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s Abstract

16 Purpose: Pancreatic Duct Adenocarcinoma (PDAC) screening can enable de-
v tection of early-stage disease and long-term survival. Current guidelines are
18 based on inherited predisposition; only about 10% of PDAC cases meet screening
1 eligibility criteria. Electronic Health Record (EHR) risk models for the general
2 population hold out the promise of identifying a high-risk cohort to expand the
a1 currently screened population. Using EHR data from a multi-institutional fed-
» erated network, we developed and validated a PDAC risk prediction model for
23 the general US population.

2 Methods: We developed Neural Network (NN) and Logistic Regression (LR)
»  models on structured, routinely collected EHR data from 55 US Health Care Or-
s ganizations (HCOs). Our models used sex, age, frequency of clinical encounters,
2z diagnoses, lab tests, and medications, to predict PDAC risk 6-18 months before
s diagnosis. Model performance was assessed using Receiver Operating Character-
2 istic (ROC) curves and calibration plots. Models were externally validated using
s location, race, and temporal validation, with performance assessed using Area
a Under the Curve (AUC). We further simulated model deployment, evaluating
» sensitivity, specificity, Positive Predictive Value (PPV) and Standardized Inci-
s dence Ratio (SIR). We calculated SIR based on the SEER data of the general
s population with matched demographics.

55 Results: The final dataset included 63,884 PDAC cases and 3,604,863 controls
s between the ages 40 and 97.4 years. Our best performing NN model obtained an
s AUC of 0.829 (95% CI: 0.821 to 0.837) on the test set. Calibration plots showed
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s good agreement between predicted and observed risks. Race-based external val-
» idation (trained on four races, tested on the fifth) AUCs of NN were 0.836 (95%
w CI: 0.797 to 0.874), 0.838 (95% CI: 0.821 to 0.855), 0.824 (95% CI: 0.819 to
a 0.830), 0.842 (95% CI: 0.750 to 0.934), and 0.774 (95% CI: 0.771 to 0.777) for
22 ATAN, Asian, Black, NHPI, and White, respectively. Location-based external
s validation (trained on three locations, tested on the fourth) AUCs of NN were
w 0.751 (95% CI: 0.746 to 0.757), 0.749 (95% CI: 0.745 to 0.753), 0.752 (95% CI:
s 0.748 to 0.756), and 0.722 (95% CI: 0.713 to 0.732) for Midwest, Northeast,
s South, and West, respectively. Average temporal external validation (trained on
« data prior to certain dates, tested on data after a date) AUC of NN was 0.784
w  (95% CIL: 0.763 to 0.805). Simulated deployment on the test set, with a mean
w0 follow up of 2.00 (SD 0.39) years, demonstrated an SIR range between 2.42-83.5
so  for NN, depending on the chosen risk threshold. At an SIR of 5.44, which ex-
51 ceeds the current threshold for inclusion into PDAC screening programs, NN
2 sensitivity was 35.5% (specificity 95.6%), which is 3.5 times the sensitivity of
53 those currently being screened with an inherited predisposition to PDAC. At
s« a chosen high-risk threshold with a lower SIR, specificity was about 85%, and
ss both models exhibited sensitivities above 50%.

ss  Conclusions: Our models demonstrate good accuracy and generalizability across
57 populations from diverse geographic locations, races, and over time. At compa-
ss  rable risk levels these models can predict up to three times as many PDAC cases
5o as current screening guidelines. These models can therefore be used to identify
¢ high-risk individuals, overlooked by current guidelines, who may benefit from
st PDAC screening or inclusion in an enriched group for further testing such as
2 biomarker testing. Our integration with the federated network provided access
e to data from a large, geographically and racially diverse patient population as
e well as a pathway to future clinical deployment.

s 1 Introduction

6 Most cases of Pancreatic Duct Adenocarcinoma (PDAC) are diagnosed as advanced-
o stage disease, leading to a five-year relative survival rate of only 11% [26]. Ex-
e panding the population currently being screened for this lethal disease is crucial
¢ for increasing early detection and improving survival. Current screening guide-

7 lines [4, 10, 12] targeting stage I cancers and high-grade PDAC precursors have
7 been shown to significantly improve long-term survival [6, 18]. Current guide-
22 lines target patients with a family history or genetic predisposition to PDAC
73 [13, 21], with screening eligibility based on estimated absolute and relative risk
7+ compared to the general population (5% or 5 times the relative risk, respectively)
75 [6]. These patients comprise only about 10% of all PDAC cases. No consensus
76 or guidelines exist for PDAC screening in the general population [20], where the
7 majority of PDAC cases are found.

78 Several groups have developed PDAC risk models for the general population
79 using various data sources [5, 15, 16]. A goal of most such models is eventual

s integration with Electronic Health Record (EHR) systems and ultimately clinical
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Fig. 1: Flowchart of our study with simulated deployment as an example

s implementation. EHR integration has proven to be a significant barrier to the
22 clinical adoption of models [28]. One effort developed a model using EHR data
& from an aggregated multi-institutional database [7]. The evaluation focused on
s identification of high risk patients up to one month before diagnosis and did not
s attempt to evaluate model generalization across locations or races. Several other
s efforts worked with real-world EHR data [3, 8, 22], but with limited validation
&7 across diverse locations and races. Other efforts worked with small sample sizes
s [0, 19] and internal validation only [16, 19].

