Parental body mass index and offspring childhood body size and eating behaviour: causal inference via parental 1 comparisons and extended children of twins structural equation modelling 2

3

- Tom A Bond^{1,2,3,4,*}, Tom A McAdams^{5,6}, Nicole M Warrington^{1,2,7,8}, Laurie J Hannigan^{2,9,10}, Espen Moen Eilertsen^{6,11,12}, 4
- Ziada Ayorech⁶, Fartein A Torvik^{6,12}, George Davey Smith^{2,3}, Deborah A Lawlor^{2,3}, Eivind Ystrøm^{6,10}, Alexandra 5 Havdahl^{2,6,9,10,§}, David M Evans^{1,2,7,§}
- 6
- 7 ¹The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia.
- 8 ²MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
- 9 ³Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- 10 ⁴Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
- 11 ⁵Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's
- College, London, UK. 12
- ⁶Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway. 13
- 14 ⁷Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.
- 15 ⁸K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian
- 16 University of Science and Technology, Norway.
- ⁹Nic Waals Institute, Lovisenberg Diakonale Hospital, Oslo, Norway. 17
- ¹⁰Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway. 18
- 19 ¹¹Department of Psychology, University of Oslo, Forskningsveien 3A, 0373, Oslo, Norway.
- 20 ¹²Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- 21 *Corresponding author
- §These authors contributed equally to this work 22

23 Abstract

- 24 Background
- 25 The intergenerational transmission of obesity-related traits could propagate an accelerating cycle of obesity, if
- 26 parental adiposity causally influences offspring adiposity via intrauterine or periconceptional mechanisms. We aimed 27 to establish whether associations between parental peri-pregnancy body mass index (BMI) and offspring birth
- 28 weight (BW), BMI until 8 years and 8-year eating behaviour are due to genetic confounding.
- 29 Methods
- 30 We used data from the Norwegian Mother, Father and Child Cohort Study and the Medical Birth Registry of Norway.
- 31 We compared the strength of the associations of maternal versus paternal BMI with offspring outcomes, and used
- an extended children of twins structural equation model (SEM) to guantify the extent to which associations were 32
- 33 due to genetic confounding (*n* = 17001 to 85866 children).
- 34 Findings
- Maternal BMI was more strongly associated than paternal BMI with offspring BW, but the maternal-paternal 35 36 difference decreased for offspring BMI after birth. Greater parental BMI was associated with obesity-related 37 offspring eating behaviours. SEM results indicated that genetic confounding did not explain the association between 38 parental BMI and offspring BW, but explained the majority of the association with offspring BMI from 6 months 39 onwards. For 8-year BMI, genetic confounding explained 79% (95% CI: 62%, 95%) of the covariance with maternal
- BMI and 94% (95% CI: 72%, 113%) of the covariance with paternal BMI. 10
- 11 Interpretation
- 12 We found strong evidence that parent-child BMI associations are primarily due to genetic confounding, arguing
- against a strong causal effect of maternal or paternal adiposity on childhood adiposity via intrauterine or 13 periconceptional mechanisms. 14
- 15 Keywords
- Parent, offspring, obesity, BMI, Child Eating Behaviour Questionnaire, genetic confounding, children of twins, MoBa 16
 - 1

17 Introduction

18 The positive observational association between parental body mass index (BMI) and offspring adiposity in childhood

is well replicated (1), but the mechanisms driving this association remain unknown. If greater maternal or paternal

50 BMI causes greater offspring BMI via prenatal or intrauterine developmental mechanisms, a vicious cycle could

amplify BMI through successive generations and be a major driver of the obesity epidemic (2). It is therefore crucial

52 to establish why parental BMI is associated with offspring childhood BMI.

53 Several mechanisms are plausible (Figure 1a). Higher parental BMI could cause higher offspring adiposity through 54 pre-conception and/or intrauterine developmental mechanisms (the developmental overnutrition hypothesis) (3-6), 55 with some authors advocating that interventions to maintain women's preconception BMI at a healthy level be used 56 as a means to reduce offspring adiposity (1, 3, 7). Because adiposity is highly heritable across the life course (8), genetic confounding (via the inheritance of parental genetic alleles by the offspring) could result in intergenerational 57 BMI associations. Non-genetic (environmental) confounding, for example via shared familial socioeconomic position 58 59 or parental influences on offspring postnatal food intake and physical activity behaviours, could also contribute to 50 these associations.

51 Numerous animal studies purport to provide evidence in favour of the developmental overnutrition hypothesis (9). 52 Potential biological mechanisms have been elucidated (Figure 1b) (5, 9), including a putatively key role for the 53 programming of offspring appetite via energy homeostasis brain networks (10). In humans, child appetite traits are associated with the child's own BMI (11), and with maternal overweight/obesity (12). However, whether 54 developmental programming of adiposity and appetite occurs in humans remains unclear. Mendelian randomization 55 (13), sibling studies (14, 15) and paternal negative exposure control studies (16, 17) suggest that familial 56 57 confounding (either genetic or non-genetic) may be an important cause of parent-child BMI associations. However, 58 such associations are generally unchanged on adjustment for measured variables (18), leaving the specific 59 confounders unidentified.

70 We aimed to establish whether associations between peri-pregnancy parental BMI and offspring birth weight, childhood BMI and appetite-related eating behaviours are due to genetic confounding. We first compared the 71 72 strength of the associations of maternal versus paternal BMI with offspring outcomes, which are likely to be similarly strong if they are primarily due to genetic confounding. We then applied a genetically informed structural equation 73 model (SEM) to a population-based sample of twins, siblings and half siblings, and their children, to quantify the 74 75 relative importance of genetic confounding versus other mechanisms in underpinning intergenerational associations. 76 Based on prior evidence (13-19) we hypothesized that genetic confounding would not explain the associations of 77 parental BMI with offspring birth weight, but would be a major driver of associations with offspring childhood BMI.

