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Abstract 33 

Objective: Due to the long prodromal period for dementia pathology, approaches are needed to 34 

detect cases before clinically recognizable symptoms are apparent, by which time it is likely too 35 

late to intervene. This study contrasted two theoretically-based algorithms for classifying early 36 

cognitive impairment (ECI) in adults aged ≥50 enrolled in the Baltimore Longitudinal Study of 37 

Aging. 38 

Method: Two ECI algorithms were defined as poor performance (1 standard deviation [SD] 39 

below age-, sex-, race-, and education-specific means) in: (1) Card Rotations or California Verbal 40 

Learning Test (CVLT) immediate recall and (2) ≥1 (out of 2) memory or ≥3 (out of 6) non-41 

memory tests. We evaluated concurrent criterion validity against consensus diagnoses of mild 42 

cognitive impairment (MCI) or dementia and global cognitive scores using receiver operating 43 

characteristic (ROC) curve analysis. Predictive criterion validity was evaluated using Cox 44 

proportional hazards models to examine the associations between algorithmic status and future 45 

adjudicated MCI/dementia. 46 

Results: Among 1,851 participants (mean age=65.2±11.8 years, 50% women, 74% white), the 47 

two ECI algorithms yielded comparably moderate concurrent criterion validity with adjudicated 48 

MCI/dementia. For predictive criterion validity, the algorithm based on impairment in Card 49 

Rotations or CVLT immediate recall was the better predictor of MCI/dementia (HR=3.53, 50 

95%CI: 1.59-7.84) over 12.3 follow-up years. 51 

Conclusions: Impairment in visuospatial ability or memory may be capable of detecting early 52 

cognitive changes in the preclinical phase among cognitively normal individuals.  53 

Keywords: Alzheimer’s Disease; Cognitive Dysfunction; Neuropsychological Tests; 54 

Classification; Validation Study; Longitudinal Studies  55 
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Introduction 56 

Alzheimer’s disease (AD) is a neurodegenerative disease that interferes with daily activities in its 57 

later stages. Identification of early progression is critical to identify risk factors and to properly 58 

evaluate interventions to delay clinical onset. Progression to AD is hypothesized to begin with a 59 

preclinical phase characterized by normal cognitive ability, up to 20 years prior to a dementia 60 

diagnosis. 1–3 Thus, accurate and stable diagnostic criteria for identifying early cognitive changes 61 

prior to clinically recognizable symptoms of dementia are crucial for purposes of targeting 62 

preventive interventions most likely to slow pathological progression.  63 

A wide range of neuropsychological measures have been leveraged in epidemiologic 64 

studies for the classification of dementia and mild cognitive impairment (MCI). There is a 65 

plethora of different algorithms developed based on poor performance in cognitive and everyday 66 

functional measures to classify MCI or dementia in lieu of clinical judgement, frequently 67 

motivated by various psychiatric 2,3 or neuropsychological traditions 4–6. As episodic memory 68 

impairment is most seen in MCI patients who progress to AD, conventional Petersen criteria 69 

defined MCI is based on performance >1.5 standard deviation (SD) below age-appropriate norms 70 

on a single memory test 7. This approach has been expanded to multiple other cognitive domains 71 

(e.g., executive, language) and requires multiple tests, within each cognitive domain >1 SD 72 

below age-appropriate norms to balance sensitivity and specificity. 4 Although 73 

neuropsychological criteria have been validated in multiple cohort studies for MCI classification, 74 

5,6 few studies have carefully considered which cognitive tests should be included to detect early 75 

cognitive decline in preclinical stages of dementia before the symptomatic phase. 8 Specifically, 76 

visuospatial function has not been considered as a separate domain in these algorithms, however, 77 

a recent study reported that visuospatial ability measured using the Card Rotations test showed 78 
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the earliest changes in rate of decline at 15.5 years before AD diagnosis, followed by episodic 79 

memory where changes were detected up to 11.7 years before AD diagnosis9. These findings 80 

make some biological sense, given that visuospatial ability as measured by Card Rotations are 81 

thought to be controlled in the brain’s precuneous and retrosplenial cortex, atrophy in which is an 82 

early risk factor for ADRD.9–11 Thus, incorporating visual function tests in algorithms may help 83 

identify individuals who are at high risk of developing ADRD in early stages. 12 84 