8 We used EHR data from 55 US Health Care Organizations (HCOs) from
o a federated data network to develop and validate two PDAC risk prediction
o models for the general population, a Neural Network (NN) model and a Logistic
2 regression (LR) model. The models can be used as a tool to identify individuals
o3 at high risk for PDAC from the general population, so they can be offered early
w screening or referred for lower overhead testing such as biomarker testing.

o The network provides access to harmonized, de-identified EHR data of over
o 89 million patients for model development and testing. It also provides a means
o7 to simulate deployment of the resultant models to identify high risk patients
e for screening within a research setting. Because the network is connected to the
o EHR systems of the participating HCOs, it provides a pathway to deploy the
100 models to a clinical setting, a critical step in the progression towards successful
1 clinical adoption [28].

102 We developed a methodology to train PDAC prediction models on federated
3 network EHR data. Our evaluation reports AUC and PPV numbers for the re-
s sulting trained models, with the evaluation focusing on the ability of the models
105 to identify high risk patients 6 to 18 months before an initial PDAC diagno-
s sis. We conducted three types of external validation: location-based, race-based,


https://doi.org/10.1101/2023.02.05.23285192

medRxiv preprint doi: https://doi.org/10.1101/2023.02.05.23285192; this version posted February 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

w7 and temporal. We simulated deployment of the model on real-world HCO data
w8 to evaluate its performance in a more realistic setting. We compared the rela-
wo  tive incidence of PDAC in our model-assigned high-risk group with that of a
uo demographically matched general US population based on SEER data [1].

m 2 Methods

12 2.1 Data source and setting

us  This is an observational retrospective study, with both a case-control and cohort
us  design, using data from the federated EHR database platform of TriNetX [27].
us  TriNetX is a federated global health research network that specializes in data
us collection and distribution. HCOs contributing to the database include academic
u7  medical centers, community hospitals, and outpatient clinics.

118 We used retrospective de-identified EHR data from 55 HCOs across the
o United States. The majority of these HCOs are tertiary care centers and the data
20 used includes inpatient, outpatient, and Emergency Room encounters. Different
1z HCOs have different historical coverage; on average, each HCO provides approx-
12 imately 13 years of historical data. Data include values from structured EHR
3 fields (e.g. demographics, date-indexed encounters, diagnoses, procedures, labs,
e and medications) as well as facts and narratives from free text (e.g. medications
s identified through Natural Language Processing (NLP)). TriNetX harmonizes all
s data from each HCO’s EHR to the TriNetX common data model and common
127 set of controlled terminologies.TriNetX also has tools to identify anomalies and
s outliers for quality assurance.

120 We used data from the TriNetX database under a no-cost collaboration agree-
10 ment between BIDMC, MIT, and TriNetX. Under this agreement, we accessed
1  de-identified data under the agreements and institutional approvals already in
12 place between TriNetX and their partner institutions.

13 2.2  Study population

13« We worked with two cohorts: a PDAC cohort and a control cohort. We obtained
15 all data from TriNetX during November and December, 2022. We obtained the
s PDAC cohort by querying the TriNetX database to obtain EHR data for all
w  patients, 40 years of age or older, from 55 HCOs across the United States, with
s one of the following ICD-10/ICD-9 codes:

10— (C25.0 Malignant neoplasm of head of pancreas
uw  — (C25.1 Malignant neoplasm of body of pancreas
w — (C25.2 Malignant neoplasm of tail of pancreas

(C25.3 Malignant neoplasm of pancreatic duct

(C25.7 Malignant neoplasm of other parts of pancreas
(C25.8 Malignant neoplasm of overlapping sites of pancreas
(C25.9 Malignant neoplasm of pancreas, unspecified

142

143

144

145
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us  — 157 Malignant neoplasm of pancreas (ICD-9 without a corresponding ICD-10
147 code)

us  We obtained n=132,789 PDAC cases. We excluded patients who were diagnosed
1o before 40 years of age (n=1,924), patients with no medical history 6 months
s prior to diagnosis (n=66,731), and patients with records 2 months after their
151 death record (n=250), to obtain a PDAC cohort with n=63,884 cases.

152 To prepare the control cohort, we queried the TriNetX database for patients
153 at least 40 years of age without any of the above ICD-10 or ICD-9 codes. There
1s¢ were n=51,139,587 patients that met this criteria. From these patients we ran-
155 domly selected n=6,499,996 patients. We excluded patients with a PDAC tumor
156 registry entry but no PDAC diagnosis entries (n=304), patients whose last entry
157 was before age 35.5 (n=118,170), patients with less than 90 days of medical his-
s tory (n=2,753,897), and patients with records 2 months after their death record
s (n=22762), to obtain a control cohort with n=3,604,863 cases. Our subsequent
o training and testing procedures implement additional exclusion criteria (see be-
161 IOW)

12 2.3 Model development

13 We used the TRIPOD guidelines for multivariable prediction models for report-
1« ing on model development and validation [9].