appetite

Altered

developmental

processes

Fetal fuel supply

Oocyte structure

and function

Placental structure

and function

Preconceptional

and intrauterine

epigenetic

regulation

 Sperm epigenetic regulation
 Sperm de novo genetic mutations

Maternal

Paternal

Non-genetic (environmental)

confounders*

Altered parental

intermediate

phenotypes

Insulin

resistance

Glucose

Free fatty acids

Adipokines

Inflammation

Oxidative stress

Gut microbiota

Non-genetic

(environmental) confounders*

Altered structure and

function in offspring

tissues/systems

Neurodevelopment

Adipose tissue

Skeletal muscle

Liver

Pancreas

Mitochondria

Gut microbiota

Offspring

outcomes

Weight, BMI and

ponderal index

at birth

Childhood BMI

Appetite traits

b

Parental

exposures

Maternal

BMI

Paternal

BMI

78 Figure 1: (a) Directed acyclic graph (DAG) showing three plausible mechanisms for associations between parental BMI and 79 offspring weight, BMI and appetite traits. *We define non-genetic (environmental) confounding as confounding that does not 30 involve the offspring's own genotype (non-genetic confounding could therefore still involve parental genetic effects, i.e. effects 31 of parental genotype on offspring outcomes independently of offspring genotype, via the offspring's environment). Examples of 32 non-genetic confounding include shared familial socioeconomic position or parental influences on offspring postnatal food 33 intake and physical activity behaviours. To the extent that postnatal parental BMI per se causally influences offspring outcomes 34 after birth (e.g. by influencing feeding- and exercise-related parenting practices), this would constitute a postnatal causal effect 35 rather than non-genetic confounding. (b) Conceptual diagram showing putative biological mechanisms by which parental BMI 36 could have intrauterine or periconceptional causal effects on offspring outcomes. Arrows denote potential causal effects, bold 37 outlined boxes denote variables analysed in the present study. The intent is to non-exhaustively show some key variables and

38 relationships that have been hypothesized in the literature

39 Methods

- 30 <u>Study design and participants</u>
- We analysed data from the Norwegian Mother, Father and Child Cohort Study (MoBa; described in detail elsewhere (20)), a prospective population-based birth cohort conducted by the Norwegian Institute of Public Health, and used data from the Medical Birth Registry of Norway (MBRN), a national health registry containing information about all births in Norway (21). Pregnant women were recruited at 50 out of 52 hospital maternity units in Norway, on attendance of a routine antenatal ultrasound scan offered to all Norwegian women at around 17 weeks of gestation. 41% of invitees participated, resulting in a total sample of around 114,500 children born between 1999 and 2009,
- along with around 95,200 mothers and 75,200 fathers. We used version 11 of the quality assured data files released
- 98 for research in 2018, and analysed only live-born offspring. Flowcharts detailing sample selection are presented in
- 39 Supplementary information S1. The establishment of MoBa and initial data collection was based on a license from
- 30 the Norwegian Data Protection Agency and approval from The Regional Committees for Medical and Health
- D1 Research Ethics. The MoBa cohort is currently regulated by the Norwegian Health Registry Act. The current study
- was approved by The Regional Committees for Medical and Health Research Ethics (REK 2013/863).

03 Exposures and outcomes

- The exposures were maternal pre-pregnancy BMI and paternal BMI during pregnancy, calculated from weight and
- beight reported by the parents at the first study questionnaire (around 17 weeks gestation). Maternal height and
- D6 pre-pregnancy weight were reported by the mothers, and paternal weight and height were reported by the fathers
- (for 35% of measurements), or by the mothers when paternal report was unavailable (Pearson's r = 0.98 between
- 08 maternally and paternally reported paternal weight and height).
- 09 Offspring outcomes included birth weight and BMI assessed between age 6 months and 8 years, and appetite-
- 10 related eating behaviour traits assessed at age 8 years via the Child Eating Behaviour Questionnaire (CEBQ) (22).
- Birth weight and length were from the MBRN. Mothers completed regular questionnaires when their children were
- aged between 6 months and 8 years, from which the child's weight and height at age 6 months and 1, 2, 3, 5, and 8 years were obtained. Measurements at area were under were under the third's backless the shild's backless of the second second
- years were obtained. Measurements at ages up 3 years were predominantly from the child's health card, whereas measurements from 5 years onwards were carried out by the parents. In order to maximise statistical efficiency we
- also used all available offspring BMI measurements to fit a growth curve, from which we predicted offspring BMI at 1
- 16 year intervals between age 1 and 8 years for children with at least three BMI measurements. These fitted BMI
- values, which we refer to as "predicted BMI", were used as a supplement to the mother-reported BMI measures
- 18 described above, enabling comparison of results in an identical (and larger) sample across different ages. Full details
- of the cleaning of anthropometric data and growth curve fitting are given in **Supplementary information S2**. As preplanned secondary outcomes we analysed ponderal index (weight $[kg]/length [m]^3$) and BMI at birth, and weight at
- 21 ages up to 8 years.
- The CEBQ is a widely used and validated psychometric instrument for child obesogenic eating behaviours (22). At the
- 23 8-year questionnaire, mothers completed 5-point Likert scales for 18 CEBQ items related to their child's satiety
- responsiveness, slowness in eating, enjoyment of food, fussiness, emotional overeating and emotional undereating.
- We calculated the mean item score for each of the six scales for participants with available data for least two out of three items per scale. Covariate data were obtained from the MBRN or study questionnaires and are described in
- 27 Supplementary information S3.

28 Linear regression analyses

29 We fitted linear regression models to explore associations between exposures and outcomes, adjusting when 30 relevant for offspring sex and age at outcome measurement, the other parent's BMI, and potential non-genetic confounders including maternal parity, parental and grandparental language group (as a proxy for ethnicity) and 31 32 maternal and paternal characteristics (age, smoking during pregnancy, educational attainment and income). 33 Participants with non-missing values for all relevant variables were included in analyses. To account for non-34 independence between siblings we used a linear mixed model with a random intercept at the family level 35 (Supplementary information S4), and a z-test was used to test whether associations with maternal and paternal BMI 36 differed in magnitude (Supplementary information S5). For ease of interpretation, exposure and outcome variables

37 were standardized, therefore regression coefficients are interpreted as the average change in the outcome in 38 standard deviation (SD) units per 1 SD increase in the exposure. Because the standard deviation may differ for maternal versus paternal BMI we also tested for maternal-paternal differences using unstandardized exposures. 39 10 Offspring BMI from age 5 years onwards was positively skewed (Supplementary information S6) so was natural log transformed, and several CEBQ eating behaviour scores were strongly skewed so were regressed on offspring age 11 12 and sex followed by rank-based inverse normal transformation of the residuals. We carried out sensitivity analyses 13 including 1) additionally adjusting birth weight models for gestational age at birth, 2) testing for non-linear 14 associations (Supplementary information S7), 3) testing for interaction by offspring sex, and 4) testing for maternal 15 BMI-paternal BMI interaction. Analyses were carried out in R version 4.0.3 (23).

