 12 

years were obtained. Measurements at ages up 3 years were predominantly from the child’s health card, whereas 13 

measurements from 5 years onwards were carried out by the parents. In order to maximise statistical efficiency we 14 

also used all available offspring BMI measurements to fit a growth curve, from which we predicted offspring BMI at 1 15 

year intervals between age 1 and 8 years for children with at least three BMI measurements. These fitted BMI 16 

values, which we refer to as “predicted BMI”, were used as a supplement to the mother-reported BMI measures 17 

described above, enabling comparison of results in an identical (and larger) sample across different ages. Full details 18 

of the cleaning of anthropometric data and growth curve fitting are given in Supplementary information S2. As pre-19 

planned secondary outcomes we analysed ponderal index (weight [kg]/length [m]3) and BMI at birth, and weight at 20 

ages up to 8 years. 21 

The CEBQ is a widely used and validated psychometric instrument for child obesogenic eating behaviours (22). At the 22 

8-year questionnaire, mothers completed 5-point Likert scales for 18 CEBQ items related to their child’s satiety 23 

responsiveness, slowness in eating, enjoyment of food, fussiness, emotional overeating and emotional undereating. 24 

We calculated the mean item score for each of the six scales for participants with available data for least two out of 25 

three items per scale. Covariate data were obtained from the MBRN or study questionnaires and are described in 26 

Supplementary information S3.  27 

Linear regression analyses 28 

We fitted linear regression models to explore associations between exposures and outcomes, adjusting when 29 

relevant for offspring sex and age at outcome measurement, the other parent’s BMI, and potential non-genetic 30 

confounders including maternal parity, parental and grandparental language group (as a proxy for ethnicity) and 31 

maternal and paternal characteristics (age, smoking during pregnancy, educational attainment and income). 32 

Participants with non-missing values for all relevant variables were included in analyses. To account for non-33 

independence between siblings we used a linear mixed model with a random intercept at the family level 34 

(Supplementary information S4), and a z-test was used to test whether associations with maternal and paternal BMI 35 

differed in magnitude (Supplementary information S5). For ease of interpretation, exposure and outcome variables 36 
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were standardized, therefore regression coefficients are interpreted as the average change in the outcome in 37 

standard deviation (SD) units per 1 SD increase in the exposure. Because the standard deviation may differ for 38 

maternal versus paternal BMI we also tested for maternal-paternal differences using unstandardized exposures. 39 

Offspring BMI from age 5 years onwards was positively skewed (Supplementary information S6) so was natural log 40 

transformed, and several CEBQ eating behaviour scores were strongly skewed so were regressed on offspring age 41 

and sex followed by rank-based inverse normal transformation of the residuals. We carried out sensitivity analyses 42 

including 1) additionally adjusting birth weight models for gestational age at birth, 2) testing for non-linear 43 

associations (Supplementary information S7), 3) testing for interaction by offspring sex, and 4) testing for maternal 44 

BMI-paternal BMI interaction. Analyses were carried out in R version 4.0.3 (23). 45 

Genetically informed structural equation modelling 46 

To quantify the extent to which exposure-outcome associations were due to genetic confounding, we fit an 47 

extended children of twins SEM (the Multiple Children of Twins and Siblings [MCoTS] model, described in 48 

Supplementary information S8 and elsewhere (24)) in a subset of the MoBa sample. An extended pedigree including 49 

twins, siblings and half siblings in both the parental and offspring generations was identified within MoBa using data 50 

from the study questionnaires, genotyping, and linkage to the Norwegian Population Registry, the Norwegian Twin 51 

Registry and the MBRN (24). Our MCoTS model partitions the phenotypic covariance between exposures and 52 

outcomes into a part due to genetic confounding and a residual part (due to any causal effects and/or non-genetic 53 

confounding). Skewed exposure and outcome variables were transformed as for linear regression analyses, with the 54 

exception that parental BMI was also natural log transformed given the multivariate normality assumptions of SEM 55 

fit via maximum likelihood. Exposure variables were standardized to give unit variance and zero mean. Outcome 56 

variables were standardized (or inverse normalized for eating behaviour variables) within sex strata (or within age 57 

and sex strata for child BMI outcomes). Because the variance of exposures and outcome variables was close to one, 58 

covariances are approximately equal to Pearson’s correlation coefficients. Classic and extended twin studies suggest 59 

