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Abstract15

Purpose: Pancreatic Duct Adenocarcinoma (PDAC) screening can enable de-16

tection of early-stage disease and long-term survival. Current guidelines are17

based on inherited predisposition; only about 10% of PDAC cases meet screening18

eligibility criteria. Electronic Health Record (EHR) risk models for the general19

population hold out the promise of identifying a high-risk cohort to expand the20

currently screened population. Using EHR data from a multi-institutional fed-21

erated network, we developed and validated a PDAC risk prediction model for22

the general US population.23

Methods: We developed Neural Network (NN) and Logistic Regression (LR)24

models on structured, routinely collected EHR data from 55 US Health Care Or-25

ganizations (HCOs). Our models used sex, age, frequency of clinical encounters,26

diagnoses, lab tests, and medications, to predict PDAC risk 6-18 months before27

diagnosis. Model performance was assessed using Receiver Operating Character-28

istic (ROC) curves and calibration plots. Models were externally validated using29

location, race, and temporal validation, with performance assessed using Area30

Under the Curve (AUC). We further simulated model deployment, evaluating31

sensitivity, specificity, Positive Predictive Value (PPV) and Standardized Inci-32

dence Ratio (SIR). We calculated SIR based on the SEER data of the general33

population with matched demographics.34

Results: The final dataset included 63,884 PDAC cases and 3,604,863 controls35

between the ages 40 and 97.4 years. Our best performing NN model obtained an36

AUC of 0.829 (95% CI: 0.821 to 0.837) on the test set. Calibration plots showed37

⋆ Co-senior authors.
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good agreement between predicted and observed risks. Race-based external val-38

idation (trained on four races, tested on the fifth) AUCs of NN were 0.836 (95%39

CI: 0.797 to 0.874), 0.838 (95% CI: 0.821 to 0.855), 0.824 (95% CI: 0.819 to40

0.830), 0.842 (95% CI: 0.750 to 0.934), and 0.774 (95% CI: 0.771 to 0.777) for41

AIAN, Asian, Black, NHPI, and White, respectively. Location-based external42

validation (trained on three locations, tested on the fourth) AUCs of NN were43

0.751 (95% CI: 0.746 to 0.757), 0.749 (95% CI: 0.745 to 0.753), 0.752 (95% CI:44

0.748 to 0.756), and 0.722 (95% CI: 0.713 to 0.732) for Midwest, Northeast,45

South, and West, respectively. Average temporal external validation (trained on46

data prior to certain dates, tested on data after a date) AUC of NN was 0.78447

(95% CI: 0.763 to 0.805). Simulated deployment on the test set, with a mean48

follow up of 2.00 (SD 0.39) years, demonstrated an SIR range between 2.42-83.549

for NN, depending on the chosen risk threshold. At an SIR of 5.44, which ex-50

ceeds the current threshold for inclusion into PDAC screening programs, NN51

sensitivity was 35.5% (specificity 95.6%), which is 3.5 times the sensitivity of52

those currently being screened with an inherited predisposition to PDAC. At53

a chosen high-risk threshold with a lower SIR, specificity was about 85%, and54

both models exhibited sensitivities above 50%.55

Conclusions: Our models demonstrate good accuracy and generalizability across56

populations from diverse geographic locations, races, and over time. At compa-57

rable risk levels these models can predict up to three times as many PDAC cases58

as current screening guidelines. These models can therefore be used to identify59

high-risk individuals, overlooked by current guidelines, who may benefit from60

PDAC screening or inclusion in an enriched group for further testing such as61

biomarker testing. Our integration with the federated network provided access62

to data from a large, geographically and racially diverse patient population as63

well as a pathway to future clinical deployment.64

1 Introduction65

Most cases of Pancreatic Duct Adenocarcinoma (PDAC) are diagnosed as advanced-66

stage disease, leading to a five-year relative survival rate of only 11% [26]. Ex-67

panding the population currently being screened for this lethal disease is crucial68

for increasing early detection and improving survival. Current screening guide-69

lines [4, 10, 12] targeting stage I cancers and high-grade PDAC precursors have70

been shown to significantly improve long-term survival [6, 18]. Current guide-71

lines target patients with a family history or genetic predisposition to PDAC72

[13, 21], with screening eligibility based on estimated absolute and relative risk73

compared to the general population (5% or 5 times the relative risk, respectively)74

[6]. These patients comprise only about 10% of all PDAC cases. No consensus75

or guidelines exist for PDAC screening in the general population [20], where the76

majority of PDAC cases are found.77

Several groups have developed PDAC risk models for the general population78

using various data sources [5, 15, 16]. A goal of most such models is eventual79

integration with Electronic Health Record (EHR) systems and ultimately clinical80
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Queried TriNetX:
● With PDAC ICD codes
● Current age >= 40

Obtained n=132,789 cases 

Excluded:
● Diagnosis age < 40 (n=1,924)
● No records 6 months before 

diagnosis (n=66,731)
● Having records 2 months after 

death date (n=250)