165 We trained and evaluated two model classes, Neural Network (NN) and Lo-
s gistic Regression (LR). Data was randomly partitioned into training, validation,
wr and test sets (756%, 10%, and 15%, respectively). We evaluated model perfor-
s mance by AUC scores and sensitivity, specificity, PPV, and SIR in simulated
o deployment. To calculate SIR, we used the SEER database [1] to estimate the
1w PDAC risk for our model’s high-risk group compared to the general population.
171 Our training and testing procedures work with a cutoff date C for every
2 patient, with entries after the cutoff date excluded. For a patient P and a cutoff
w3 date C, the model uses entries available before the cutoff date C' to predict the
s risk of first diagnosis of PDAC between C' + 6mo to C' + 18mo. We defined the
s date of PDAC diagnosis D to be the first time a PDAC ICD code (as above)
s appeared in the patient record. During training, we sampled the cutoff dates for
wr PDAC cases uniformly between [D —18mo, D —6mo]. Since control patients were
s not diagnosed with PDAC, we sampled random cutoff dates for them from the
e distribution of the PDAC diagnosis dates. For a control patient with a known
10 death date, we limited the cutoff date to at most 18 months before death, to rule
w1 out undiagnosed PDAC that caused death. To avoid undiagnosed PDAC cases,
12 we also limited all cutoff dates of patients in the control cohort to be at most 18
183 months before the dataset query date.

184 We empirically defined any patient with at least 16 diagnosis, medication, or
15 lab result entries within 2 years before their cutoff date and whose first entry
185 is at least 3 months earlier than their last entry before the cutoff date to have
w7 sufficient medical history. We excluded patients that did not have sufficient med-
s ical history. We trained the NN with the iterative Stochastic Gradient Descent
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1w (SGD) algorithm [17], sampling a new cutoff date for each patient at each step
1o of the iteration. Our LR training sampled one cutoff date for each patient.

101 Our feature extraction excluded entries after the cutoff date (and included
2 all entries up to the cutoff date). For each patient, we defined six basic features
13 including age, whether age is known, sex, whether sex is known, number of
104 diagnosis, medication, or lab entries in the medical record up to 18 months before
s cutoff (the recent entries), and number of diagnosis, medication, or lab entries in
s the medical record greater than 18 months before cutoff (the early entries). We
17 also included features that correspond to individual diagnosis, medication, or
108 lab codes, with the corresponding code empirically included in feature selection
10 if it appeared in the medical record of at least 1% of the patients in the cancer
20 cohort of the training set.

201 We manually grouped 827 commonly used diagnosis codes into 39 groups.
22 For ungrouped codes, we used the ICD-10 category plus the first digit of the
203 subcategory. We derived 3 features for each diagnosis code: whether or not it
200 exists {0, 1}, its first and last date (encoding for first and last date: greater
205 or equal to 4 years before cutoff=0; at cutoff=1). To use past ICD-9 data to
206 train the model for use on current and future ICD-10 data, we mapped all ICD-
27 9 codes to their ICD-10 equivalents. For ICD-9 codes that could be mapped
28 to more than one ICD-10 code, we included the features of all the mapped
200 ICD-10 codes in the feature vector. We also manually grouped 67 medication
a0 codes into 8 different medication classes. Ungrouped codes were used as they
an are. We derived 4 features for each medication code: whether or not it exists
a2 {0, 1}, its frequency (i.e., number of times it appears in the medical record),
23 span (time between first and last appearance of a medication code), and last
2 date (same encoding as diagnosis first/last date). For lab features, we used a
25 grouping provided by TriNetX for similar lab tests, which had 98 groups for 462
216 codes. Ungrouped codes were used as they are. For each lab code, we derived 4
a7 features: existence, frequency, first date, and last date. The frequency was the
218 number of lab results within three years before cutoff. We manually selected the
210 most relevant lab tests for PDAC prediction, based on clinical knowledge and
20 literature review. For these manually selected 44 quantitative labs, we derived
21 two additional features: lab test value and slope. Lab values were normalized
22 according to the median absolute deviation and the population median (range
23 -1 to 1). Slope was measured by calculating the yearly change in lab test values
24 up to three years before cutoff.

225 To account for the additional effect of the healthcare process on EHR data
2 [2], we did the following: For each feature type described above (except the
27 number of early and recent entries in basic features) there is a corresponding
28 existence feature {0, 1}; if the feature is missing in the data set, the value of the
29 corresponding existence feature is 1 and the value of the feature itself is 0. This
20 encoding enables the model to compute risk scores based on whether a feature
231 is present or missing. Because our NN models can use sophisticated nonlinear
2 reasoning to extract information from the chosen features, data imputation pro-
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23 vides little to no useful additional information for these models. Therefore, we
2 did not use any imputation.