We leveraged data from the Baltimore Longitudinal Study of Aging (BLSA), which has 85 

followed people for up to 33 years prior to dementia diagnosis starting as early as 1986. In the 86 

present study, we aim to contrast two psychometrically defined algorithms for classifying early 87 

cognitive impairment (ECI) in middle-aged and older adults enrolled in the BLSA. One 88 

algorithm was developed based on visual spatial and episodic memory which have showed early 89 

decline in progression to ADRD.9 Another algorithm used conventional neuropsychological 90 

criteria to detect early amnestic or nonamnestic cognitive decline which we hypothesize may 91 

predict all-cause dementia. By comparing different algorithmic classification criteria, we aim to 92 

identify optimal classification criteria for early identification of older adults with risk of MCI and 93 

dementia. We evaluated these algorithms by comparing concurrent and predictive criterion 94 

validation against consensus diagnoses and global measures of cognitive and functional 95 

impairment. 96 

 97 

 98 

Methods 99 

The BLSA is a longitudinal cohort study established in 1958 and conducted by the National 100 

Institute on Aging Intramural Research Program. The study aims to explore the interdependence 101 
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of aging and disease processes and their mutual impact on physical and cognitive function. A 102 

detailed description of the study design is available 15. The study continuously recruits 103 

community-dwelling volunteers free of major chronic conditions and cognitive and functional 104 

impairment at the time of enrollment. Participants are followed for health characteristics, 105 

cognitive assessments, and physical function testing every 1-4 years depending on age (every 4 106 

years for age <60, every 2 years for age 60-79, and annually for age ≥80). The present study 107 

includes 1,880 participants aged ≥50 years who underwent cognitive testing from 1993 through 108 

2019. Informed consent was obtained from all participants. The study protocol was approved by 109 

the National Institutes of Health Intramural Institutional Review Board. 110 

  111 

Neuropsychological tests 112 

A wide variety of cognitive tests are administered in the BLSA. In the current study, attention 113 

and executive function were assessed using the Digit Span Forward and Backward subtests in the 114 

Wechsler Adult Intelligence Scale – Revised (WAIS-R) 16. Visual memory was measured using 115 

the Benton Visual Retention Test (BVRT) 17. Language was assessed using the 60-item Boston 116 

Naming Test (BNT-60) 18 and Similarities from the Wechsler Adult Intelligence Scale (WAIS) 16. 117 

Visuospatial ability was measured using the difference between the number of correctly and 118 

incorrectly classified objects on a modified version of the Card Rotations test developed by the 119 

Educational Testing Service 19. Verbal episodic memory was measured using the immediate (total 120 

number of items recalled across five trials) and long-delay free recall in the California Verbal 121 

Learning Test (CVLT) 20.  122 

  123 

Algorithmic classification of ECI  124 
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The ECI algorithms were determined based on the Preclinical AD Consortium but tailored for the 125 

BLSA sample depending on the number of neuropsychological tests administered in each 126 

cognitive domain and cutoff points used 8. Briefly, poor cognitive performance was 127 

operationalized as 1 SD below age-, sex-, race- (white vs nonwhite), and education-specific 128 

means. The race adjustment in addition to education is based on the consideration that education 129 

may not indicate the same level of educational attainment or intellectual exposure for different 130 

racial groups in the US particularly for those growing up in the 60's and 70's. According to 131 

previous literature using Jak/Bondi comprehensive criteria, ECI classification was determined 132 

based on memory and non-memory domains 5,6. In this study, we classified CVLT immediate and 133 

long-delay free recall as memory tests and other neuropsychological tests as non-memory tests. 134 

As previous findings suggesting that visuospatial ability measured by Card Rotations test and 135 

CVLT immediate recall showed the earliest changes in cognitive decline during preclinical stage 136 

of AD 9,21, we explored the algorithms using visuospatial ability and immediate recall for ECI 137 

classification. Thus, in this study, two ECI classification algorithms were developed and 138 

compared: (1) poor performance in Card Rotations or CVLT immediate recall and (2) poor 139 

performance in ≥1 (out of 2) memory or ≥3 (out of 6) non-memory tests. 140 

 141 

Global cognitive and functional scores 142 

Three measures of global cognitive and/or functional status were used. Global mental status was 143 

assessed using the Mini-Mental State Examination (MMSE) 22. The Blessed Information 144 