PDAC cohort: n=63,884

Queried TriNetX:
● Without PDAC ICD codes
● Current age >= 40

Platform had n=51,139,587 cases 

Excluded:
● PDAC tumor registry (n=304)
● Last record before 35.5 y/o 

(n=118,170)
● Less than 90 days of medical 

history (n=2,753,897)
● Having records 2 months after 

death date (n=22,762)

Control cohort: n=3,604,863

Randomly sampled n=6,499,996 cases

Randomly split into:
● Training: 75%
● Validation: 10%
● Test: 15%

Only use data up to Feb 6, 2020 for 
training and validation

Neural Network (NN) and
Logistic Regression (LR) modelsTraining

Given medical history of a patient up to a 
cutoff date C, our model predicts PDAC 
diagnosis between [C + 6mo, C + 18mo]

Diagnosis up to Feb 6, 2020:
● Training: 90%
● Validation: 10%

Diagnosis after Feb 6, 2020:
● All used as test set

Simulated deployment:
● Simulated enrollment starts on Feb 7, 

2020.
● Periodically enroll new patients once 

they have sufficient medical history
● Periodically evaluate risk by model on 

enrolled patients with sufficient medical 
history

● Follow patients after identified as high 
risk by the model

At SIR ≈ 5,
NN achieved 35.5% sensitivity
LR achieved 26.2% sensitivity
(10% sensitivity of current inclusion guideline 
for PDAC screening)

Fig. 1: Flowchart of our study with simulated deployment as an example

implementation. EHR integration has proven to be a significant barrier to the81

clinical adoption of models [28]. One effort developed a model using EHR data82

from an aggregated multi-institutional database [7]. The evaluation focused on83

identification of high risk patients up to one month before diagnosis and did not84

attempt to evaluate model generalization across locations or races. Several other85

efforts worked with real-world EHR data [3, 8, 22], but with limited validation86

across diverse locations and races. Other efforts worked with small sample sizes87

[5, 19] and internal validation only [16, 19].88

We used EHR data from 55 US Health Care Organizations (HCOs) from89

a federated data network to develop and validate two PDAC risk prediction90

models for the general population, a Neural Network (NN) model and a Logistic91

regression (LR) model. The models can be used as a tool to identify individuals92

at high risk for PDAC from the general population, so they can be offered early93

screening or referred for lower overhead testing such as biomarker testing.94

The network provides access to harmonized, de-identified EHR data of over95

89 million patients for model development and testing. It also provides a means96

to simulate deployment of the resultant models to identify high risk patients97

for screening within a research setting. Because the network is connected to the98

EHR systems of the participating HCOs, it provides a pathway to deploy the99

models to a clinical setting, a critical step in the progression towards successful100

clinical adoption [28].101

We developed a methodology to train PDAC prediction models on federated102

network EHR data. Our evaluation reports AUC and PPV numbers for the re-103

sulting trained models, with the evaluation focusing on the ability of the models104

to identify high risk patients 6 to 18 months before an initial PDAC diagno-105

sis. We conducted three types of external validation: location-based, race-based,106
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and temporal. We simulated deployment of the model on real-world HCO data107

to evaluate its performance in a more realistic setting. We compared the rela-108

tive incidence of PDAC in our model-assigned high-risk group with that of a109

demographically matched general US population based on SEER data [1].110

2 Methods111

2.1 Data source and setting112

This is an observational retrospective study, with both a case-control and cohort113

design, using data from the federated EHR database platform of TriNetX [27].114

TriNetX is a federated global health research network that specializes in data115

collection and distribution. HCOs contributing to the database include academic116

medical centers, community hospitals, and outpatient clinics.117

We used retrospective de-identified EHR data from 55 HCOs across the118

United States. The majority of these HCOs are tertiary care centers and the data119

used includes inpatient, outpatient, and Emergency Room encounters. Different120

HCOs have different historical coverage; on average, each HCO provides approx-121

imately 13 years of historical data. Data include values from structured EHR122

fields (e.g. demographics, date-indexed encounters, diagnoses, procedures, labs,123

and medications) as well as facts and narratives from free text (e.g. medications124

identified through Natural Language Processing (NLP)). TriNetX harmonizes all125

data from each HCO’s EHR to the TriNetX common data model and common126

set of controlled terminologies.TriNetX also has tools to identify anomalies and127

outliers for quality assurance.128

We used data from the TriNetX database under a no-cost collaboration agree-129

ment between BIDMC, MIT, and TriNetX. Under this agreement, we accessed130

de-identified data under the agreements and institutional approvals already in131

place between TriNetX and their partner institutions.132

2.2 Study population133

We worked with two cohorts: a PDAC cohort and a control cohort. We obtained134

all data from TriNetX during November and December, 2022. We obtained the135

PDAC cohort by querying the TriNetX database to obtain EHR data for all136

patients, 40 years of age or older, from 55 HCOs across the United States, with137

one of the following ICD-10/ICD-9 codes:138

– C25.0 Malignant neoplasm of head of pancreas139

– C25.1 Malignant neoplasm of body of pancreas140

– C25.2 Malignant neoplasm of tail of pancreas141

– C25.3 Malignant neoplasm of pancreatic duct142

– C25.7 Malignant neoplasm of other parts of pancreas143

– C25.8 Malignant neoplasm of overlapping sites of pancreas144

– C25.9 Malignant neoplasm of pancreas, unspecified145
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– 157 Malignant neoplasm of pancreas (ICD-9 without a corresponding ICD-10146