the presence of dominance genetic effects and absence of common environmental effects for adult BMI (8), but 60 

provide support for common environmental effects on birth weight and child BMI (25, 26). We therefore chose a 61 

priori to fit an MCoTS model that partitioned parental BMI variance into additive, dominance and non-shared 62 

environmental components (an ADE model) and partitioned offspring outcome variance into additive, common 63 

environmental and non-shared environmental components (an ACE model). In sensitivity analyses we fit ACE and AE 64 

models for parental BMI as well as stratifying analyses by offspring sex, fitting a liability threshold model for 65 

untransformed eating behaviour outcomes (Supplementary information S9–11), and refitting BW models having 66 

dropped offspring-generation twins (because monozygotic [MZ] twins may share a placenta and twins have lower 67 

BW than singletons, which could generate biases). Standard errors and 95% confidence intervals were calculated via 68 

bias corrected bootstrapping of the MCoTS model with 10,000 resamples. SEM were fit in R version 4.0.3 (OpenMx 69 

package version 2.18.1) (23, 27). 70 

Role of the funding source 71 

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of 72 

the report. 73 

  74 
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Results 75 

Table 1: Characteristics of the parental and offspring generation of study participants (n = 85,866) 76 

Variable  Mean SD n % 

Parental characteristics      

Maternal BMI (kg/m
2
)  24.1 4.3   

Paternal BMI (kg/m
2
)  25.9 3.3   

Maternal WHO BMI category (kg/m
2
) <18.5   2560 3.0 

 18.5–24.9   56367 65.6 

 25–29.9   18727 21.8 

 ≥30   8212 9.6 

Paternal WHO BMI category (kg/m
2
) <18.5   197 0.2 

 18.5–24.9   37822 44.0 

 25–29.9   39120 45.6 

 ≥30   8727 10.2 

Parity (number of previous births) 0   38736 45.1 

 1   30807 35.9 

 2   12795 14.9 

 3   2740 3.2 

 4+   788 0.9 

Maternal age at birth of child (years) ≤19   624 0.7 

 20-24   8029 9.4 

 25-29   28245 32.9 

 30-34   33814 39.4 

 35-39   13465 15.7 

 ≥40   1689 1.9 

Paternal age at birth of child (years) ≤19   180 0.2 

 20-24   3497 4.1 

 25-29   19167 22.3 

 30-34   33725 39.3 

 35-39   20734 24.1 

 ≥40   8563 10.1 

Maternal smoking during pregnancy No   79345 92.4 

 Yes   6521 7.6 

Paternal smoking during pregnancy No   65570 76.4 

 Yes   20296 23.6 

Maternal educational attainment Incomplete upper 2° school   199 0.2 

 Upper 2° school   1527 1.8 

 High school/junior college   23896 27.9 

 University/college, 4 years   36309 42.3 

 University/college, >4 years   22558 26.3 

 Other   1377 1.6 

Parental language Norwegian   76521 89.1 

 Other   9345 10.9 

Offspring characteristics      

Gestational age (weeks)  39.8 2.0   

Birth weight (g)  3563 596   

6 month BMI (kg/m
2
)  17.2 1.5   

Age at 6 month BMI measurement (months)  5.8 0.5   

1 year BMI (kg/m
2
)  17.0 1.4   

Age at 1 year BMI measurement (years)  1.0 0.1   

2 year BMI (kg/m
2
)  16.5 1.4   

Age at 2 year BMI measurement (years)  2.0 0.2   

3 year BMI (kg/m
2
)  16.1 1.5   

Age at 3 year BMI measurement (years)  3.0 0.1   

5 year BMI (kg/m
2
)  15.6 1.6   

Age at 5 year BMI measurement (years)  5.2 0.3   

8 year BMI (kg/m
2
)  16.1 2.0   

Age at 8 year BMI measurement (years)  7.8 0.5   

Statistics are for the sample used for linear regression analyses of birth weight (n = 85,866), aside from the other outcome 77 

variables, for which statistics are from the corresponding linear regression samples. Equivalent data for the 8-year BMI sample 78 

(n = 46,620) are presented in Supplementary information S12. SD: standard deviations, WHO: World Health Organization 79 
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 80 

The number of offspring included in linear regression analyses varied by outcome, from 85,866 (74.9% of recruited 81 

sample) to 30,904 (27.0% of recruited sample) for analyses of birth weight and 2-year BMI respectively. 82 