Memory Concentration (BIMC) test is a mental status instrument that has been widely used in 145 

clinical populations and research studies 23. CDR Sum of Boxes (CDR-SB) is a global cognitive 146 

and functional assessment of six domains: memory, orientation, judgement/problem solving, 147 
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community affairs, home/hobbies, and personal care 24,25. 148 

 149 

Adjudicated diagnosis of MCI/dementia 150 

Participants with BIMC test score ≥4 or CDR score ≥0.5 were reviewed at consensus diagnostic 151 

conferences. Experienced clinicians diagnosed MCI based on Petersen criteria 7 and dementia 152 

based on Diagnostic and Statistical Manual of Mental Disorders, revised third edition criteria 153 

26,27.  154 

 155 

Covariates 156 

Sociodemographic characteristics including age, sex, race, and years of education were collected 157 

from a health interview. Race was categorized into white and non-white (e.g., Black, American 158 

Indian/Alaska Native, Asian/Pacific Islanders).  159 

 160 

 161 

Statistical Analysis  162 

Sample characteristics including baseline age, sex, race, and years of education were 163 

summarized into frequencies and percentages or means and standard deviations.  164 

First, we evaluated concurrent validity of the algorithms with concurrent consensus 165 

diagnoses of MCI/dementia (Table 1). The receiver operating characteristic (ROC) curve 166 

analysis was used to calculate area under the curve (AUC), sensitivity, and specificity. All BLSA 167 

visits among all eligible participants with available cognitive data were included in the analysis. 168 

We also examined whether each ECI algorithmic classification was concurrently correlated with 169 

MMSE score and other global cognitive and functioning scores (BIMC and CDR-SB scores). 170 
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Dichotomous global scores were used for the analysis, with cutoff points determined as MMSE 171 

≤26 28, BIMC ≥4 29, and CDR-SB ≥0.5 24.  172 

Second, we evaluated predictive criterion validity of each algorithm with future 173 

progression to adjudicated MCI/dementia (Table 2). Cox proportional hazards models were used 174 

to model associations between the earliest ECI status determined based on each algorithmic 175 

classification and time to adjudicated MCI/dementia during follow up. Participants who had 176 

MCI/dementia diagnosis at the first visit with available cognitive data were excluded from this 177 

analysis.  178 

Third, we additionally examined the association between baseline MMSE, BIMC, and 179 

CDR-SB scores and time to first algorithmically defined ECI during follow up, adjusted for age, 180 

sex, race, and years of education (Table 3). Participants who already had ECI at baseline were 181 

excluded from this analysis.  182 

Statistical tests were two-tailed and the significance level α was set as 0.05. All analyses 183 

were conducted using Stata version 16.1 (StataCorp, College Station, TX). 184 

 185 

Results 186 

Among 1,851 participants in analyses, the mean age at baseline was 65.2 (SD=11.8) years, about 187 

half of participants were female (n=917, 49.5%), and 73.8% (n=1,366) were white 188 

(Supplementary Table 1). The average education level was 16.8 (SD=2.7) years. At baseline 189 

with available cognitive data, over one third of the participants (n=628, 34.0%) were classified as 190 

having ECI based on poor performance in Card Rotations or CVLT immediate recall. One third 191 

of the participants (n=597, 32.3%) had ECI based on poor performance in memory or 192 

nonmemory tests.  193 
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 194 

Concurrent criterion validation  195 

Table 1 summarizes evidence for concurrent criterion validity for both algorithmic 196 

classifications with respect to consensus diagnoses of MCI/dementia and global cognitive and 197 

functional scores. Compared with the consensus diagnoses, the AUC for the ECI algorithm based 198 

on poor performance in memory or nonmemory tests had a higher AUC (AUC = 0.703 vs AUC = 199 