code)147

We obtained n=132,789 PDAC cases. We excluded patients who were diagnosed148

before 40 years of age (n=1,924), patients with no medical history 6 months149

prior to diagnosis (n=66,731), and patients with records 2 months after their150

death record (n=250), to obtain a PDAC cohort with n=63,884 cases.151

To prepare the control cohort, we queried the TriNetX database for patients152

at least 40 years of age without any of the above ICD-10 or ICD-9 codes. There153

were n=51,139,587 patients that met this criteria. From these patients we ran-154

domly selected n=6,499,996 patients. We excluded patients with a PDAC tumor155

registry entry but no PDAC diagnosis entries (n=304), patients whose last entry156

was before age 35.5 (n=118,170), patients with less than 90 days of medical his-157

tory (n=2,753,897), and patients with records 2 months after their death record158

(n=22,762), to obtain a control cohort with n=3,604,863 cases. Our subsequent159

training and testing procedures implement additional exclusion criteria (see be-160

low).161

2.3 Model development162

We used the TRIPOD guidelines for multivariable prediction models for report-163

ing on model development and validation [9].164

We trained and evaluated two model classes, Neural Network (NN) and Lo-165

gistic Regression (LR). Data was randomly partitioned into training, validation,166

and test sets (75%, 10%, and 15%, respectively). We evaluated model perfor-167

mance by AUC scores and sensitivity, specificity, PPV, and SIR in simulated168

deployment. To calculate SIR, we used the SEER database [1] to estimate the169

PDAC risk for our model’s high-risk group compared to the general population.170

Our training and testing procedures work with a cutoff date C for every171

patient, with entries after the cutoff date excluded. For a patient P and a cutoff172

date C, the model uses entries available before the cutoff date C to predict the173

risk of first diagnosis of PDAC between C + 6mo to C + 18mo. We defined the174

date of PDAC diagnosis D to be the first time a PDAC ICD code (as above)175

appeared in the patient record. During training, we sampled the cutoff dates for176

PDAC cases uniformly between [D−18mo, D−6mo]. Since control patients were177

not diagnosed with PDAC, we sampled random cutoff dates for them from the178

distribution of the PDAC diagnosis dates. For a control patient with a known179

death date, we limited the cutoff date to at most 18 months before death, to rule180

out undiagnosed PDAC that caused death. To avoid undiagnosed PDAC cases,181

we also limited all cutoff dates of patients in the control cohort to be at most 18182

months before the dataset query date.183

We empirically defined any patient with at least 16 diagnosis, medication, or184

lab result entries within 2 years before their cutoff date and whose first entry185

is at least 3 months earlier than their last entry before the cutoff date to have186

sufficient medical history. We excluded patients that did not have sufficient med-187

ical history. We trained the NN with the iterative Stochastic Gradient Descent188
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(SGD) algorithm [17], sampling a new cutoff date for each patient at each step189

of the iteration. Our LR training sampled one cutoff date for each patient.190

Our feature extraction excluded entries after the cutoff date (and included191

all entries up to the cutoff date). For each patient, we defined six basic features192

including age, whether age is known, sex, whether sex is known, number of193

diagnosis, medication, or lab entries in the medical record up to 18 months before194

cutoff (the recent entries), and number of diagnosis, medication, or lab entries in195

the medical record greater than 18 months before cutoff (the early entries). We196

also included features that correspond to individual diagnosis, medication, or197

lab codes, with the corresponding code empirically included in feature selection198

if it appeared in the medical record of at least 1% of the patients in the cancer199

cohort of the training set.200

We manually grouped 827 commonly used diagnosis codes into 39 groups.201

For ungrouped codes, we used the ICD-10 category plus the first digit of the202

subcategory. We derived 3 features for each diagnosis code: whether or not it203

exists {0, 1}, its first and last date (encoding for first and last date: greater204

or equal to 4 years before cutoff=0; at cutoff=1). To use past ICD-9 data to205

train the model for use on current and future ICD-10 data, we mapped all ICD-206

9 codes to their ICD-10 equivalents. For ICD-9 codes that could be mapped207

to more than one ICD-10 code, we included the features of all the mapped208

ICD-10 codes in the feature vector. We also manually grouped 67 medication209

codes into 8 different medication classes. Ungrouped codes were used as they210

are. We derived 4 features for each medication code: whether or not it exists211

{0, 1}, its frequency (i.e., number of times it appears in the medical record),212

span (time between first and last appearance of a medication code), and last213

date (same encoding as diagnosis first/last date). For lab features, we used a214

grouping provided by TriNetX for similar lab tests, which had 98 groups for 462215

codes. Ungrouped codes were used as they are. For each lab code, we derived 4216

features: existence, frequency, first date, and last date. The frequency was the217

number of lab results within three years before cutoff. We manually selected the218

most relevant lab tests for PDAC prediction, based on clinical knowledge and219

literature review. For these manually selected 44 quantitative labs, we derived220