235 Our NN models have three fully connected layers; each layer has 48, 16,
26 and 1 output neurons. Hidden layers use the tanh nonlinearity. To ameliorate
23 overfitting, we used sparse weights computed by the recently developed BinMask
2 sparsification technique [141]. We used balanced numbers of PDAC and control
20 patients in each mini-batch. For LR training, we used the SAGA solver [11]
20 with balanced class weights. For each model type, we trained four models with
2 different regularization parameters and selected the best one on the validation

22 set.
243 We calibrated the models on the validation set with a modified Platt cali-
24 bration algorithm [23], where we fitted a two-segment piecewise-linear mapping

25 with the turning point set as the median of model predictions. We accounted for
26 the unbalanced sampling of control cohort and estimated the risk on the whole
27 population in calibration. We evaluated our calibration by creating calibration
28 plots on the test set. We chose 16 risk groups for calibration evaluation as a
u9  geometric sequence between the 85% percentile of predicted risk on the test set
»0 and the maximum predicted risk. To quantitatively compare calibration between
1 models, we used the Geometric Mean of Over Estimation (GMOE), calculated
2 as the geometric mean of the ratios of predicted risk to the true risk over all
»3  tested risk groups. Perfectly calibrated models have GMOE=1. A GMOE value
;4 greater than one means over estimation of risk and a value less than one means
»s  under estimation of risk.

256 We also evaluated the stability of our algorithm by calculating the mean AUC
7 and GMOE with confidence interval on nine independent runs with different
s random seeds for dataset split and weight initialization.

250 For both the LR and NN models, we analyzed the impact of different num-
20 bers of features on model performance. We reduced the number of input features
1 by applying BinMask to the input of a small and densely connected neural net-
%2 work to automatically select important features. We varied the BinMask weight
x3  decay coefficient to obtain different numbers of input features and evaluated the
xs  performance of our models with those feature sets.

265 We analyzed the feature importance for NN by calculating the partial AUC
26 (up to 6% FPR) obtained with only each type of medical record entries. A larger
27 score for a type of record means the NN makes better predictions based on the
x%s record entries alone.

20 2.4 External validation

a0 Our model validation considered three attributes: geographical location of the
on HCO, patient race, and time of diagnosis/last used entry in the medical record.
a2 For each attribute, we split the dataset according to that attribute, trained
2z models on one split, and tested on the other split.

274 Our location based validation used the TriNetX geographical location for each
s HCO; locations include Northeast, South, Midwest, and West. Our race based
o validation used the TriNetX racial classification of each patient; races include
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on American Indian or Alaska Native (AIAN), Asian, Black or African American
2z (Black), Native Hawaiian or Other Pacific Islander (NHPI), and White.

219 A primary assessment of model generalizability is the AUC gap between
w0 test set and validation set. However, since different attribute splitting produces
2 training/validation/test sets with different sizes, the test/validation AUC gap
x2  does not necessarily depict model generalizability. Therefore, we trained control
23 models that used the same training and test set size for each attribute-based
2sa  split, but used random splitting that ignores attribute values. We also assessed
s model generalizability by checking the AUC gap between the external validation
25 models and corresponding control models.

287 For temporal validation, we selected the 50%, 60%, ..., 90% percentile from
28 the distribution of diagnosis dates as the dataset split dates. The 90% percentile
20 was Sep 23, 2021. We trained the models only on data available prior to those
200 split dates. We also limited the cutoff date of control patients to earlier than 18
20 months before the split dates, to simulate model training with datasets queried
22 on the split dates. We evaluated the performance of the models on the same
23 subset of data only available after Sep 23, 2021. We also calculated the aver-
2a  age performance of different models for the temporal validation. Since different
25 dataset split dates result in different training set sizes, we also trained control
26 models. For each split date, we randomly sampled the same number of PDAC
27 cases (equal to the 50% of the total number of PDAC cases) from cases up to
26 that split date. The control models allowed us to separate the contribution of
200 larger training set from the impact of smaller time gap between training and
30 test sets.

s 2.5  Simulated deployment

s We estimate the performance of our model when deployed in a clinical setting by
s simulating model deployment in a prospective study on the TriNetX database.
s We trained the model only on data available prior to Feb 7, 2020, in the same
s way as the above temporal validation, with the dataset split date chosen as
06 the 70% percentile of the distribution of the diagnosis dates. For each date D
sr - separated by 90 days between Feb 7, 2020 and May 2, 2021 (18 months before
w8 dataset query), we

0 1. Enrolled a new patient into the simulated deployment if the patient had a

310 known age, was at least 40 years old on date D, and had sufficient medical
a1 history on D for the first time. We call the date D the enrollment date for
312 such a patient.

a3 2. For each enrolled patient, we checked if that patient still had sufficient med-
314 ical history on D. If so, we evaluated the model risk by our model, with the
315 cutoff date set at D. We call the date D a check date for such a patient.

316 We excluded patients who were diagnosed with PDAC either before enroll-

317 ment or within 6 months after enrollment, patients who had no medical entries
a1 between first and last check dates, and patients with a known death but no
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sw  PDAC diagnosis within 18 months after enrollment. We started following up a
20 patient 6 months after their enrollment date. We stopped following up a patient
s 18 months after the last check date. During the followup period, we defined the
s following outcomes:

23 1. A patient was diagnosed with PDAC. We counted this patient as a true

324 positive if the model made a high-risk prediction on any check date 6 months
35 prior to diagnosis and a false negative otherwise.