Supplementary information S1 shows the proportion of the sample with non-missing data for each analysis, and 83 

Table 1 shows the characteristics of the study participants. There was statistical evidence for selective attrition, such 84 

that the sample used for analyses of 8-year BMI (n = 46,620) was more highly educated and had lower obesity 85 

prevalence and greater maternal age versus the baseline sample, but the magnitude of such differences was 86 

relatively small (Supplementary information S12). 87 

Linear regression analyses provided strong statistical evidence that the association of maternal BMI with offspring 88 

birth weight is stronger than that of paternal BMI with offspring birth weight (Figure 2a). However, after birth the 89 

associations with offspring BMI converged, and the associations of maternal and paternal BMI with offspring 2–5-90 

year BMI were similar. Although for 8-year BMI there was statistical evidence that the paternal association was 91 

slightly weaker, the difference was not large, and when we used unstandardized parental variables the paternal 92 

association was actually slightly stronger than the maternal association (Supplementary table S1). These results 93 

were not markedly different when using offspring BMI predicted from a modelled growth curve (Supplementary 94 

information S13), when substituting birth weight for ponderal index/BMI at birth and substituting child BMI for 95 

weight, when stratifying by offspring sex, or when additionally adjusting for gestational age (Supplementary table 96 

S1). With respect to eating behaviour outcomes, both maternal and paternal BMI were positively associated with 97 

offspring food responsiveness and emotional overeating, and negatively associated with emotional undereating. 98 

Only paternal BMI was associated (negatively) with offspring satiety responsiveness and slow eating. Offspring 8-99 

year BMI was associated with all eating behaviour outcomes except for emotional undereating, in the directions that 00 

would be expected from the behavioral susceptibility theory of obesity (22) (Supplementary information S14). We 01 

did not observe large departures from log-linear relationships (Supplementary information S7), and statistical 02 

interaction between maternal and paternal BMI was at most minor (Supplementary information S15). 03 

Table 2 shows the sample size available for MCoTS analyses, stratified by maternal and offspring relationship. The 04 

MCoTS results indicated that the positive phenotypic covariance between maternal BMI and offspring birth weight 05 

was not explained by genetic confounding, with genetic covariance estimates that were statistically indistinguishable 06 

from zero (Figure 3). The weak positive phenotypic covariance between paternal BMI and offspring birth weight was 07 

also not explained by genetic confounding. Surprisingly, there was statistical evidence for a small negative genetic 08 

covariance between paternal BMI and offspring birth weight, but this attenuated and became statistically 09 

indistinguishable from zero when, in exploratory analyses, we adjusted exposures and outcomes for potential 10 

confounders (including maternal BMI, paternal age and paternal income), suggesting that bias due to uncontrolled 11 

confounding may be the explanation (Supplementary information S16). 12 

From age 6 months onwards, genetic covariance estimates became positive and increased in magnitude, such that 13 

for offspring 8-year BMI, genetic confounding explained 79% (0.19 / 0.24 * 100) (95% CI: 62%, 95%) of the 14 

covariance with maternal BMI and 94% (0.20 / 0.21 * 100) (95% CI: 72%, 113%) of the covariance with paternal BMI 15 

(Figure 3, Supplementary information S17). Genetic confounding explained a high and stable proportion of the 16 

phenotypic covariance with predicted BMI from age 1 to 8 years (Figure 4, Supplementary information S18). Results 17 

did not appreciably differ when we fitted ACE or AE models instead of the primary ADE model in the parent 18 

generation (Supplementary Table 2), when birth weight was substituted for ponderal index/BMI at birth and child 19 

BMI was substituted for weight (Supplementary Table 2, Supplementary information S19), or when BW models 20 

were refit without offspring-generation twins (results available from the authors on request). Although sex stratified 21 

models were underpowered, they provided no evidence for large sex differences in estimates (Supplementary Table 22 

2). MCoTS models for eating behaviour outcomes were underpowered and uninformative (Supplementary Table 2, 23 

Supplementary information S20). Full MCoTS results including model fit statistics and estimated variance 24 

components for parental and offspring phenotypes are presented in Supplementary Table 2. 25 

  26 
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Table 2: Number of families available for MCoTS analyses, stratified by parental and offspring relationship 27 