two additional features: lab test value and slope. Lab values were normalized221

according to the median absolute deviation and the population median (range222

-1 to 1). Slope was measured by calculating the yearly change in lab test values223

up to three years before cutoff.224

To account for the additional effect of the healthcare process on EHR data225

[2], we did the following: For each feature type described above (except the226

number of early and recent entries in basic features) there is a corresponding227

existence feature {0, 1}; if the feature is missing in the data set, the value of the228

corresponding existence feature is 1 and the value of the feature itself is 0. This229

encoding enables the model to compute risk scores based on whether a feature230

is present or missing. Because our NN models can use sophisticated nonlinear231

reasoning to extract information from the chosen features, data imputation pro-232
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vides little to no useful additional information for these models. Therefore, we233

did not use any imputation.234

Our NN models have three fully connected layers; each layer has 48, 16,235

and 1 output neurons. Hidden layers use the tanh nonlinearity. To ameliorate236

overfitting, we used sparse weights computed by the recently developed BinMask237

sparsification technique [14]. We used balanced numbers of PDAC and control238

patients in each mini-batch. For LR training, we used the SAGA solver [11]239

with balanced class weights. For each model type, we trained four models with240

different regularization parameters and selected the best one on the validation241

set.242

We calibrated the models on the validation set with a modified Platt cali-243

bration algorithm [23], where we fitted a two-segment piecewise-linear mapping244

with the turning point set as the median of model predictions. We accounted for245

the unbalanced sampling of control cohort and estimated the risk on the whole246

population in calibration. We evaluated our calibration by creating calibration247

plots on the test set. We chose 16 risk groups for calibration evaluation as a248

geometric sequence between the 85% percentile of predicted risk on the test set249

and the maximum predicted risk. To quantitatively compare calibration between250

models, we used the Geometric Mean of Over Estimation (GMOE), calculated251

as the geometric mean of the ratios of predicted risk to the true risk over all252

tested risk groups. Perfectly calibrated models have GMOE=1. A GMOE value253

greater than one means over estimation of risk and a value less than one means254

under estimation of risk.255

We also evaluated the stability of our algorithm by calculating the mean AUC256

and GMOE with confidence interval on nine independent runs with different257

random seeds for dataset split and weight initialization.258

For both the LR and NN models, we analyzed the impact of different num-259

bers of features on model performance. We reduced the number of input features260

by applying BinMask to the input of a small and densely connected neural net-261

work to automatically select important features. We varied the BinMask weight262

decay coefficient to obtain different numbers of input features and evaluated the263

performance of our models with those feature sets.264

We analyzed the feature importance for NN by calculating the partial AUC265

(up to 6% FPR) obtained with only each type of medical record entries. A larger266

score for a type of record means the NN makes better predictions based on the267

record entries alone.268

2.4 External validation269

Our model validation considered three attributes: geographical location of the270

HCO, patient race, and time of diagnosis/last used entry in the medical record.271

For each attribute, we split the dataset according to that attribute, trained272

models on one split, and tested on the other split.273

Our location based validation used the TriNetX geographical location for each274

HCO; locations include Northeast, South, Midwest, and West. Our race based275

validation used the TriNetX racial classification of each patient; races include276
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American Indian or Alaska Native (AIAN), Asian, Black or African American277

(Black), Native Hawaiian or Other Pacific Islander (NHPI), and White.278

A primary assessment of model generalizability is the AUC gap between279

test set and validation set. However, since different attribute splitting produces280

training/validation/test sets with different sizes, the test/validation AUC gap281

does not necessarily depict model generalizability. Therefore, we trained control282

models that used the same training and test set size for each attribute-based283

split, but used random splitting that ignores attribute values. We also assessed284

model generalizability by checking the AUC gap between the external validation285

models and corresponding control models.286

For temporal validation, we selected the 50%, 60%, . . . , 90% percentile from287

the distribution of diagnosis dates as the dataset split dates. The 90% percentile288

was Sep 23, 2021. We trained the models only on data available prior to those289

split dates. We also limited the cutoff date of control patients to earlier than 18290

months before the split dates, to simulate model training with datasets queried291

on the split dates. We evaluated the performance of the models on the same292

subset of data only available after Sep 23, 2021. We also calculated the aver-293

age performance of different models for the temporal validation. Since different294

dataset split dates result in different training set sizes, we also trained control295

models. For each split date, we randomly sampled the same number of PDAC296

cases (equal to the 50% of the total number of PDAC cases) from cases up to297

that split date. The control models allowed us to separate the contribution of298

larger training set from the impact of smaller time gap between training and299

test sets.300

2.5 Simulated deployment301

We estimate the performance of our model when deployed in a clinical setting by302

simulating model deployment in a prospective study on the TriNetX database.303

We trained the model only on data available prior to Feb 7, 2020, in the same304

way as the above temporal validation, with the dataset split date chosen as305

the 70% percentile of the distribution of the diagnosis dates. For each date D306

separated by 90 days between Feb 7, 2020 and May 2, 2021 (18 months before307

dataset query), we308

1. Enrolled a new patient into the simulated deployment if the patient had a309

known age, was at least 40 years old on date D, and had sufficient medical310

history on D for the first time. We call the date D the enrollment date for311

such a patient.312

2. For each enrolled patient, we checked if that patient still had sufficient med-313

ical history on D. If so, we evaluated the model risk by our model, with the314

cutoff date set at D. We call the date D a check date for such a patient.315

We excluded patients who were diagnosed with PDAC either before enroll-316

ment or within 6 months after enrollment, patients who had no medical entries317

between first and last check dates, and patients with a known death but no318
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PDAC diagnosis within 18 months after enrollment. We started following up a319

patient 6 months after their enrollment date. We stopped following up a patient320