2 2. A patient was not diagnosed with PDAC. They might either have a known
327 death date, reached our dataset query date, or never had sufficient medical
328 history again after a certain check date. For patients with a known death
329 date, we only considered check dates up to 18 months before death, due
330 to the possibility of undiagnosed PDAC at death. For other patients, we
331 considered all check dates. If the model ever made a high-risk prediction for
33 this patient on any considered check dates, we counted the patient as a false
333 positive. Otherwise, we counted the patient as a true negative.

334 We chose the risk thresholds according to the 89.00%, 93.00%, 96.50%, 98.00%,
s5 99.70%, 99.92% specificity levels on the validation set. For each risk threshold,
1 we computed sensitivity, specificity, Positive Predictive Value (PPV), and Stan-
s dardized Incidence Ratio (SIR), based on the above protocol. Since we used all
138 the PDAC cases in the TriNetX database, but sampled a subset of control pa-
;39 tients, we accounted for this imbalance to estimate the PPV and SIR that would
s be obtained if we had evaluated the model on the full TriNetX population.

341 We calculated SIR by dividing the observed PDAC cases in the high-risk
w2 group by the expected number of PDAC cases of that group. To calculate the
a3 expected number of cases, we used the SEER database [1], matched with age,
s sex, race, and calendar year for each individual in the high-risk group, as done
us by Porter et al. [24].

uw 3 Results

wr 3.1 Model evaluation

us  The final LR model and NN models used 63,884 cancer patients and 3,604,863
a0 controls up to 97.4 years old (determined at the time of diagnosis or last record).
0 Detailed demographics, including sex, age, race, and HCO location, are given in
s Table 1. Fig. 1 presents a flowchart demonstrating how this dataset was derived.
352 The NN outperformed the LR model on the test set, with an AUC of 0.827
33 (95% CI: 0.822 t0 0.833) and 0.809 (95% CI: 0.804 to 0.815), respectively (Fig. 2a).
3+ The mean AUCs of NN and LR on nine random runs are 0.829 (95% CI: 0.821
35 t0 0.837) and 0.810 (95% CI: 0.803 to 0.817), respectively. Because our models
6 predict based in part on the presence or absence of features, each feature is a
57 predictor and we have no participants with missing predictors [2].

358 Fig. 2b shows the log-scale calibration plots on the test set. The evaluated
0 risk levels are selected according to a geometric sequence between the 85% risk
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Table 1: Demographics of our dataset.
Cancer group (n=63,884) Control group (n=3,604,863)

Attribute % (No.) % (No.)
Female 50.40 (32,196) 55.27 (1,992,432)
Sex Male 49.59 (31,681) 43.42 (1,565,131)
Unknown 0.01 (7) 1.31 (47,300)
Mean (SD) 60.88 (12.02) 53.90 (14.03)
< 40 4.88 (3,116) 17.37 (626,073)
40 - 50 12.38 (7,908) 21.52 (775,841)
Age at first record 50 - 60 24.35 (15,556) 23.30 (840,092)
60 - 70 30.69 (19,605) 19.76 (712,411)
70 - 80 18.93 (12,091) 11.01 (396,806)
> 80 3.54 (2,259) 2.50 (90,128)
Mean (SD) 67.67 (10.59) 60.20 (13.10)
< 40 0.00 (0) 4.78 (172,349)
Age at dingnosis 40 - 50 6.01 (3,841) 20.00 (720,800)
) et recond 50 - 60 16.42 (10,490) 22.90 (825,442)
60 - 70 30.56 (19,522) 23.44 (844,818)
70 - 80 29.68 (18,958) 17.05 (614,615)
> 80 12.09 (7,724) 7.30 (263,327)
Age Unknown 5.24 (3,349) 4.54 (163,512)
AIAN 0.26 (164) 0.36 (13,023)
Asian 1.53 (976) 2.27 (81,726)
Race Black 13.95 (8,910) 14.16 (510,444)
NHPI 0.05 (35) 0.13 (4,694)
White 72.70 (46,441) 67.24 (2,423,771)
Unknown  11.52 (7,358) 15.85 (571,205)
Midwest 21.17 (13,527) 15.41 (555,417)
Northeast  33.42 (21,352) 28.40 (1,023,916)
HCO location South 36.37 (23,234) 44.18 (1,592,634)
West 7.41 (4,733) 8.54 (308,013)
Unknown  1.62 (1,038) 3.46 (124,883)

No. medical records Mean (SD) 779.11 (1506.23) 441.79 (1091.31)

Race abbreviations:
— ATAN: American Indian or Alaska Native
— Black: Black or African American
— NHPI: Native Hawaiian or Other Pacific Islander

w0 percentile and the maximal risk given by the model on the test set. Geometric
ss - Mean of Over Estimation (GMOE), the geometric mean of ratios of predicted
w2 risks to observed risks, was calculated for both models. The GMOE for the NN
3 was 1.037 and 0.861 for the LR. The GMOE on nine random runs was 1.148
e (95% CI: 1.092 to 1.203) and 0.992 (95% CI: 0.944 to 1.041) for NN and LR,
35 respectively.