0.631). The two algorithms had comparable specificity (0.74 and 0.75) but the ECI algorithm 200 

based on memory or nonmemory tests had the higher sensitivity (0.65 vs. 0.52). Regarding 201 

evidence of concurrent criterion validity with MMSE, CDR-SB, and BIMC scores, the two 202 

algorithms had comparable AUCs, sensitivity, and specificity (Table 1). 203 

 204 

Predictive criterion validation 205 

Among 1,851 participants, n=21 were diagnosed with MCI/dementia at baseline or prior BLSA 206 

visits. Among 1,538 participants with at least 2 visits with cognitive data and without 207 

MCI/dementia at baseline, 43 participants progressed to MCI/dementia. The average follow-up 208 

years between baseline and a consensus diagnosis of MCI/dementia was 12.3 (SD=6.9) years. 209 

Table 2 summarizes the number of cases with consensus diagnoses over follow up and hazard 210 

ratios (HRs) for progression to MCI/dementia based on each algorithm. The algorithm based on 211 

impaired Card Rotations or CVLT immediate recall outperformed the other in terms of the ability 212 

to predict future progression to MCI/dementia. Participants with ECI based on this algorithm at 213 

baseline had over triple the risk of developing MCI/dementia (HR=3.53, 95% CI: 1.59-7.84) 214 

compared to those without ECI. The algorithm based on poor performance in memory or 215 

nonmemory tests also significantly predicted future progression to MCI/dementia (HR=2.24, 216 
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95% CI: 1.11-4.51).  217 

 218 

Global cognitive scores with future algorithmic determined ECI 219 

We additionally examined the relationship between baseline MMSE, BIMC, and CDR-SB scores 220 

and hazard of early algorithmic diagnoses using Cox proportional hazards models (Table 3). The 221 

algorithm based on poor performance in memory or nonmemory tended to have higher HRs of 222 

being predicted by MMSE or BIMC score. Comparable HRs were observed for the two 223 

algorithms when they were predicted by CDR-SB score.   224 

 225 

Discussion 226 

This study contrasted two psychometrically defined algorithms to classify older adults with ECI 227 

in the BLSA. Results suggest that these ECI algorithms yielded comparably moderate concurrent 228 

criterion validity with consensus diagnoses of MCI/dementia and global cognitive and functional 229 

impairment. However, the algorithm based on poor performance in visuospatial ability (Card 230 

Rotations) or immediate memory (CVLT immediate recall) had a stronger relationship with 231 

future progression to MCI/dementia among the algorithms we evaluated. This pattern of findings 232 

indicates that impairment in visuospatial ability or memory may be capable of detecting early 233 

cognitive changes in the preclinical phase among cognitively normal individuals.  234 

 Our findings are consistent with previous research demonstrating that tests of visuospatial 235 

and memory function are among the earliest to show decline prior to onset of Alzheimer’s type 236 

dementia 9,21. Our results suggest that older adults with poor performance in Card Rotations or 237 

CVLT immediate recall had over triple the risk of progressing to MCI or dementia. Previous 238 

studies found that multiple domain amnestic MCI, defined as impairment in memory and at least 239 
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one other domain (i.e., executive function, processing speed, language), significantly predicted 240 

incident dementia using data from the Framingham Heart Study 5. The algorithm based on one 241 

test in visuospatial ability and one test in episodic memory may provide novel and simplified 242 

neuropsychological criteria to identify ECI. Deficits in visuospatial functioning also have been 243 

associated with probable Lewy Body dementia 30,31. Studies also suggested the diagnostic and 244 

prognostic potential of visuospatial tasks in AD and non-AD dementias 32–34. The underlying 245 

mechanisms that may lead to early impairment in visuospatial ability as an indicator of ECI are 246 

related to the precuneus and other parietal regions that support spatial navigation 35,36. The 247 

precuneus is also one of the earliest brain regions to show β amyloid accumulation in preclinical 248 

AD 37,38. Our study extends previous research by demonstrating the predictive criterion validity 249 

of this algorithm with clinical diagnosis of MCI/dementia and highlights the importance of 250 

incorporating visuospatial ability into identification of ECI. Our findings may suggest a novel 251 

method to detect and diagnose cognitive impairment at an earlier stage. Future studies should 252 

investigate whether this algorithm is capable of identifying ECI in other older populations.  253 