18 months after the last check date. During the followup period, we defined the321

following outcomes:322

1. A patient was diagnosed with PDAC. We counted this patient as a true323

positive if the model made a high-risk prediction on any check date 6 months324

prior to diagnosis and a false negative otherwise.325

2. A patient was not diagnosed with PDAC. They might either have a known326

death date, reached our dataset query date, or never had sufficient medical327

history again after a certain check date. For patients with a known death328

date, we only considered check dates up to 18 months before death, due329

to the possibility of undiagnosed PDAC at death. For other patients, we330

considered all check dates. If the model ever made a high-risk prediction for331

this patient on any considered check dates, we counted the patient as a false332

positive. Otherwise, we counted the patient as a true negative.333

We chose the risk thresholds according to the 89.00%, 93.00%, 96.50%, 98.00%,334

99.70%, 99.92% specificity levels on the validation set. For each risk threshold,335

we computed sensitivity, specificity, Positive Predictive Value (PPV), and Stan-336

dardized Incidence Ratio (SIR), based on the above protocol. Since we used all337

the PDAC cases in the TriNetX database, but sampled a subset of control pa-338

tients, we accounted for this imbalance to estimate the PPV and SIR that would339

be obtained if we had evaluated the model on the full TriNetX population.340

We calculated SIR by dividing the observed PDAC cases in the high-risk341

group by the expected number of PDAC cases of that group. To calculate the342

expected number of cases, we used the SEER database [1], matched with age,343

sex, race, and calendar year for each individual in the high-risk group, as done344

by Porter et al. [24].345

3 Results346

3.1 Model evaluation347

The final LR model and NN models used 63,884 cancer patients and 3,604,863348

controls up to 97.4 years old (determined at the time of diagnosis or last record).349

Detailed demographics, including sex, age, race, and HCO location, are given in350

Table 1. Fig. 1 presents a flowchart demonstrating how this dataset was derived.351

The NN outperformed the LR model on the test set, with an AUC of 0.827352

(95% CI: 0.822 to 0.833) and 0.809 (95% CI: 0.804 to 0.815), respectively (Fig. 2a).353

The mean AUCs of NN and LR on nine random runs are 0.829 (95% CI: 0.821354

to 0.837) and 0.810 (95% CI: 0.803 to 0.817), respectively. Because our models355

predict based in part on the presence or absence of features, each feature is a356

predictor and we have no participants with missing predictors [2].357

Fig. 2b shows the log-scale calibration plots on the test set. The evaluated358

risk levels are selected according to a geometric sequence between the 85% risk359
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Table 1: Demographics of our dataset.

Attribute Cancer group (n=63,884) Control group (n=3,604,863)
% (No.) % (No.)

Sex
Female 50.40 (32,196) 55.27 (1,992,432)
Male 49.59 (31,681) 43.42 (1,565,131)
Unknown 0.01 (7) 1.31 (47,300)

Age at first record

Mean (SD) 60.88 (12.02) 53.90 (14.03)
< 40 4.88 (3,116) 17.37 (626,073)
40 - 50 12.38 (7,908) 21.52 (775,841)
50 - 60 24.35 (15,556) 23.30 (840,092)
60 - 70 30.69 (19,605) 19.76 (712,411)
70 - 80 18.93 (12,091) 11.01 (396,806)
> 80 3.54 (2,259) 2.50 (90,128)

Age at diagnosis
/ last record

Mean (SD) 67.67 (10.59) 60.20 (13.10)
< 40 0.00 (0) 4.78 (172,349)
40 - 50 6.01 (3,841) 20.00 (720,800)
50 - 60 16.42 (10,490) 22.90 (825,442)
60 - 70 30.56 (19,522) 23.44 (844,818)
70 - 80 29.68 (18,958) 17.05 (614,615)
> 80 12.09 (7,724) 7.30 (263,327)

Age Unknown 5.24 (3,349) 4.54 (163,512)

Race

AIAN 0.26 (164) 0.36 (13,023)
Asian 1.53 (976) 2.27 (81,726)
Black 13.95 (8,910) 14.16 (510,444)
NHPI 0.05 (35) 0.13 (4,694)
White 72.70 (46,441) 67.24 (2,423,771)
Unknown 11.52 (7,358) 15.85 (571,205)

HCO location

Midwest 21.17 (13,527) 15.41 (555,417)
Northeast 33.42 (21,352) 28.40 (1,023,916)
South 36.37 (23,234) 44.18 (1,592,634)
West 7.41 (4,733) 8.54 (308,013)
Unknown 1.62 (1,038) 3.46 (124,883)