16 <u>Genetically informed structural equation modelling</u>

To quantify the extent to which exposure-outcome associations were due to genetic confounding, we fit an 17 18 extended children of twins SEM (the Multiple Children of Twins and Siblings [MCoTS] model, described in 19 Supplementary information S8 and elsewhere (24)) in a subset of the MoBa sample. An extended pedigree including twins, siblings and half siblings in both the parental and offspring generations was identified within MoBa using data 50 51 from the study questionnaires, genotyping, and linkage to the Norwegian Population Registry, the Norwegian Twin 52 Registry and the MBRN (24). Our MCoTS model partitions the phenotypic covariance between exposures and outcomes into a part due to genetic confounding and a residual part (due to any causal effects and/or non-genetic 53 54 confounding). Skewed exposure and outcome variables were transformed as for linear regression analyses, with the exception that parental BMI was also natural log transformed given the multivariate normality assumptions of SEM 55 56 fit via maximum likelihood. Exposure variables were standardized to give unit variance and zero mean. Outcome 57 variables were standardized (or inverse normalized for eating behaviour variables) within sex strata (or within age and sex strata for child BMI outcomes). Because the variance of exposures and outcome variables was close to one, 58 59 covariances are approximately equal to Pearson's correlation coefficients. Classic and extended twin studies suggest 50 the presence of dominance genetic effects and absence of common environmental effects for adult BMI (8), but provide support for common environmental effects on birth weight and child BMI (25, 26). We therefore chose a51 52 priori to fit an MCoTS model that partitioned parental BMI variance into additive, dominance and non-shared 53 environmental components (an ADE model) and partitioned offspring outcome variance into additive, common environmental and non-shared environmental components (an ACE model). In sensitivity analyses we fit ACE and AE 54 models for parental BMI as well as stratifying analyses by offspring sex, fitting a liability threshold model for 55 56 untransformed eating behaviour outcomes (Supplementary information S9-11), and refitting BW models having 57 dropped offspring-generation twins (because monozygotic [MZ] twins may share a placenta and twins have lower 58 BW than singletons, which could generate biases). Standard errors and 95% confidence intervals were calculated via bias corrected bootstrapping of the MCoTS model with 10,000 resamples. SEM were fit in R version 4.0.3 (OpenMx 59

- 70 package version 2.18.1) (23, 27).
- 71 Role of the funding source

72 The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of

- 73 the report.
- 74

75 Results

Table 1: Characteristics of the parental and offspring generation of study participants (*n* = 85,866)

Variable		Mean	SD	n	%
Parental characteristics					
Maternal BMI (kg/m ²)		24.1	4.3		
Paternal BMI (kg/m ²)		25.9	3.3		
Maternal WHO BMI category (kg/m^2)	<18.5			2560	3.0
	18.5–24.9			56367	65.6
	25–29.9			18727	21.8
	≥30			8212	9.6
Paternal WHO BMI category (kg/m²)	<18.5			197	0.2
	18.5–24.9			37822	44.0
	25–29.9			39120	45.6
	≥30			8727	10.2
Parity (number of previous births)	0			38736	45.1
	1			30807	35.9
	2			12795	14.9
	3			2740	3.2
	4+			788	0.9
Maternal age at birth of child (years)	≤19			624	0.7
	20-24			8029	9.4
	25-29			28245	32.9
	30-34			33814	39.4
	35-39			13465	15.7
	≥40			1689	1.9
Paternal age at birth of child (years)	≤19			180	0.2
	20-24			3497	4.1
	25-29			1916/	22.3
	30-34			33725	39.3
	35-39			20734	24.1
NA	≥40 N			8563	10.1
iviaternal smoking during pregnancy	NO Val			79345	92.4
Data was low align during an analysis	res			6521 65570	7.0
Paternal smoking during pregnancy	NO			20206	70.4 22 G
Maternal educational attainment	res			100	25.0
Waternaleducationalattainment	lipper 2° school			1527	1.8
	High school/junior college			23896	279
	University/college 4 years			36309	423
	University/college >4 years			22558	26.3
	Other			1377	16
Parental language	Norwegian			76521	89.1
5.5	Other			9345	10.9
Offspring characteristics					
Gestational age (weeks)		39.8	2.0		
Birth weight (g)		3563	596		
6 month BMI (kg/m²)		17.2	1.5		
Age at 6 month BMI measurement (months)		5.8	0.5		
1 year BMI (kg/m²)		17.0	1.4		
Age at 1 year BM∣ measurement (years)		1.0	0.1		
2 year BMI (kg/m²)		16.5	1.4		
Age at 2 year BMI measurement (years)		2.0	0.2		
3 year BM∣(kg/m²)		16.1	1.5		
Age at 3 year BMI measurement (years)		3.0	0.1		
5 year BM∣(kg/m²)		15.6	1.6		
Age at 5 year BMI measurement (years)		5.2	0.3		
8 year BM∣(kg/m²)		16.1	2.0		
Age at 8 year BM∣ measurement (years)		7.8	0.5		

57 Statistics are for the sample used for linear regression analyses of birth weight (n = 85,866), aside from the other outcome variables, for which statistics are from the corresponding linear regression samples. Equivalent data for the 8-year BMI sample

(n = 46,620) are presented in Supplementary information S12. SD: standard deviations, WHO: World Health Organization

30

The number of offspring included in linear regression analyses varied by outcome, from 85,866 (74.9% of recruited sample) to 30,904 (27.0% of recruited sample) for analyses of birth weight and 2-year BMI respectively. **Supplementary information S1** shows the proportion of the sample with non-missing data for each analysis, and **Table 1** shows the characteristics of the study participants. There was statistical evidence for selective attrition, such that the sample used for analyses of 8-year BMI (n = 46,620) was more highly educated and had lower obesity prevalence and greater maternal age versus the baseline sample, but the magnitude of such differences was

37 relatively small (Supplementary information S12).

38 Linear regression analyses provided strong statistical evidence that the association of maternal BMI with offspring 39 birth weight is stronger than that of paternal BMI with offspring birth weight (Figure 2a). However, after birth the associations with offspring BMI converged, and the associations of maternal and paternal BMI with offspring 2-5-ЭО Э1 year BMI were similar. Although for 8-year BMI there was statistical evidence that the paternal association was Э2 slightly weaker, the difference was not large, and when we used unstandardized parental variables the paternal ЭЗ association was actually slightly stronger than the maternal association (Supplementary table S1). These results were not markedly different when using offspring BMI predicted from a modelled growth curve (Supplementary Э4 Э5 information S13), when substituting birth weight for ponderal index/BMI at birth and substituting child BMI for weight, when stratifying by offspring sex, or when additionally adjusting for gestational age (Supplementary table Э6)7 **S1**). With respect to eating behaviour outcomes, both maternal and paternal BMI were positively associated with Э8 offspring food responsiveness and emotional overeating, and negatively associated with emotional undereating.)9 Only paternal BMI was associated (negatively) with offspring satiety responsiveness and slow eating. Offspring 8-00 year BMI was associated with all eating behaviour outcomes except for emotional undereating, in the directions that)1 would be expected from the behavioral susceptibility theory of obesity (22) (Supplementary information S14). We)2 did not observe large departures from log-linear relationships (Supplementary information S7), and statistical 33 interaction between maternal and paternal BMI was at most minor (Supplementary information S15).