Relationship type 
Relatedness 

coefficient 

n 

Total Parental 

exposure 

data 

available
a 

Offspring 

BW data 

available
a 

Offspring 

8yr BMI 

data 

available
a 

Maternal BMI analyses      

Extended families (n = 16292) 

    n stratified by mothers' relatedness in each extended family 

    MZ twin mother pair 1.00 61 60 61 48 

DZ twin mother pair 0.50 34
b 

34 34 24 

Full sibling mother pair 0.50 4916 4745 4910 3472 

Maternal half sibling mother pair 0.25 376 355 375 218 

Unrelated sister-in-law mother pair 0.00 10905 10495 10887 7633 

n offspring pairs linked to each mother
c

 

    Full sibling offspring pair 0.50 4538 4477 4535 3154 

Maternal half-sibling offspring pair 0.25 38 38 38 20 

Unpaired (single) offspring … 28008 20205 22288 11689 

Unpaired nuclear families (n = 7339) 

    
n offspring pairs linked to each mother

 

    MZ twin offspring pair 1.00 287 269 278 157 

DZ twin offspring pair 0.50 738 698 735 379 

Full sibling offspring pair 0.50 6229 6142 6227 4216 

Maternal half sibling offspring pair 0.25 85 81 85 37 

      

      

Paternal BMI analyses 

    Extended families (n = 17036) 

    
n stratified by fathers' relatedness in each extended family 

    MZ twin father pair 1.00 27 27 27 24 

DZ twin father pair 0.50 16
b 

16 16 13 

Full sibling father pair 0.50 3154 3127 3154 2462 

Paternal half sibling father pair 0.25 171 168 171 128 

Unrelated brother-in-law father pair 0.00 13668 13164 13603 9621 

n offspring pairs linked to each father
c 

    Full sibling offspring pair 0.50 5710 5570 5706 3861 

Paternal half sibling offspring pair 0.25 28 28 28 22 

Unpaired (single) offspring … 28334 22207 25046 12605 

Unpaired nuclear families (n = 7537) 

    n offspring pairs linked to each father 

    MZ twin offspring pair 1.00 287 265 278 157 

DZ twin offspring pair 0.50 951 854 924 453 

Full sibling offspring pair 0.50 6229 6152 6227 4216 

Paternal half sibling offspring pair 0.25 70 67 69 39 

a: Number of relative pairs for which at least one member had exposure/outcome data available (the numbers given in Figures 3 28 

and 4 for individual offspring with available data for each outcome are therefore greater), b: Parent-generation relatedness was 29 

modelled between same-sex DZ twins/siblings only, therefore opposite-sex DZ twins/siblings were treated as unrelated siblings-30 

in-law, c: MZ and DZ twins in the offspring generation were only retained for singleton parents, MZ: monozygotic (identical) 31 

twins, DZ: dizygotic (non-identical) twins 32 

33 
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Figure 2: Linear associations of maternal and paternal BMI with offspring birth weight, child BMI and 8-year ea34 

behaviours 35 

 36 

 37 

Linear associations of maternal and paternal BMI with offspring outcomes. a: offspring birth weight and child BMI, b: offspri38 

year old CEBQ eating behaviour traits, P: P-value testing the null hypothesis that regression coefficient is zero, Pdif: P-v39 

testing the null hypothesis that maternal and paternal regression coefficients are equal 40 
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Figure 3: MCoTS SEM estimates of phenotypic and genetic covariance of parental BMI with offspring birth weight and 8yr BM44 

Phenotypic covariance denotes the overall covariance between the exposure and outcome, Genetic covariance denote45 

part of the phenotypic covariance that is due to genetic confounding, P: P-value for phenotypic covariance calculated via a z46 

using the standard error from bootstrapping the MCoTS model, P-value for genetic covariance calculated via a chi squared47 

for deterioration of model fit on deletion of the a1’ path coefficient, n: number of offspring with outcome data available 48 

 49 

Figure 4: MCoTS SEM estimates of phenotypic and genetic covariance of parental BMI with offspring predicted BMI 50 

Phenotypic covariance denotes the overall covariance between the exposure and outcome, Genetic covariance denote51 

part of the phenotypic covariance that is due to genetic confounding, P: P-value for phenotypic covariance calculated via a z52 

using the standard error from bootstrapping the MCoTS model, P-value for genetic covariance calculated via a chi squared53 

for deterioration of model fit on deletion of the a1’ path coefficient, n: number of offspring with outcome data available 54 
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Discussion 55 