No. medical records Mean (SD) 779.11 (1506.23) 441.79 (1091.31)

Race abbreviations:
– AIAN: American Indian or Alaska Native
– Black: Black or African American
– NHPI: Native Hawaiian or Other Pacific Islander

percentile and the maximal risk given by the model on the test set. Geometric360

Mean of Over Estimation (GMOE), the geometric mean of ratios of predicted361

risks to observed risks, was calculated for both models. The GMOE for the NN362

was 1.037 and 0.861 for the LR. The GMOE on nine random runs was 1.148363

(95% CI: 1.092 to 1.203) and 0.992 (95% CI: 0.944 to 1.041) for NN and LR,364

respectively.365

The impact of different feature numbers on model performance, for both366

the NN and LR models, is shown in Fig. 3a. Both models showed improved367

performance with an increasing number of features, reaching a plateau at an368

AUC of 0.83 (NN) and 0.81 (LR) for a combination of 1574 diagnoses features,369

862 medication features, and 719 lab features. Additional features produced no370

significant improvement in model performance.371

Fig. 3b shows the top features selected by the LR model and ranked by feature372

importance. The top features include codes related to glucose metabolism and373
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Fig. 2: Model performance on the test set.

diabetes, medications such as Insulin and oral hypoglycemics, as well as blood374

tests for glucose and fasting glucose and HbA1c. Top features also include known375

PDAC risk factors such as age, pancreatitis, pancreatic cysts, personal history376

of cancer, weight loss, and smoking.377

3.2 External validation results378

Fig. 4 shows the results for race-based, location-based, and temporal external379

validations. The model performed similarly across racial groups without signif-380

icant performance drop, as shown in Fig. 4a. AUCs on the test set were 0.836381

(95% CI: 0.797 to 0.874), 0.838 (95% CI: 0.821 to 0.855), 0.824 (95% CI: 0.819382

to 0.830), 0.842 (95% CI: 0.750 to 0.934), and 0.774 (95% CI: 0.771 to 0.777) for383

AIAN, Asian, Black, NHPI, and White racial groups, respectively. The AUCs384

of the LR models were 0.801 (95% CI: 0.755 to 0.846), 0.822 (95% CI: 0.804385

to 0.840), 0.806 (95% CI: 0.800 to 0.811), 0.836 (95% CI: 0.742 to 0.929), and386

0.773 (95% CI: 0.770 to 0.775). Test AUCs of NN models were -0.035 to 0.015387

lower than the corresponding control models, and -0.024 to 0.008 lower for LR388

models. The number of patients of each racial groups can be seen in Table 1. We389

excluded patients with unknown race from this experiment.390

Model performance was similar across the different geographic locations as391

shown in Fig. 4b. NN AUCs on the test set were 0.751 (95% CI: 0.746 to 0.757),392

0.749 (95% CI: 0.745 to 0.753), 0.752 (95% CI: 0.748 to 0.756), and 0.722 (95%393

CI: 0.713 to 0.732) for the Midwest, Northeast, South, and West, respectively.394

LR AUCs were 0.742 (95% CI: 0.737 to 0.748), 0.735 (95% CI: 0.730 to 0.739),395

0.726 (95% CI: 0.722 to 0.730), and 0.623 (95% CI: 0.610 to 0.636). Test AUCs396

of NN models were 0.074 to 0.112 lower than the corresponding control models,397

and 0.060 to 0.191 lower for LR models. The number of patients in each location398

can be seen in Table 1. We excluded patients with unknown HCO location from399

this experiment.400
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Fig. 3: Feature analysis. In the plots, diag refers to diagnosis features, med refers to
medication features, and lab refers to lab features.

For temporal validation, model test performance varied over time, although401

they had relatively stable validation AUCs. Both NN and LR showed improved402

performance by adding more recent training data. The control models had worse403

performance and showed less stable improvement over time, which suggests that404

training set size is an important factor. The average test AUCs were 0.784 (95%405

CI: 0.763 to 0.805) and 0.768 (95% CI: 0.747 to 0.788) for the NN and LR models,406

respectively.407

3.3 Simulated deployment results408

Table 2: Simulated deployment results. Numbers in brackets are 95% CI.
Model Risk level Sensitivity Specificity PPV (TrxPop. Est.) SIR (TrxPop. Est.)

NN

1 54.5% (53.4 to 55.5) 85.6% (85.5 to 85.8) 0.30% (0.30 to 0.31) 2.42 (2.39 to 2.46)
2 46.0% (44.9 to 47.1) 90.8% (90.7 to 90.9) 0.40% (0.39 to 0.41) 3.25 (3.20 to 3.29)
3 35.5% (34.4 to 36.5) 95.6% (95.5 to 95.7) 0.64% (0.62 to 0.66) 5.44 (5.36 to 5.51)
4 29.8% (28.8 to 30.8) 97.4% (97.3 to 97.4) 0.90% (0.86 to 0.94) 8.10 (7.98 to 8.21)
5 17.4% (16.6 to 18.3) 99.5% (99.5 to 99.5) 2.66% (2.46 to 2.87) 26.0 (25.7 to 26.4)
6 11.3% (10.7 to 12.0) 99.9% (99.9 to 99.9) 7.81% (6.80 to 8.99) 83.5 (82.1 to 84.7)