)4 Table 2 shows the sample size available for MCoTS analyses, stratified by maternal and offspring relationship. The)5 MCoTS results indicated that the positive phenotypic covariance between maternal BMI and offspring birth weight)6 was not explained by genetic confounding, with genetic covariance estimates that were statistically indistinguishable)7 from zero (Figure 3). The weak positive phenotypic covariance between paternal BMI and offspring birth weight was 30 also not explained by genetic confounding. Surprisingly, there was statistical evidence for a small negative genetic)9 covariance between paternal BMI and offspring birth weight, but this attenuated and became statistically 10 indistinguishable from zero when, in exploratory analyses, we adjusted exposures and outcomes for potential confounders (including maternal BMI, paternal age and paternal income), suggesting that bias due to uncontrolled 11 12 confounding may be the explanation (Supplementary information S16).

13 From age 6 months onwards, genetic covariance estimates became positive and increased in magnitude, such that 14 for offspring 8-year BMI, genetic confounding explained 79% (0.19 / 0.24 * 100) (95% CI: 62%, 95%) of the covariance with maternal BMI and 94% (0.20 / 0.21 * 100) (95% CI: 72%, 113%) of the covariance with paternal BMI 15 16 (Figure 3, Supplementary information S17). Genetic confounding explained a high and stable proportion of the 17 phenotypic covariance with predicted BMI from age 1 to 8 years (Figure 4, Supplementary information S18). Results 18 did not appreciably differ when we fitted ACE or AE models instead of the primary ADE model in the parent 19 generation (Supplementary Table 2), when birth weight was substituted for ponderal index/BMI at birth and child 20 BMI was substituted for weight (Supplementary Table 2, Supplementary information S19), or when BW models 21 were refit without offspring-generation twins (results available from the authors on request). Although sex stratified models were underpowered, they provided no evidence for large sex differences in estimates (Supplementary Table 22 23 2). MCoTS models for eating behaviour outcomes were underpowered and uninformative (Supplementary Table 2, 24 Supplementary information S20). Full MCoTS results including model fit statistics and estimated variance 25 components for parental and offspring phenotypes are presented in **Supplementary Table 2**.

27 **Table 2:** Number of families available for MCoTS analyses, stratified by parental and offspring relationship

		n						
Relationship type	Relatedness coefficient	Total	Parental exposure data available ^a	Offspring BW data available ^ª	Offspring 8yr BMI data available ^a			
Maternal BMI analyses			available		available			
Extended families ($n = 16292$)								
<i>n</i> stratified by mothers' relatedness in each extended family								
MZ twin mother pair	1.00	61	60	61	48			
DZ twin mother pair	0.50	34 ^b	34	34	24			
Full sibling mother pair	0.50	4916	4745	4910	3472			
Maternal half sibling mother pair	0.25	376	355	375	218			
Unrelated sister-in-law mother pair	0.00	10905	10495	10887	7633			
<i>n</i> offspring pairs linked to each mother ^{c}								
Full sibling offspring pair	0.50	4538	4477	4535	3154			
Maternal half-sibling offspring pair	0.25	38	38	38	20			
Unpaired (single) offspring		28008	20205	22288	11689			
Unpaired nuclear families (<i>n</i> = 7339)								
n offspring pairs linked to each mother								
MZ twin offspring pair	1.00	287	269	278	157			
DZ twin offspring pair	0.50	738	698	735	379			
Full sibling offspring pair	0.50	6229	6142	6227	4216			
Maternal half sibling offspring pair	0.25	85	81	85	37			
Paternal BMI analyses								
Extended families ($n = 17036$)								
<i>n</i> stratified by fathers' relatedness in each extended family								
MZ twin father pair	1.00	27	27	27	24			
DZ twin father pair	0.50	16 ^b	16	16	13			
Full sibling father pair	0.50	3154	3127	3154	2462			
Paternal half sibling father pair	0.25	171	168	171	128			
Unrelated brother-in-law father pair	0.00	13668	13164	13603	9621			
<i>n</i> offspring pairs linked to each father ^c								
Full sibling offspring pair	0.50	5710	5570	5706	3861			
Paternal half sibling offspring pair	0.25	28	28	28	22			
Unpaired (single) offspring		28334	22207	25046	12605			
Unpaired nuclear families (<i>n</i> = 7537)								
n offspring pairs linked to each father								
MZ twin offspring pair	1.00	287	265	278	157			
DZ twin offspring pair	0.50	951	854	924	453			
Full sibling offspring pair	0.50	6229	6152	6227	4216			
Paternal half sibling offspring pair	0.25	70	67	69	20			

a: Number of relative pairs for which at least one member had exposure/outcome data available (the numbers given in Figures 3
 and 4 for individual offspring with available data for each outcome are therefore greater), b: Parent-generation relatedness was
 modelled between same-sex DZ twins/siblings only, therefore opposite-sex DZ twins/siblings were treated as unrelated siblings in-law, c: MZ and DZ twins in the offspring generation were only retained for singleton parents, MZ: monozygotic (identical)

32 twins, **DZ**: dizygotic (non-identical) twins

33

- 34 Figure 2: Linear associations of maternal and paternal BMI with offspring birth weight, child BMI and 8-year eating
- 35 behaviours
 - а