Great efforts have been made to define different neuropsychological criteria for MCI 254 

diagnoses and to derive a common classification algorithm for identification of MCI across 255 

several cohort studies 4,6,8,39. These efforts range from a single impaired memory score towards 256 

one or two tests in multiple cognitive domains such as memory, language, and speed/executive 257 

function 6, which enables identifications of MCI subtypes 5,6. The latter approach is consistent 258 

with DSM-5 criteria for mild and major neurocognitive disorder, which specifies domains of 259 

learning and memory, higher-level executive abilities, language, visuospatial function, and social 260 

cognition 40. Although, strictly speaking, our approach is not identical to the Jak/Bondi criteria 261 

which require at least two impaired scores (1 SD below the means) within a cognitive domain,4,6 262 
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we took both memory and non-memory tests into account. Future research is needed to validate 263 

these algorithms for early identification of cognitive impairment in other large cohort studies.   264 

 The algorithmic approach we describe may be useful in future clinical trials or 265 

observational studies as a validated tool to differentiate cognitively normal older adults who may 266 

be in the preclinical stages of AD, which may be an alternative to time-consuming adjudication. 267 

As these algorithms were derived based on age-, sex-, race-, and education-specific cut-points, 268 

this approach may be utilized in other cohort studies of cognitively intact older adults with 269 

diverse characteristics. Although the diagnosis of MCI in clinical settings also relies on other 270 

factors such as subject complaints and proxy reports, this study provides evidence for further 271 

investigations on application of algorithmic approaches as supplementary information in the 272 

clinical decision-making process.  273 

 Strengths of this study include large sample size, long follow-up period, and a large 274 

battery of neuropsychological tests. This study has several limitations. First, the generalizability 275 

of our findings to other cohorts needs to be considered in light of heterogeneity in cognitive 276 

batteries across studies. Validations of these algorithms using data from other cohort studies are 277 

needed. Second, the majority of BLSA participants were white. Although the algorithmic 278 

classification is race-adjusted, this approach should be validated in larger, more representative 279 

samples of diverse racial groups – especially given that sensitivity and specificity of algorithms 280 

varies across racial and other demographic groups 41. Third, we used an age-, sex-, race-, and 281 

education-adjusted cutoff of 1 SD to define poor performance on each test. Refinement of this 282 

cutoff is a viable future research area. Fourth, the algorithmic classification was determined 283 

based on age-specific means at any single time point. Although this approach may enhance 284 

clinical utility for providers with single office visit assessments, there is a possibility that an 285 
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individual who was classified as impaired within their current age group may move to the 286 

unimpaired group in a subsequent visit, limiting the application of the algorithm to longitudinal 287 

studies aimed to examine changes in cognitive status. A further limitation is that while we are 288 

interested in a measure sensitive to cognitive changes in the preclinical phase of AD, our 289 

outcome was all-cause dementia as adjudicated by a clinical consensus committee, which is a 290 

broader classification than AD as a primary etiology. We did not explore that outcome because of 291 

the confluence of small case numbers coupled with misclassification errors in diagnoses of living 292 

participants. 42 293 

 In conclusion, this study compared two classification algorithms to detect early cognitive 294 

impairment among cognitively normal adults aged 50 years and older enrolled in the BLSA 295 

study. The algorithm based on impairment in visuospatial ability or immediate recall had a 296 

stronger relationship with future progression to consensus diagnoses of MCI or dementia. These 297 

algorithmic approaches may be further utilized to detect early cognitive changes in the 298 

preclinical phase before progression to symptomatic phase of dementia. Future studies 299 

incorporating motor function impairment into the algorithms may further enhance the ability to 300 

capture preclinical changes across the spectrum of various types of dementias. Additional 301 

research is needed to relate the algorithmic approaches to AD biomarkers and apolipoprotein E 302 

(APOE) genotype. 303 
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Table 1. Concurrent criterion validity for each algorithmic classification of early cognitive impairment (ECI) with consensus 

diagnosis and global cognitive scores. 