366 The impact of different feature numbers on model performance, for both
7 the NN and LR models, is shown in Fig. 3a. Both models showed improved
ws performance with an increasing number of features, reaching a plateau at an
30 AUC of 0.83 (NN) and 0.81 (LR) for a combination of 1574 diagnoses features,
s 862 medication features, and 719 lab features. Additional features produced no
sn  significant improvement in model performance.

32 Fig. 3b shows the top features selected by the LR model and ranked by feature
sz importance. The top features include codes related to glucose metabolism and
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Fig. 2: Model performance on the test set.

s diabetes, medications such as Insulin and oral hypoglycemics, as well as blood
a5 tests for glucose and fasting glucose and HbA 1c. Top features also include known
s PDAC risk factors such as age, pancreatitis, pancreatic cysts, personal history
sz of cancer, weight loss, and smoking.

s 3.2 External validation results

se Fig. 4 shows the results for race-based, location-based, and temporal external
s validations. The model performed similarly across racial groups without signif-
s icant performance drop, as shown in Fig. 4a. AUCs on the test set were 0.836
2 (95% CI: 0.797 to 0.874), 0.838 (95% CI: 0.821 to 0.855), 0.824 (95% CI: 0.819
33 t0 0.830), 0.842 (95% CI: 0.750 to 0.934), and 0.774 (95% CI: 0.771 to 0.777) for
s« ATAN, Asian, Black, NHPI, and White racial groups, respectively. The AUCs
35 of the LR models were 0.801 (95% CI: 0.755 to 0.846), 0.822 (95% CI: 0.804
s to 0.840), 0.806 (95% CI: 0.800 to 0.811), 0.836 (95% CI: 0.742 to 0.929), and
s 0.773 (95% CI: 0.770 to 0.775). Test AUCs of NN models were -0.035 to 0.015
s lower than the corresponding control models, and -0.024 to 0.008 lower for LR
0 models. The number of patients of each racial groups can be seen in Table 1. We
s0 excluded patients with unknown race from this experiment.

301 Model performance was similar across the different geographic locations as
w2 shown in Fig. 4b. NN AUCs on the test set were 0.751 (95% CI: 0.746 to 0.757),
3 0.749 (95% CI: 0.745 to 0.753), 0.752 (95% CI: 0.748 to 0.756), and 0.722 (95%
3¢ CI: 0.713 to 0.732) for the Midwest, Northeast, South, and West, respectively.
35 LR AUCs were 0.742 (95% CI: 0.737 to 0.748), 0.735 (95% CI: 0.730 to 0.739),
2 0.726 (95% CI: 0.722 to 0.730), and 0.623 (95% CI: 0.610 to 0.636). Test AUCs
37 of NN models were 0.074 to 0.112 lower than the corresponding control models,
38 and 0.060 to 0.191 lower for LR models. The number of patients in each location
30 can be seen in Table 1. We excluded patients with unknown HCO location from
w0 this experiment.
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Fig. 3: Feature analysis. In the plots, diag refers to diagnosis features, med refers to
medication features, and lab refers to lab features.

For temporal validation, model test performance varied over time, although
they had relatively stable validation AUCs. Both NN and LR showed improved
performance by adding more recent training data. The control models had worse
performance and showed less stable improvement over time, which suggests that
training set size is an important factor. The average test AUCs were 0.784 (95%
CI: 0.763 to 0.805) and 0.768 (95% CI: 0.747 to 0.788) for the NN and LR models,
respectively.

3.3 Simulated deployment results

Table 2: Simulated deployment results. Numbers in brackets are 95% CI.

Model Risk level

Sensitivity

Specificity PPV (TrxPop. Est.) SIR (TrxPop. Est.)

NN

54.5% (53.4 to 55.5)
46.0% (44.9 to 47.1)
35.5% (34.4 to 36.5)
29.8% (28.8 to 30.8)
17.4% (16.6 to 18.3)
11.3% (10.7 to 12.0)

85.6% (85.5 to 85.8)
90.8% (90.7 to 90.9
95.6% (95.5 to 95.7
97.4% (97.3 to 97.4
99.5% (99.5 to 99.5

0.30% (0.30 to 0.31)
0.40% (0.39 to 0.41)
0.64% (0.62 to 0.66)
0.90% (0.86 to 0.94)
2.66% (2.46 to 2.87)
7.81% (6.80 to 8.99)

2.42 (2.39 to 2.46)
3.25 (3.20 to 3.29)
5.44 (5.36 to 5.51)
8.10 (7.98 to 8.21)
26.0 (25.7 to 26.4)
83.5 (82.1 to 84.7)

LR

DU WN | DUt WN -

52.9% (51.8 to 54.0)
44.2% (43.1 to 45.3)
33.4% (32.4 to 34.4)
26.2% (25.3 to 27.2)
10.3% (9.66 to 11.0)
5.39% (4.91 to 5.90)