We triangulated evidence from two analytic approaches applied to a large European birth cohort, to infer the 56 

mechanisms underlying associations between parental BMI and offspring BW, BMI until 8 years and 8-year eating 57 

behaviour. There were not large differences in the magnitude of the associations of maternal and paternal BMI with 58 

offspring BMI beyond early childhood, suggesting confounding within families as the most parsimonious explanation 59 

for such associations. This was confirmed by our MCoTS analyses, which indicated that the covariance between 60 

parental BMI and offspring BMI from age 6 months to 8 years is primarily due to genetic confounding. 61 

We have previously used genomic restricted maximum likelihood (GCTA-GREML) to explore whether 62 

intergenerational BMI associations could be due to genetic confounding (18). Those analyses investigated whether 63 

mother-offspring BMI covariance was explained by a set of ~8 million imputed common genetic variants, in 64 

nominally unrelated individuals from 3 European birth cohorts. In contrast, the present MCoTS analyses investigated 65 

confounding involving all genetic variants, using expected relatedness inferred via quantitative genetic theory in a 66 

pedigree of close relatives. GCTA-GREML indicated that for maternal BMI, imputed variants explained 43% (95% CI: 67 

15%, 72%) of the covariance with offspring 15-year BMI, with a similar estimate for 10-year BMI. This is highly 68 

consistent with the present MCoTS estimates: 79% (95% CI: 62%, 95%) of the covariance between maternal BMI and 69 

offspring 8-year BMI was explained by genetic confounding. MCoTS estimates were somewhat higher than those 70 

from GCTA-GREML, which is expected given that GCTA-GREML uses a set of measured genetic variants whereas 71 

MCoTS infers the effects of all variants. Furthermore, both GCTA-GREML and MCoTS indicated that the covariance 72 

between maternal BMI and offspring birth weight was not due to genetic confounding. The high concordance of 73 

results between the two methods, which make different assumptions and were applied to different cohorts, 74 

provides strong evidence that genetic confounding is a major driver of associations between parental BMI and 75 

offspring adiposity in late childhood. 76 

Our results are consistent with previous maternal-paternal comparison, MR  and sibling studies (several of which 77 

share authors with the present study), which have not supported a large causal effect of maternal BMI on offspring 78 

childhood adiposity (13, 14, 16, 17). However, sibling studies do provide a degree of support for potential causal 79 

effects of more extreme maternal metabolic dysregulation (for example maternal diabetes and severe obesity) on 80 

offspring adiposity beyond birth (2, 14). Taken together, this suggests that putative causal effects observed in animal 81 

models of developmental overnutrition (5, 9) should be interpreted cautiously and do not necessarily occur in 82 

humans. The association between maternal BMI and offspring size/adiposity at birth has been invoked in the 83 

literature to argue that maternal adiposity has a causal effect on offspring adiposity beyond birth (28). Indeed, MR 84 

and sibling studies (13, 19, 29, 30) support a causal effect of maternal BMI on offspring birth size. However, the 85 

present results, alongside previous studies (13, 17-19, 29), strongly suggest that the causes of weight at birth are 86 

somewhat different from the causes of BMI in later childhood. 87 

We observed some associations between parental BMI and offspring obesity-related eating behaviours assessed via 88 

the CEBQ questionnaire. Previous studies in smaller samples have found similar associations, albeit somewhat 89 

inconsistently (12, 31). In particular, we found that greater maternal and paternal BMI were associated with 90 

increased scores on the CEBQ food responsiveness and emotional overeating scales, and a reduced score on the 91 

emotional undereating scale. Offspring satiety responsiveness and slow eating were only associated with paternal 92 

BMI; however, we cannot exclude measurement error as an explanation for the absent maternal associations 93 

because the CEBQ questionnaire was completed by mothers and is inherently subjective. Given our maternal-94 

paternal comparison results it is plausible that child appetite-related eating behaviours mediate the genetically 95 

driven association between parent and child BMI. However, it was not possible to confirm this because our MCoTS 96 

analyses were underpowered for eating behaviours. 97 

Our results have important public health implications, when considered alongside prior evidence. Maternal BMI is 98 

unlikely to have a large causal effect on child BMI beyond birth, although a small causal effect remains plausible, 99 

potentially mediated via maternal glycaemia during pregnancy. Any causal effect of paternal BMI on offspring 00 