Offspring outcome	Exposure	n	Estimate	95% CI	Ρ	Pdif					
Birth weight	Maternal BMI	85866	0.12	0.12, 0.13	3.1e-247	6.7e-85			-	-	
	Paternal BMI	85866	0.01	0.01, 0.02	5.4e-04		-				
6 month BMI	Maternal BMI	69256	0.09	0.08, 0.09	8.1e-99	2e-06			-		
	Paternal BMI	69256	0.06	0.05, 0.06	6.4e-44						
1 year BMI	Maternal BMI	59292	0.10	0.09, 0.11	2.4e-118	2.8e-05			+		
	Paternal BMI	59292	0.07	0.06, 0.08	2.3e-63			-	-		
2 year BMI	Maternal BMI	30904	0.08	0.07, 0.10	7.8e-45	0.13					
	Paternal BMI	30904	0.07	0.06, 0.08	4.1e-32				-		_
3 year BMI	Maternal BMI	39101	0.08	0.07, 0.09	8.8e-51	0.79		-	•		
	Paternal BMI	39101	0.08	0.07, 0.09	2.4e-54						
5 year BMI	Maternal BMI	32848	0.14	0.12, 0.15	8.1e-123	0.48					
	Paternal BMI	32848	0.13	0.12, 0.14	2.2e-113						
8 year BMI	Maternal BMI	46620	0.19	0.19, 0.20	<2.2e-308	2.9e-03					
	Paternal BMI	46620	0.17	0.16, 0.18	3.2e-298					-	⊢
		Mater	nal BMI			-0.05	0	0.05	0.1	0.15	0.2
		Pateri	nal BMI				Mean	hange in off	spring out	come (SD)	

per 1 SD increase in parental BMI

36

37 **b**

Offspring outcome	Exposure	n	Estimate	95% CI	Ρ	P _{dif}						
CEBQ: food	Maternal BMI	37265	0.08	0.07, 0.09	7.2e-52	0.01			1	-		
responsiveness	Paternal BMI	37265	0.06	0.05, 0.07	2.9e-30				-			
CEBQ: food	Maternal BMI	37284	-0.01	-0.02, 0.00	0.15	0.75		-				
fussiness	Paternal BMI	37284	-0.01	-0.02, 0.01	0.34			-				
CEBQ: satiety	Maternal BMI	37271	0.01	0.00, 0.02	0.16	1.4e-04	L		<			
responsiveness	Paternal BMI	37271	-0.02	-0.04, -0.01	6.1e-06		-	-				
CEBQ: slow	Maternal BMI	37254	0.01	0.00, 0.02	0.04	1e-04			-			
eating	Paternal BMI	37254	-0.02	-0.03, -0.01	6.2e-05		-	-				
CEBQ: emotional	Maternal BMI	36583	-0.02	-0.03, -0.01	3.2e-05	0.33	-	-				
undereating	Paternal BMI	36583	-0.01	-0.03, 0.00	0.01		-	-				
CEBQ: emotional	Maternal BMI	36735	0.04	0.03, 0.05	1.6e-11	0.04			-			
overeating	Paternal BMI	36735	0.02	0.01, 0.03	2.9e-04			-	-			
		Matern	BMI				-0.05	0	0.05	0.1	0.15	0.2
		Waterna				Mean change is offering subcome (SD)						
			per 1 SD increase in parental BMI									

- 38 Linear associations of maternal and paternal BMI with offspring outcomes. a: offspring birth weight and child BMI, b: offspring 8-
- 39 year old CEBQ eating behaviour traits, P: P-value testing the null hypothesis that regression coefficient is zero, P_{dif}: P-value
- 10 testing the null hypothesis that maternal and paternal regression coefficients are equal
- 11
- 12
- 13

Figure 3: MCoTS SEM estimates of phenotypic and genetic covariance of parental BMI with offspring birth weight and 8yr BMI

Offspring outcome	Exposure	n	Covariance component	Estimate	95% CI	Ρ							
Birth weight	Maternal BMI	45752	Phenotypic	0.13	0.12, 0.14	1.7e-222			-		•		
			Genetic	-0.05	-0.09, 0.01	0.07		+					
	Paternal BMI	50999	Phenotypic	0.05	0.04, 0.05	1.6e-35			-				
			Genetic	-0.07	-0.09, -0.04	3.3e-04	_						
8yr BMI	Maternal BMI	24954	Phenotypic	0.24	0.23, 0.25	<2.2e-308							-
			Genetic	0.19	0.15, 0.22	1.9e-12					+	•	- 1
	Paternal BMI	27051	Phenotypic	0.21	0.20, 0.22	<2.2e-308						-	•
			Genetic	0.20	0.15, 0.24	2.7e-14				1	-	+	-
 Maternal BMI, phenotypic covariance Maternal BMI, genetic covariance Paternal BMI, genetic covariance 					ariance riance	-0.1 -0.05	0	0.05	0.1	0.15	0.2	0.25	
	ang. 725.						Covariand and	ce b offs	etwee spring	n par outco	ental	BMI SD)	(SD)

Phenotypic covariance denotes the overall covariance between the exposure and outcome, Genetic covariance denotes the
 part of the phenotypic covariance that is due to genetic confounding, *P*: *P*-value for phenotypic covariance calculated via a *z*-test

using the standard error from bootstrapping the MCoTS model, P-value for genetic covariance calculated via a chi squared test

for deterioration of model fit on deletion of the al' path coefficient, *n*: number of offspring with outcome data available

19

50 Figure 4: MCoTS SEM estimates of phenotypic and genetic covariance of parental BMI with offspring predicted BMI

Offspring outcome	Exposure	n	Covariance component	Estimate	95% CI	Ρ				
Predicted 1yr BMI	Maternal BMI	25347	Phenotypic	0.13	0.12, 0.15	8.5e-130		-		
			Genetic	0.13	0.08, 0.17	5.5e-05	-			
	Paternal BMI	27530	Phenotypic	0.11	0.10, 0.12	3.5e-100	-	•		
			Genetic	0.10	0.05, 0.13	5.3e-04		<u> </u>		
Predicted 3yr BMI	Maternal BMI	25347	Phenotypic	0.14	0.13, 0.15	3.6e-134		-		
			Genetic	0.13	0.08, 0.17	3.1e-06				
	Paternal BMI	27530	Phenotypic	0.13	0.12, 0.14	5.1e-131		-		
			Genetic	0.14	0.09, 0.17	2.6e-07	-			
Predicted 5yr BMI	Maternal BMI	25347	Phenotypic	0.20	0.19, 0.21	3.5e-249			+	
			Genetic	0.18	0.13, 0.23	2.2e-09				
	Paternal BMI	27530	Phenotypic	0.18	0.17, 0.19	2.2e-246		-	₩.	
			Genetic	0.16	0.11, 0.19	8.6e-10			-	
Predicted 8yr BMI	Maternal BMI	25347	Phenotypic	0.24	0.23, 0.26	<2.2e-308				•
			Genetic	0.20	0.15, 0.24	1.1e-12			•	•
	Paternal BMI	27530	Phenotypic	0.22	0.21, 0.23	<2.2e-308			-	
			Genetic	0.19	0.13, 0.23	8.6e-13		-	-	
 Maternal BM Paternal BM 	۱۱, phenotypic co ۱, phenotypic cov	variance ariance	 M Pa 	aternal BMI, aternal BMI, g	genetic covari genetic covaria	ance -0.05 0	0.05 0.4	1 0.15	0.2 (0.25 SD)

and offspring outcome (SD)