Algorithmic classification of early cognitive 
impairment  

AUC Sensitivity Specificity Kappa N* TP FP FN TN 

Consensus diagnosis of MCI/dementia          

 impairment in Card Rotation or CVLT immediate recall 0.631 0.52 0.74 0.03 9466 67 2443 61 6895 
 impairment in 1+ memory or 3+ non-memory tests 0.703 0.65 0.75 0.04 9524 85 2327 45 7067 
Global cognitive scores          

MMSE score (≤26)          
 impairment in Card Rotation or CVLT immediate recall 0.640 0.51 0.77 0.17 7551 416 1563 398 5174 
 impairment in 1+ memory or 3+ non-memory tests 0.670 0.56 0.78 0.21 7551 457 1492 357 5245 
CDR-SB score (≥0.5)          
 impairment in Card Rotation or CVLT immediate recall 0.586 0.36 0.81 0.18 2073 264 254 466 1089 
 impairment in 1+ memory or 3+ non-memory tests 0.610 0.40 0.82 0.23 2073 295 248 435 1095 
BIMC score (≥4)          
 impairment in Card Rotation or CVLT immediate recall 0.623 0.48 0.76 0.16 8892 506 1860 543 5983 
 impairment in 1+ memory or 3+ non-memory tests 0.659 0.54 0.78 0.21 8892 565 1727 484 6116 

Note. MCI=mild cognitive impairment. CVLT=California Verbal Learning Test. MMSE=Mini-Mental State Examination. CDR-
SB=Clinical Dementia Rating - Sum of Boxes. BIMC=Blessed Information Memory Concentration test. AUC=area under the curve. 
TP=true positive. FP=false positive. FN=false negative. TN=true negative.  
Poor performance in global cognitive score was determined based on MMSE≤26, BIMC≥4, and CDR-SB≥0.5.  
*Number of visits among all eligible participants with available cognitive data. 
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Table 2. Predictive criterion validity for each algorithmic classification of early cognitive impairment (ECI) at baseline 

predicting progression to consensus diagnosis of MCI/dementia during follow up. 

Algorithmic classification of early cognitive impairment 
(predictor) 

N Number of 
progressors 

Person-
years  

Hazard 
ratio 

95% CI 

 impairment in Card Rotation or CVLT immediate recall 1463 35 16453 3.53* (1.59, 7.84) 
 impairment in 1+ memory or 3+ non-memory tests 1459 36 16270 2.24* (1.11, 4.51) 

Note. MCI=mild cognitive impairment. CVLT=California Verbal Learning Test. CI=confidence interval. 
Participants who had diagnosis of MCI/dementia at baseline were removed from the analysis. The bolded values indicate statistically 
significant results (p<0.05).  
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Table 3. Baseline global cognitive scores as predictors of progression to algorithmically defined early cognitive impairment 

(ECI) during follow up. 

Predictor  Time to event outcome 
N† Number of 

progressors 
Person-
years 

Hazard 
ratio 95% CI 

MMSE score* clinical adjudication of MCI diagnosis 1503 44 18923 1.435 (0.486, 4.235) 
 impairment in Card Rotation or CVLT immediate recall 965 370 9342 1.466 (0.981, 2.191) 
 impairment in 1+ memory or 3+ non-memory tests 998 381 9741 1.704 (1.099, 2.642) 
CDR-SB score* clinical adjudication of MCI diagnosis 854 44 11665 1.929 (1.037, 3.590) 
 impairment in Card Rotation or CVLT immediate recall 510 216 5097 1.928 (1.434, 2.593) 
 impairment in 1+ memory or 3+ non-memory tests 530 226 5400 1.829 (1.362, 2.457) 
BIMC score* clinical adjudication of MCI diagnosis 1575 45 19392 1.424 (0.535, 3.790) 
 impairment in Card Rotation or CVLT immediate recall 1003 378 9544 1.591 (1.113, 2.275) 
 impairment in 1+ memory or 3+ non-memory tests 1039 392 9955 1.947 (1.348, 2.814) 

Note. MCI=mild cognitive impairment. CVLT=California Verbal Learning Test. MMSE=Mini-Mental State Examination. CDR-
SB=Clinical Dementia Rating - Sum of Boxes. BIMC=Blessed Information Memory Concentration test. CI=confidence interval.  
*Binary predictors were used in the Cox proportional hazards models, adjusted for age, sex, race, and years of education. Poor 
performance in global cognitive score was determined based on MMSE≤26, BIMC≥4, and CDR-SB≥0.5.  
†Participants who were impaired based on algorithmic definitions at baseline and who only had one visit were removed from the 
analyses.  
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