84.1% (84.0 to 84.3
89.5% (89.4 to 89.7
94.6% (94.5 to 94.7
96.8% (96.7 to 96.9
99.5% (99.5 to 99.5)
99.8% (99.8 to 99.9)

)
)
)
99.9% (99.9 to 99.9)
)
)
)
)

0.27% (0.26 to 0.27)
0.34% (0.33 to 0.35)
0.49% (0.47 to 0.51)
0.65% (0.62 to 0.68)
1.57% (1.44 to 1.72)
2.66% (2.31 to 3.07)

2.02 (1.99 to 2.05)
2.54 (2.49 to 2.57)
3.71 (3.65 to 3.76)
5.01 (4.93 to 5.08)
12.8 (12.6 to 13.0)
22.6 (22.2 to 22.9)

PPV: Positive Predictive Value
SIR: Standardized Incidence Ratio
TrxPop. Est.: Estimation on the whole TriNetX population that accounts for unbalanced sampling
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Fig. 4: Results for location-based, race-based, and temporal external validations. Error
bars indicate 95% CIL.

400 The simulated deployment of the NN and LR models was on 201,703 patients
a0 (with 8,113 PDAC cases) in the test set, with enrollment from Feb 7, 2020 to
i May 2, 2021. Mean age at enrollment was 61.45 (SD 11.97). Mean age at PDAC
sz diagnosis was 69.65 (SD 10.40). Each patient was followed up for 2.00 (SD 0.39)
a3 years (Table 2).

414 Having accounted for unbalanced sampling of PDAC and control cohorts,
a5 we estimated that the model PPV range on the whole TriNetX population was
as 0.30%-7.81% for the NN and 0.27%-2.66% for the LR. NN and LR SIR ranges
a7 were 2.42-83.5 and 2.02-22.6, respectively. The SIR of all the enrolled patients
ss  during the follow-up period was 0.95 (95% CI: 0.94 to 0.96). An SIR close to 1
a0 indicates that our TriNetX test population with patient exclusion has similar
20 PDAC incidence as the general US population.

21 We determined the high-risk group to be any individuals that have an SIR of
22 5.44 or above, based on the NN model. This threshold is correlated with a 35.5%
w23 sensitivity and 95.6% specificity. We use this SIR threshold because it is similar
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24 to the currently used eligibility cutoff for inclusion of individuals into screening
w5 programs [12].

w4 Discussion

w27 Our study leveraged routinely collected EHR data from a federated network
»s including 55 HCOs across the United States to develop and validate two ML
w29 models (NN and LR) that can accurately identify patients in the general popu-
0 lation at high risk for PDAC, 6 to 18 months before first PDAC diagnosis. Both
1 models were trained on 63,884 PDAC cases and 3,604,863 controls; both models
4 worked with features derived from medical record entries including diagnosis,
;3 medication, and lab results, as well as basic features including sex, age, and
s number of clinical encounters. Our NN model obtained an AUC of 0.829 (95%
w5 CI: 0.821 to 0.837) on the test set; the LR model obtained an AUC of 0.810
436 (95% CI: 0.803 to 0817)

a7 4.1 Potential use cases

s We anticipate two potential clinical use cases for our models. The first is to
a0 expand the eligibility for current screening programs, which are based on imaging
w0 modalities such Endoscopic UltraSound (EUS) and MRI/MRCP [6]. Current
w  eligibility criteria are based on familial PDAC or a known germline mutation
a2 syndrome (e.g., Lynch, Peutz-Jeghers) [6]. The identified population is known
w3 to have an SIR of minimum 5 times the SIR of the general population and
s includes only 10% of PDAC cases [13, 21]. Depending on the chosen high-risk
ws  threshold, our NN model exhibited an SIR of 2.42 to 83.5. At an SIR of 5.44,
ws our NN model identifies 35.5% of the PDAC cases as high risk 6 to 18 months
w7 before diagnosis, a significant improvement over current screening criteria.

a4 The second use case is to identify an enriched group for lower overhead testing
w  (such as biomarker testing) followed by screening based on the lower overhead
0 test. In this use case we anticipate that it will be feasible to deploy the model at
s a higher sensitivity than in our first use case. For example, at 85.6% specificity,
52 NN exhibited 54.5% sensitivity.

53 4.2 Race-based, location-based, and temporal validation

se Our race based validation worked with the five racial groups recorded within
s the TriNetX EHR data: ATAN, Asian, Black, NHPI, and White. We trained
s models on four of these five racial groups, then tested on the fifth. The results
57 showed similar performance across all training/test pairs, highlighting the gen-
s eralizability across diverse racial populations. There was a small AUC drop for
40 models when trained on all groups except White and tested on White, which we
w0 attribute to the fact that the White group included over 70% of the PDAC cases
w1 in the data set.
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a2 Our location based validation divided the HCOs into four regions: Midwest,
3 Northeast, South, and West. We trained models on three of the regions, then
se  tested on the fourth. In comparison with models trained on all regions with
w5 randomly sampled size-matched training data, these models showed modest AUC
s drops (0.074 to 0.112 for NN and 0.060 to 0.191 for LR).