51 Phenotypic covariance denotes the overall covariance between the exposure and outcome, Genetic covariance denotes the 52 part of the phenotypic covariance that is due to genetic confounding, *P*: *P*-value for phenotypic covariance calculated via a *z*-test 53 using the standard error from bootstrapping the MCoTS model, *P*-value for genetic covariance calculated via a chi squared test

54 for deterioration of model fit on deletion of the a1' path coefficient, *n*: number of offspring with outcome data available

55 Discussion

We triangulated evidence from two analytic approaches applied to a large European birth cohort, to infer the mechanisms underlying associations between parental BMI and offspring BW, BMI until 8 years and 8-year eating behaviour. There were not large differences in the magnitude of the associations of maternal and paternal BMI with offspring BMI beyond early childhood, suggesting confounding within families as the most parsimonious explanation for such associations. This was confirmed by our MCoTS analyses, which indicated that the covariance between parental BMI and offspring BMI from age 6 months to 8 years is primarily due to genetic confounding.

52 We have previously used genomic restricted maximum likelihood (GCTA-GREML) to explore whether 53 intergenerational BMI associations could be due to genetic confounding (18). Those analyses investigated whether 54 mother-offspring BMI covariance was explained by a set of ~8 million imputed common genetic variants, in 55 nominally unrelated individuals from 3 European birth cohorts. In contrast, the present MCoTS analyses investigated confounding involving all genetic variants, using expected relatedness inferred via quantitative genetic theory in a 56 57 pedigree of close relatives. GCTA-GREML indicated that for maternal BMI, imputed variants explained 43% (95% CI: 15%, 72%) of the covariance with offspring 15-year BMI, with a similar estimate for 10-year BMI. This is highly 58 59 consistent with the present MCoTS estimates: 79% (95% CI: 62%, 95%) of the covariance between maternal BMI and 70 offspring 8-year BMI was explained by genetic confounding. MCoTS estimates were somewhat higher than those from GCTA-GREML, which is expected given that GCTA-GREML uses a set of measured genetic variants whereas 71 72 MCoTS infers the effects of all variants. Furthermore, both GCTA-GREML and MCoTS indicated that the covariance 73 between maternal BMI and offspring birth weight was not due to genetic confounding. The high concordance of 74 results between the two methods, which make different assumptions and were applied to different cohorts, 75 provides strong evidence that genetic confounding is a major driver of associations between parental BMI and 76 offspring adiposity in late childhood.

77 Our results are consistent with previous maternal-paternal comparison, MR and sibling studies (several of which 78 share authors with the present study), which have not supported a large causal effect of maternal BMI on offspring 79 childhood adiposity (13, 14, 16, 17). However, sibling studies do provide a degree of support for potential causal 30 effects of more extreme maternal metabolic dysregulation (for example maternal diabetes and severe obesity) on offspring adiposity beyond birth (2, 14). Taken together, this suggests that putative causal effects observed in animal 31 32 models of developmental overnutrition (5, 9) should be interpreted cautiously and do not necessarily occur in 33 humans. The association between maternal BMI and offspring size/adiposity at birth has been invoked in the 34 literature to argue that maternal adiposity has a causal effect on offspring adiposity beyond birth (28). Indeed, MR 35 and sibling studies (13, 19, 29, 30) support a causal effect of maternal BMI on offspring birth size. However, the 36 present results, alongside previous studies (13, 17-19, 29), strongly suggest that the causes of weight at birth are 37 somewhat different from the causes of BMI in later childhood.

We observed some associations between parental BMI and offspring obesity-related eating behaviours assessed via 38 39 the CEBQ questionnaire. Previous studies in smaller samples have found similar associations, albeit somewhat ЭО inconsistently (12, 31). In particular, we found that greater maternal and paternal BMI were associated with € increased scores on the CEBQ food responsiveness and emotional overeating scales, and a reduced score on the Э2 emotional undereating scale. Offspring satiety responsiveness and slow eating were only associated with paternal ЭЗ BMI; however, we cannot exclude measurement error as an explanation for the absent maternal associations Э4 because the CEBQ questionnaire was completed by mothers and is inherently subjective. Given our maternal-Э5 paternal comparison results it is plausible that child appetite-related eating behaviours mediate the genetically driven association between parent and child BMI. However, it was not possible to confirm this because our MCoTS Э6)7 analyses were underpowered for eating behaviours.

Our results have important public health implications, when considered alongside prior evidence. Maternal BMI is unlikely to have a large causal effect on child BMI beyond birth, although a small causal effect remains plausible, potentially mediated via maternal glycaemia during pregnancy. Any causal effect of paternal BMI on offspring childhood BMI is likely to be similar to or smaller than that of maternal BMI. Consequently, reductions in the BMI of either parent before pregnancy are unlikely to cause large reductions in childhood adiposity. It is possible that interventions targeting parental BMI reduction could influence childhood adiposity via parental lifestyle changes that 11

persist after birth and affect the offspring's environment. However, whether preconceptional interventions are the optimal approach for preventing childhood obesity requires further evaluation in light of evidence from the present study. Importantly, women considering pregnancy should still be advised and supported to maintain a healthy weight, because there is good evidence that maternal obesity in pregnancy causes adverse perinatal outcomes in the mother and offspring (32).