LR

1 52.9% (51.8 to 54.0) 84.1% (84.0 to 84.3) 0.27% (0.26 to 0.27) 2.02 (1.99 to 2.05)
2 44.2% (43.1 to 45.3) 89.5% (89.4 to 89.7) 0.34% (0.33 to 0.35) 2.54 (2.49 to 2.57)
3 33.4% (32.4 to 34.4) 94.6% (94.5 to 94.7) 0.49% (0.47 to 0.51) 3.71 (3.65 to 3.76)
4 26.2% (25.3 to 27.2) 96.8% (96.7 to 96.9) 0.65% (0.62 to 0.68) 5.01 (4.93 to 5.08)
5 10.3% (9.66 to 11.0) 99.5% (99.5 to 99.5) 1.57% (1.44 to 1.72) 12.8 (12.6 to 13.0)
6 5.39% (4.91 to 5.90) 99.8% (99.8 to 99.9) 2.66% (2.31 to 3.07) 22.6 (22.2 to 22.9)

PPV: Positive Predictive Value
SIR: Standardized Incidence Ratio
TrxPop. Est.: Estimation on the whole TriNetX population that accounts for unbalanced sampling
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Fig. 4: Results for location-based, race-based, and temporal external validations. Error
bars indicate 95% CI.

The simulated deployment of the NN and LR models was on 201,703 patients409

(with 8,113 PDAC cases) in the test set, with enrollment from Feb 7, 2020 to410

May 2, 2021. Mean age at enrollment was 61.45 (SD 11.97). Mean age at PDAC411

diagnosis was 69.65 (SD 10.40). Each patient was followed up for 2.00 (SD 0.39)412

years (Table 2).413

Having accounted for unbalanced sampling of PDAC and control cohorts,414

we estimated that the model PPV range on the whole TriNetX population was415

0.30%-7.81% for the NN and 0.27%-2.66% for the LR. NN and LR SIR ranges416

were 2.42-83.5 and 2.02-22.6, respectively. The SIR of all the enrolled patients417

during the follow-up period was 0.95 (95% CI: 0.94 to 0.96). An SIR close to 1418

indicates that our TriNetX test population with patient exclusion has similar419

PDAC incidence as the general US population.420

We determined the high-risk group to be any individuals that have an SIR of421

5.44 or above, based on the NN model. This threshold is correlated with a 35.5%422

sensitivity and 95.6% specificity. We use this SIR threshold because it is similar423
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to the currently used eligibility cutoff for inclusion of individuals into screening424

programs [12].425

4 Discussion426

Our study leveraged routinely collected EHR data from a federated network427

including 55 HCOs across the United States to develop and validate two ML428

models (NN and LR) that can accurately identify patients in the general popu-429

lation at high risk for PDAC, 6 to 18 months before first PDAC diagnosis. Both430

models were trained on 63,884 PDAC cases and 3,604,863 controls; both models431

worked with features derived from medical record entries including diagnosis,432

medication, and lab results, as well as basic features including sex, age, and433

number of clinical encounters. Our NN model obtained an AUC of 0.829 (95%434

CI: 0.821 to 0.837) on the test set; the LR model obtained an AUC of 0.810435

(95% CI: 0.803 to 0.817).436

4.1 Potential use cases437

We anticipate two potential clinical use cases for our models. The first is to438

expand the eligibility for current screening programs, which are based on imaging439

modalities such Endoscopic UltraSound (EUS) and MRI/MRCP [6]. Current440

eligibility criteria are based on familial PDAC or a known germline mutation441

syndrome (e.g., Lynch, Peutz-Jeghers) [6]. The identified population is known442

to have an SIR of minimum 5 times the SIR of the general population and443

includes only 10% of PDAC cases [13, 21]. Depending on the chosen high-risk444

threshold, our NN model exhibited an SIR of 2.42 to 83.5. At an SIR of 5.44,445

our NN model identifies 35.5% of the PDAC cases as high risk 6 to 18 months446

before diagnosis, a significant improvement over current screening criteria.447

The second use case is to identify an enriched group for lower overhead testing448

(such as biomarker testing) followed by screening based on the lower overhead449

test. In this use case we anticipate that it will be feasible to deploy the model at450

a higher sensitivity than in our first use case. For example, at 85.6% specificity,451

NN exhibited 54.5% sensitivity.452

4.2 Race-based, location-based, and temporal validation453

Our race based validation worked with the five racial groups recorded within454

the TriNetX EHR data: AIAN, Asian, Black, NHPI, and White. We trained455

models on four of these five racial groups, then tested on the fifth. The results456

showed similar performance across all training/test pairs, highlighting the gen-457

eralizability across diverse racial populations. There was a small AUC drop for458

models when trained on all groups except White and tested on White, which we459

attribute to the fact that the White group included over 70% of the PDAC cases460

in the data set.461
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Our location based validation divided the HCOs into four regions: Midwest,462