467 Our temporal validation trained models on data before different dataset split
ws dates, then tested the models on future dates not used for training. We found
w0 that NN models outperformed LR models, exhibiting average AUCs 0.784 (95%
w0 CI: 0.763 to 0.805) and 0.768 (95% CI: 0.747 to 0.788), respectively.

a1 4.3 Simulated deployment

a2 We envision the eventual deployment of our models into clinical practice to im-
a3 prove patient outcomes by promoting the detection of early stage disease. We
e evaluated the effectiveness of our models for this purpose by simulating the de-
a5 ployment of our models. A key aspect of this simulated deployment was using
a6 models trained only on data available before a simulated enrollment date to iden-
a7 tify high-risk individuals after the simulated enrollment date. We then followed
ars the identified high-risk individuals over time to evaluate the performance of our
a9 models.

480 This simulated deployment methodology stands in contrast to methodologies
s used in previous studies that do not temporally separate the training and test
w2 data [5, 7]. By more closely tracking the envisioned deployment scenario, we

3 eliminated a potential source of inaccuracy and hope to obtain a more accurate
s prediction of model performance in clinical use.

w5 4.4 Federated network

s A significant strength of our work is the development and validation of our
sr models using a federated EHR network. This network ingests EHR data from
s multiple HCOs and EHR sources, with the data remaining stored behind each
a0 institution’s firewall. The ingested data is de-identified, harmonized, and con-
w0 verted into a single format, supporting ease of integration and deployment of
a1 models within the same platform. This federated network enabled us to train
22 and externally validate our models on racially, geographically, and temporally
w3 diverse data from 55 HCOs within the United States. The results show that
2 our models perform well on all geographic and racial groups and generalize well
a5 across time. The network also enabled us to simulate deployment of the model
a6 over time to identify high-risk individuals across the entire network.

497 The eventual clinical deployment of PDAC risk prediction models depends
a8 not only on model accuracy and generalizability, but also on productive inte-
a0 gration into EHR systems for inclusion into the clinical workflow. Lack of sys-
s tem integration and model automation comprises a significant barrier to clinical
sn adoption of such models [28]. Because of their close integration with existing
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s HCO EHR systems, federated networks can solve these integration and deploy-
s ment challenges to provide a clear pathway for integrated model development,
s« validation, and clinical deployment all within a single federated system [25].

ss 4.5 Related work

sos  Other researchers have used EHR data to develop PDAC risk prediction models

sor for the general population [3, 5, 7, 8, 22]. Data set sizes range from 1,792 PDAC
ss  cases/1.8M controls [3] to 24,000 PDAC cases/6.2M controls [22]. Some studies
s0 lack an external validation [7], complete the external validation/evaluate model
s generalizability only with data from a single geographic area [3, 22], or validate
su only on one gender (male) [8] or race [15]. While some studies work with data
sz obtained from multiple organizations [7, 8, 22], none work with a federated data

si3 network that harmonizes and standardizes the data, none provides a clear path
sie to clinical deployment, and none supports the seamless deployment of the model
s to new HCOs as they join the federated network.

516 Some previous studies evaluate the ability of their models to identify high-risk
sz individuals either until or shortly before the date of PDAC diagnosis [7, 8, 22],
sis when clinical benefit is improbable. To focus on time frames in which detection
s of early stage disease and potential cure are most likely, we evaluate the ability
s20  of our models to identify high-risk patients at least six months before diagnosis.

21 4.6 Limitations

s2 Our study has limitations. Notably, model development and validation were
s23  retrospective. Prospective studies are needed to evaluate efficacy of clinical de-
s tection of early stage disease in high-risk individuals.

525 Our results also show that our models performed well on data from the
s TriNetX network, including multiple HCOs located in different geographic re-
so7 gions across the United States. We do not know, however, if our models will
s perform similarly on data from different sources or different countries. Future
s20  work should evaluate the models on data from different EHR sources and pop-
s ulations selected from different countries and global regions.

531 The use of neural networks and the fact that our model needed thousands of
s features to reach its best performance make it harder to interpret the reasoning
533 process or extract knowledge for clinicians. Future work should try to gain a
s deeper understanding of how the model makes predictions and to simplify the
s model if possible.

s o Conclusion

s In conclusion, we have built, validated, and simulated deployment of a PDAC
s3s  risk prediction model for the general population on multi-institutional EHR data
s from a federated network. This model can be used to help primary care providers
sa0  across the country identify high-risk individuals for PDAC screening or used
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sa as a first filter before subsequent biomarker testing. The model maintained its
sz accuracy across diverse racial groups and geographic regions in the US, as well

se3  as over time, and outperformed widely-used clinical guideline criteria [10, 12] for
ses  inclusion of individuals into PDAC screening programs.
545 Our approach enables potential expansion of the population targeted for

sss  screening beyond the traditionally screened minority with an inherited predispo-
se7 - sition. To our knowledge, this is the first PDAC risk prediction model developed,
sis - externally validated, with simulated deployment, using a federated network. The
se0  developed models set the stage for deployment of the model within the network
sso  to identify high risk patients at multiple institutions within the network. A
ss1 prospective study to validate the models before full clinical deployment is the
s2 - next step.
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