)9 Our study has important strengths. We have analysed data from a large prospective birth cohort, enabling precise 10 estimation of the associations between parental BMI assessed during pregnancy and offspring outcomes in mid childhood. We leveraged a pedigree involving twin and sibling relationships in both the parental and offspring 11 12 generations, to partition parent-offspring phenotypic covariance via an MCoTS SEM that is rooted in quantitative genetics theory. We gained increased power over a conventional children of twins model by including non-twin 13 14 siblings in the parent and offspring generations, and up to two children for each parent. We also acknowledge 15 potential limitations of this study. First, because the MCoTS model cannot simultaneously estimate dominance 16 genetic effects and common environmental effects, we fitted an ADE model in the parent generation, which assumes 17 that common environmental effects are absent. This assumption is supported by classic and extended twin studies 18 of adult BMI (8) and the similarity of our findings when we used ACE or AE models in the parent generation 19 (Supplementary table 2). Second, our MCoTS analyses assume that phenotypic associations between log parent BMI 20 and offspring outcomes are linear. In our data there were only mild deviations from log-linearity which would be 21 unlikely to meaningfully alter our conclusions (Supplementary information S7). Third, our MCoTS analyses did not 22 account for assortative mating. However, we do not expect this to have had a large impact on our results because <u>23</u> spousal phenotypic correlations for BMI are relatively weak (13, 33), and spousal correlations at BMI associated loci 24 are weaker still (13). Fourth, the MCoTS model does not account for gene by environment interaction, and if 25 interactions exist between the additive genetic and common environmental variance components our results could 26 overestimate genetic confounding. We believe any such bias is likely to be small though because extended twin 27 family design data suggest common environmental effects are negligible for adult BMI (8). Fifth, the residual covariance estimated by the MCoTS model will not be indicative of the true causal effect of parental BMI, to the 28 <u>29</u> extent that residual confounding affects associations between parental BMI and offspring outcomes. It is likely that 30 the negative residual covariance estimate for paternal BMI and offspring birth weight reflects residual confounding, 31 particularly as this estimate attenuated on adjustment for potential confounders (Supplementary information S15). 32 Sixth, our maternal-paternal comparisons did not account for non-paternity, which could weaken paternal 33 associations. However, a previous simulation study showed that for a maternal-paternal comparison analysis using 34 MoBa data with follow up to age three years, results would have changed little with non-paternity rates of up to 10% 35 (17). Seventh, BMI is an imprecise proxy measure for adiposity. Despite this, BMI is highly correlated with more 36 direct adiposity measures in childhood (34). Eighth, MoBa has a participation rate of 41% and there has been 37 attrition over follow up (20). Although we cannot exclude an effect of selection bias on our results, we believe it 38 unlikely that this would be of sufficient magnitude to alter our conclusions. Lastly, we have studied a Norwegian 39 population which has relatively high obesity prevalence and income per capita in international terms and it would be 10 beneficial to replicate our analyses in other settings.

In summary, we have shown that in a Norwegian population the linear association between parental BMI around the time of pregnancy and offspring BMI from age 6 months to 8 years is primarily due to genetic confounding. Our results suggest that neither the mothers' nor fathers' pre-pregnancy BMI has a large causal effect on childhood BMI. This implies that any hypothetical intervention that successfully reduced parental BMI before pregnancy, without altering the offspring's postnatal environment, would be insufficient to achieve large reductions in the offspring's childhood obesity risk. Our results suggest that in the studied population, maintaining healthy parental BMI before conception is unlikely to be a promising target for childhood obesity prevention interventions.

48 **Contributors**

19 Tom A Bond: conceptualisation, data analysis, software, data interpretation, literature search, writing- original draft

50 Tom A McAdams: funding acquisition, data curation, methodology, software, data interpretation, writing- review 51 and editing

52 Nicole M Warrington: methodology, software, data interpretation, writing-review and editing

- 53 Laurie J Hannigan: methodology, data curation, software, data interpretation, writing- review and editing
- 54 Espen Moen Eilertsen: methodology, data curation, software, data interpretation, writing- review and editing
- 55 Fartein A Torvik: methodology, data curation, software, data interpretation, writing- review and editing
- 56 Ziada Ayorech: data curation, software, data interpretation, writing- review and editing
- 57 George Davey Smith: data interpretation, writing- review and editing
- 58 Deborah A Lawlor: data interpretation, writing- review and editing
- 59 Eivind Ystrom: funding acquisition, methodology, software, data interpretation, writing- review and editing
- 50 Alexandra Havdahl: funding acquisition, conceptualisation, supervision, data interpretation, writing- review and
- 51 editing
- 52 David M Evans: funding acquisition, conceptualisation, supervision, data interpretation, writing- review and editing

53 Data sharing

- Data from the Norwegian Mother, Father and Child Cohort Study and the Medical Birth Registry of Norway used in this study are managed by the national health register holders in Norway (Norwegian Institute of Public Health) and can be made available to researchers, subject to approval from the Regional Committees for Medical and Health Research Ethics (REC), compliance with the EU General Data Protection Regulation (GDPR) and approval from the data owners. The consent given by the participants does not cover storage of data on an individual level in repositories. Researchers who want access to data sets for replication should apply through helsedata.no. Access to
- 70 data sets requires approval from The Regional Committee for Medical and Health Research Ethics in Norway and an
- 71 agreement with MoBa.

72 **Declaration of interests**

- 73 DAL received support from Medtronic Ltd and Roche Diagnostics for research unrelated to that presented here. All
- 74 other authors report no conflict of interest.

75 Acknowledgements

- 76 The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care 77 Services and the Ministry of Education and Research. We are grateful to all the participating families in Norway who 78 take part in this on-going cohort study. TAB, GDS, DAL, NMW and DME work in or are affiliated a unit that receives 79 support from the University of Bristol and UK Medical Research Council (MC_UU_00011/1 and MC_UU_00011/6). 30 This study has received support from the British Heart Foundation Accelerator Award at the University of Bristol 31 (AA/18/1/34219) and a University of Queensland-University of Exeter Accelerator grant. LH was supported by the 32 South-Eastern Norway Regional Health Authority (2018058, 2019097) during the completion of this work. NMW is funded by a NHMRC Investigator grant (APP2008723). DME is funded by an Australian National Health and Medical 33 34 Research Council Senior Research Fellowship (APP1137714) and this work was funded by National Health and
- 35 Medical Research Council (Australia) (NHMRC) project grants (GNT1157714, GNT1183074). FAT was partly supported
- by the Research Council of Norway through its Centers of Excellence funding scheme (262700). ZA is funded by a Marie Skłodowska-Curie Fellowship from the European Research Council (894675). TAM is supported by a Wellcome
- Trust Senior Research Fellowship (220382/Z/20/Z). AH was supported by grants from the Norwegian Research
- Council (274611, 3006668) and the South-Eastern Norway Regional Health Authority (2018059, 2020022). EY was
- 30 supported by the Research Council of Norway (288083). This paper is the work of the authors and does not
- 31 necessarily represent the views of individuals or organizations acknowledged here.

References

- Heslehurst N, Vieira R, Akhter Z, Bailey H, Slack E, Ngongalah L, et al. The association between maternal body
 mass index and child obesity: A systematic review and meta-analysis. PLoS Med. 2019;16(6):e1002817.
- Lawlor DA. The Society for Social Medicine John Pemberton Lecture 2011. Developmental overnutrition—an
 old hypothesis with new importance? Int J Epidemiol. 2013;42(1):7-29.
- Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VW, Eriksson JG, et al. Influence of maternal
 obesity on the long-term health of offspring. Lancet Diabetes & Endocrinology. 2017;5(1):53-64.
- Sharp GC, Lawlor DA. Paternal impact on the life course development of obesity and type 2 diabetes in the
 offspring. Diabetologia. 2019;62(10):1802-10.