childhood BMI is likely to be similar to or smaller than that of maternal BMI. Consequently, reductions in the BMI of 01 

either parent before pregnancy are unlikely to cause large reductions in childhood adiposity. It is possible that 02 

interventions targeting parental BMI reduction could influence childhood adiposity via parental lifestyle changes that 03 
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persist after birth and affect the offspring’s environment. However, whether preconceptional interventions are the 04 

optimal approach for preventing childhood obesity requires further evaluation in light of evidence from the present 05 

study. Importantly, women considering pregnancy should still be advised and supported to maintain a healthy 06 

weight, because there is good evidence that maternal obesity in pregnancy causes adverse perinatal outcomes in the 07 

mother and offspring (32). 08 

Our study has important strengths. We have analysed data from a large prospective birth cohort, enabling precise 09 

estimation of the associations between parental BMI assessed during pregnancy and offspring outcomes in mid 10 

childhood. We leveraged a pedigree involving twin and sibling relationships in both the parental and offspring 11 

generations, to partition parent-offspring phenotypic covariance via an MCoTS SEM that is rooted in quantitative 12 

genetics theory. We gained increased power over a conventional children of twins model by including non-twin 13 

siblings in the parent and offspring generations, and up to two children for each parent. We also acknowledge 14 

potential limitations of this study. First, because the MCoTS model cannot simultaneously estimate dominance 15 

genetic effects and common environmental effects, we fitted an ADE model in the parent generation, which assumes 16 

that common environmental effects are absent. This assumption is supported by classic and extended twin studies 17 

of adult BMI (8) and the similarity of our findings when we used ACE or AE models in the parent generation 18 

(Supplementary table 2). Second, our MCoTS analyses assume that phenotypic associations between log parent BMI 19 

and offspring outcomes are linear. In our data there were only mild deviations from log-linearity which would be 20 

unlikely to meaningfully alter our conclusions (Supplementary information S7). Third, our MCoTS analyses did not 21 

account for assortative mating. However, we do not expect this to have had a large impact on our results because 22 

spousal phenotypic correlations for BMI are relatively weak (13, 33), and spousal correlations at BMI associated loci 23 

are weaker still (13). Fourth, the MCoTS model does not account for gene by environment interaction, and if 24 

interactions exist between the additive genetic and common environmental variance components our results could 25 

overestimate genetic confounding. We believe any such bias is likely to be small though because extended twin 26 

family design data suggest common environmental effects are negligible for adult BMI (8). Fifth, the residual 27 

covariance estimated by the MCoTS model will not be indicative of the true causal effect of parental BMI, to the 28 

extent that residual confounding affects associations between parental BMI and offspring outcomes. It is likely that 29 

the negative residual covariance estimate for paternal BMI and offspring birth weight reflects residual confounding, 30 

particularly as this estimate attenuated on adjustment for potential confounders (Supplementary information S15). 31 

Sixth, our maternal-paternal comparisons did not account for non-paternity, which could weaken paternal 32 

associations. However, a previous simulation study showed that for a maternal-paternal comparison analysis using 33 

MoBa data with follow up to age three years, results would have changed little with non-paternity rates of up to 10% 34 

(17). Seventh, BMI is an imprecise proxy measure for adiposity. Despite this, BMI is highly correlated with more 35 

direct adiposity measures in childhood (34). Eighth, MoBa has a participation rate of 41% and there has been 36 

attrition over follow up (20). Although we cannot exclude an effect of selection bias on our results, we believe it 37 

unlikely that this would be of sufficient magnitude to alter our conclusions. Lastly, we have studied a Norwegian 38 

population which has relatively high obesity prevalence and income per capita in international terms and it would be 39 

beneficial to replicate our analyses in other settings. 40 

In summary, we have shown that in a Norwegian population the linear association between parental BMI around the 41 

time of pregnancy and offspring BMI from age 6 months to 8 years is primarily due to genetic confounding. Our 42 

results suggest that neither the mothers’ nor fathers’ pre-pregnancy BMI has a large causal effect on childhood BMI. 43 

This implies that any hypothetical intervention that successfully reduced parental BMI before pregnancy, without 44 

altering the offspring’s postnatal environment, would be insufficient to achieve large reductions in the offspring’s 45 

childhood obesity risk. Our results suggest that in the studied population, maintaining healthy parental BMI before 46 

conception is unlikely to be a promising target for childhood obesity prevention interventions. 47 
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