Northeast, South, and West. We trained models on three of the regions, then463

tested on the fourth. In comparison with models trained on all regions with464

randomly sampled size-matched training data, these models showed modest AUC465

drops (0.074 to 0.112 for NN and 0.060 to 0.191 for LR).466

Our temporal validation trained models on data before different dataset split467

dates, then tested the models on future dates not used for training. We found468

that NN models outperformed LR models, exhibiting average AUCs 0.784 (95%469

CI: 0.763 to 0.805) and 0.768 (95% CI: 0.747 to 0.788), respectively.470

4.3 Simulated deployment471

We envision the eventual deployment of our models into clinical practice to im-472

prove patient outcomes by promoting the detection of early stage disease. We473

evaluated the effectiveness of our models for this purpose by simulating the de-474

ployment of our models. A key aspect of this simulated deployment was using475

models trained only on data available before a simulated enrollment date to iden-476

tify high-risk individuals after the simulated enrollment date. We then followed477

the identified high-risk individuals over time to evaluate the performance of our478

models.479

This simulated deployment methodology stands in contrast to methodologies480

used in previous studies that do not temporally separate the training and test481

data [5, 7]. By more closely tracking the envisioned deployment scenario, we482

eliminated a potential source of inaccuracy and hope to obtain a more accurate483

prediction of model performance in clinical use.484

4.4 Federated network485

A significant strength of our work is the development and validation of our486

models using a federated EHR network. This network ingests EHR data from487

multiple HCOs and EHR sources, with the data remaining stored behind each488

institution’s firewall. The ingested data is de-identified, harmonized, and con-489

verted into a single format, supporting ease of integration and deployment of490

models within the same platform. This federated network enabled us to train491

and externally validate our models on racially, geographically, and temporally492

diverse data from 55 HCOs within the United States. The results show that493

our models perform well on all geographic and racial groups and generalize well494

across time. The network also enabled us to simulate deployment of the model495

over time to identify high-risk individuals across the entire network.496

The eventual clinical deployment of PDAC risk prediction models depends497

not only on model accuracy and generalizability, but also on productive inte-498

gration into EHR systems for inclusion into the clinical workflow. Lack of sys-499

tem integration and model automation comprises a significant barrier to clinical500

adoption of such models [28]. Because of their close integration with existing501
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HCO EHR systems, federated networks can solve these integration and deploy-502

ment challenges to provide a clear pathway for integrated model development,503

validation, and clinical deployment all within a single federated system [25].504

4.5 Related work505

Other researchers have used EHR data to develop PDAC risk prediction models506

for the general population [3, 5, 7, 8, 22]. Data set sizes range from 1,792 PDAC507

cases/1.8M controls [8] to 24,000 PDAC cases/6.2M controls [22]. Some studies508

lack an external validation [7], complete the external validation/evaluate model509

generalizability only with data from a single geographic area [3, 22], or validate510

only on one gender (male) [8] or race [15]. While some studies work with data511

obtained from multiple organizations [7, 8, 22], none work with a federated data512

network that harmonizes and standardizes the data, none provides a clear path513

to clinical deployment, and none supports the seamless deployment of the model514

to new HCOs as they join the federated network.515

Some previous studies evaluate the ability of their models to identify high-risk516

individuals either until or shortly before the date of PDAC diagnosis [7, 8, 22],517

when clinical benefit is improbable. To focus on time frames in which detection518

of early stage disease and potential cure are most likely, we evaluate the ability519

of our models to identify high-risk patients at least six months before diagnosis.520

4.6 Limitations521

Our study has limitations. Notably, model development and validation were522

retrospective. Prospective studies are needed to evaluate efficacy of clinical de-523

tection of early stage disease in high-risk individuals.524

Our results also show that our models performed well on data from the525

TriNetX network, including multiple HCOs located in different geographic re-526

gions across the United States. We do not know, however, if our models will527

perform similarly on data from different sources or different countries. Future528

work should evaluate the models on data from different EHR sources and pop-529

ulations selected from different countries and global regions.530

The use of neural networks and the fact that our model needed thousands of531

features to reach its best performance make it harder to interpret the reasoning532

process or extract knowledge for clinicians. Future work should try to gain a533

deeper understanding of how the model makes predictions and to simplify the534

model if possible.535

5 Conclusion536

In conclusion, we have built, validated, and simulated deployment of a PDAC537

risk prediction model for the general population on multi-institutional EHR data538

from a federated network. This model can be used to help primary care providers539

across the country identify high-risk individuals for PDAC screening or used540
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as a first filter before subsequent biomarker testing. The model maintained its541

accuracy across diverse racial groups and geographic regions in the US, as well542

as over time, and outperformed widely-used clinical guideline criteria [10, 12] for543

inclusion of individuals into PDAC screening programs.544

Our approach enables potential expansion of the population targeted for545

screening beyond the traditionally screened minority with an inherited predispo-546

sition. To our knowledge, this is the first PDAC risk prediction model developed,547

externally validated, with simulated deployment, using a federated network. The548

developed models set the stage for deployment of the model within the network549

to identify high risk patients at multiple institutions within the network. A550

prospective study to validate the models before full clinical deployment is the551

next step.552
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