Lane M, Zander-Fox DL, Robker RL, McPherson NO. Peri-conception parental obesity, reproductive health,
 and transgenerational impacts. Trends Endocrinol Metab. 2015;26(2):84-90.

McPherson NO, Fullston T, Aitken RJ, Lane M. Paternal obesity, interventions, and mechanistic pathways to
 impaired health in offspring. Ann Nutr Metab. 2014;64(3-4):231-8.

J5 7. Larqué E, Labayen I, Flodmark C-E, Lissau I, Czernin S, Moreno LA, et al. From conception to infancy — early
 risk factors for childhood obesity. Nature Reviews Endocrinology. 2019;15(8):456-78.

Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human
 adiposity. Behav Genet. 1997;27(4):325-51.

9. Friedman JE. Developmental programming of obesity and diabetes in mouse, monkey, and man in 2018:
where are we headed? Diabetes. 2018;67(11):2137-51.

Rasmussen JM, Thompson PM, Entringer S, Buss C, Wadhwa PD. Fetal programming of human energy
 homeostasis brain networks: Issues and considerations. Obes Rev. 2022;23(3):e13392.

Webber L, Hill C, Saxton J, Van Jaarsveld CHM, Wardle J. Eating behaviour and weight in children. Int J Obes.
 2009;33(1):21-8.

12. Albuquerque G, Severo M, Oliveira A. Early Life Characteristics Associated with Appetite-Related Eating
 Behaviors in 7-Year-Old Children. The Journal of Pediatrics. 2017;180:38-46.e2.

Bond TA, Richmond RC, Karhunen V, Cuellar-Partida G, Borges MC, Zuber V, et al. Exploring the causal effect
 of maternal pregnancy adiposity on offspring adiposity: Mendelian randomisation using polygenic risk scores. BMC
 Med. 2022;20(1):34.

Lawlor DA, Lichtenstein P, Långström N. Association of maternal diabetes mellitus in pregnancy with
 offspring adiposity into early adulthood: sibling study in a prospective cohort of 280,866 men from 248,293 families.
 Circulation. 2011;123(3):258-65.

15. Branum AM, Parker JD, Keim SA, Schempf AH. Prepregnancy Body Mass Index and Gestational Weight Gain
 in Relation to Child Body Mass Index Among Siblings. Am J Epidemiol. 2011;174(10):1159-65.

2516.Patro B, Liber A, Zalewski B, Poston L, Szajewska H, Koletzko B. Maternal and paternal body mass index and26offspring obesity: a systematic review. Ann Nutr Metab. 2013;63(1-2):32-41.

17. Fleten C, Nystad W, Stigum H, Skjærven R, Lawlor DA, Smith GD, et al. Parent-offspring body mass index
associations in the Norwegian Mother and Child Cohort Study: a family-based approach to studying the role of the
intrauterine environment in childhood adiposity. Am J Epidemiol. 2012;176(2):83-92.

Bond TA, Karhunen V, Wielscher M, Auvinen J, Männikkö M, Keinänen-Kiukaanniemi S, et al. Exploring the
 role of genetic confounding in the association between maternal and offspring body mass index: evidence from
 three birth cohorts. Int J Epidemiol. 2020;49(1):233-43.

3319.Tyrrell J, Richmond RC, Palmer TM, Feenstra B, Rangarajan J, Metrustry S, et al. Genetic evidence for causal34relationships between maternal obesity-related traits and birth weight. JAMA. 2016;315(11):1129-40.

Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK, et al. Cohort Profile Update: The Norwegian
 Mother and Child Cohort Study (MoBa). Int J Epidemiol. 2016:dyw029.

Irgens LM. The Medical Birth Registry of Norway. Epidemiological research and surveillance throughout 30
 years. Acta Obstet Gynecol Scand. 2000;79(6):435-9.

Wardle J, Guthrie CA, Sanderson S, Rapoport L. Development of the Children's Eating Behaviour
 Questionnaire. The Journal of Child Psychology and Psychiatry and Allied Disciplines. 2001;42(7):963-70.

R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for
 Statistical Computing; 2020.

McAdams TA, Hannigan LJ, Eilertsen EM, Gjerde LC, Ystrom E, Rijsdijk FV. Revisiting the children-of-twins
 design: improving existing models for the exploration of intergenerational associations. Behav Genet.
 2018;48(5):397-412.

Lunde A, Melve KK, Gjessing HK, Skjærven R, Irgens LM. Genetic and environmental influences on birth
weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. Am
J Epidemiol. 2007;165(7):734-41.

26. Silventoinen K, Jelenkovic A, Sund R, Hur Y-M, Yokoyama Y, Honda C, et al. Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins

52 (CODATwins) study. The American Journal of Clinical Nutrition. 2016;104(2):371-9.

Neale MC, Hunter MD, Pritikin JN, Zahery M, Brick TR, Kirkpatrick RM, et al. OpenMx 2.0: Extended Structural
 Equation and Statistical Modeling. Psychometrika. 2016;81(2):535-49.

55 28. Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse 56 consequences for mother and child. BMJ. 2017;356:j1.

57 29. Chen J, Bacelis J, Sole-Navais P, Srivastava A, Juodakis J, Rouse A, et al. Dissecting maternal and fetal genetic 58 effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: A 59 mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother-infant pairs. PLoS Med. 50 2020;17(8):e1003305.

51 30. Villamor E, Cnattingius S. Interpregnancy weight change and risk of adverse pregnancy outcomes: a 52 population-based study. The Lancet. 2006;368(9542):1164-70.

53 31. Boswell N, Byrne R, Davies PSW. Eating behavior traits associated with demographic variables and 54 implications for obesity outcomes in early childhood. Appetite. 2018;120:482-90.

Borges MC, Clayton G, Freathy RM, Felix JF, Fernández-Sanlés A, Soares AG, et al. Integrating multiple lines
 of evidence to assess the effects of maternal BMI on pregnancy and perinatal outcomes in up to 497,932 women.
 medRxiv. 2022:2022.07.22.22277930.

33. Horwitz TB, Keller MC. A comprehensive meta-analysis of human assortative mating in 22 complex traits.
 bioRxiv. 2022:2022.03.19.484997.

70 34. Bell JA, Carslake D, O'Keeffe LM, Frysz M, Howe LD, Hamer M, et al. Associations of body mass and fat

71 indexes with cardiometabolic traits. J Am Coll Cardiol. 2018;72(24):3142-54.