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Abstract 

Background 

Emerging metabolomics-based studies suggested links between amino acids metabolism and 

non-alcoholic fatty liver disease (NAFLD) risk, however, whether there exists an aetiological 

role of amino acid metabolism in NAFLD development remains unknown. The aim of the 

present study was to assess the causal relationship between circulating levels of amino acids 

and NAFLD risk. 

Methods 

We performed two‐sample Mendelian randomisation (MR) analyses using summary level 

data from genome-wide association studies (GWAS) to assess causal relationships between 

genetically predicted circulating levels of amino acids and NAFLD risk. Data from the 

largest GWAS on NAFLD (8,434 cases and 770,180 controls) were used in discovery MR 

analysis, and from a GWAS on NAFLD (1,483 cases and 17,781 controls) where NAFLD 

cases were diagnosed using liver biopsy, were used in replication MR analysis. Wald ratios 

or multiplicative random-effect inverse variance weighted (IVW) methods were used in the 

main MR analysis, and weighted median and MR-Egger regression analysis were used in 

sensitivity analyses. We additionally performed an MR conservative analysis by restricting 

genetic instruments to those directly involved in amino acid metabolism pathways. 

Findings 

We found that genetically predicted higher alanine (OR=1.45, 95% CI 1.15-1.83) and lower 

glutamine (OR = 0.81, 95% CI 0.66-1.00) levels were associated with a higher risk of 
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developing NAFLD. Results from MR sensitivity analyses and conservative analysis 

supported the main findings.  

Interpretation 

Genetically predicted higher circulating levels of alanine was associated with an increased 

risk of NAFLD, whereas higher glutamine was associated with a decreased risk of NAFLD.  

Funding 

This work was supported by Xinhua Hospital, Shanghai Jiao Tong University School of 

Medicine (2021YJRC02). 
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Research in context  

Evidence before this study 

Recent metabolomics studies revealed associations between circulating levels of several 

amino acids and non-alcoholic fatty liver disease (NAFLD) risk. Most of these studies were 

conducted with a focus on the profiling of amino acids between individuals with NAFLD and 

healthy subjects, which suggested the altered amino acid metabolism might be a consequence 

of NAFLD rather than a causal risk factor for NAFLD. We searched PubMed for studies in 

any language using the search terms “amino acids” AND “Non-alcoholic fatty liver disease 

OR NAFLD OR fatty liver” AND “Mendelian randomisation OR Mendelian randomization”, 

and found few studies on the causal effects of circulating amino acids on NAFLD risk. Thus, 
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whether there is an aetiological role of amino acids in NAFLD development remains 

unknown.  

Added value of this study 

In the present study, we systematically investigated the causal effects of genetically predicted 

circulating levels of 20 amino acids on NAFLD risk using data from large-scale genome-

wide association studies in up to 778,614 individuals of European ancestry. We utilised a 

state-of-art causal inference approach, that is Mendelian randomisation, to construct layers of 

evidence. Overall, we found that among 20 amino acids, genetically predicted higher 

circulating levels of alanine was associated with an increased risk of NAFLD, whereas higher 

glutamine was associated with a decreased risk of NAFLD.  

Implications of all the available evidence 

Our study is the first to systematically assess the causal relationships between levels of 

plasma amino acids and the development of NAFLD using multi-omics (i.e., genomic and 

metabolomic) data from large-scale human studies. Our results suggest the potential for the 

glutamine supplementation or alanine depletion for personalized nutrition in NAFLD 

prevention and treatment.  

Introduction 

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases, 

affecting up to ∼30% of the general population globally 1. NAFLD has been also predicted to 

become the most frequent indication for liver transplantation in Western countries by 2030 2. 

NAFLD is a progressive disease characterized by the accumulation of lipid droplets within 

hepatocytes in the absence of excessive alcohol consumption and defined by the presence of 

at least 5% hepatic steatosis 3. This condition has been consistently reported to be associated 
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with important cardiometabolic comorbidities, including obesity, type 2 diabetes mellitus, 

cardiovascular disease and stroke 4,5. To date, although substantial efforts have been put forth 

to prevent or treat NAFLD, there are no effective preventions or therapeutic treatments for 

NAFLD. 

Emerging metabolomics-based studies have provided insights into mechanisms underlying 

the development and progression of NAFLD 6,7. Identifying pathogenic molecules of NAFLD 

development is essential for improving aetiological understanding and developing novel 

therapeutic targets for early intervention of this common and burdensome liver disease. It is 

known that abnormal lipid and glucose metabolism exert putative roles in the pathogenesis of 

NAFLD 8, whereas recent studies suggested that amino acid metabolism might also 

contribute to the pathogenesis of NAFLD 9,10. For example, lower glycine was reported to be 

associated with higher prevalence of NAFLD 11. Increased levels of aromatic amino acids 

(AAAs) (e.g., tyrosine and phenylalanine) were found to be associated with increased risk of 

liver diseases 12. Increased levels of branched chain amino acids (BCAAs), including leucine, 

isoleucine and valine, have also been reported during the progression of NAFLD 13. In 

addition, a recent Mendelian randomisation study found a causal effect of NAFLD on blood 

tyrosine levels 14. Most previous studies have focused on the profiling of amino acids or 

altered amino acid metabolism in individuals with NAFLD, compared to those without 

NAFLD, for discovery of non-invasive diagnostic biomarkers. Metabolism of amino acids 

including BCAAs, alanine, glutamine and tyrosine has been reported to be impacted by 

NAFLD 13,15. This implies that altered metabolism of amino acids might be a consequence of 

NAFLD rather than a causal risk factor for NAFLD. Thus, whether there exists an 

aetiological role of amino acid metabolism in NAFLD development (i.e., a causal effect of 

circulating levels of amino acids on NAFLD risk) remains currently unknown. 
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Mendelian randomisation (MR) is a causal inference approach using germline genetic 

variants as instrumental variables (IVs), which could largely minimize the risk of bias due to 

residual confounding or reverse causation 16,17. In this study, we implement two-sample MR 

analyses to systematically assess causal effects of genetically predicted circulating levels of 

amino acids on risk of NAFLD using summary data from both the latest and largest genome-

wide association studies (GWASs) of human metabolites and two independent GWASs of 

NAFLD (Figure 1 Panel A).  

Methods 

Data sources 

Exposure measure: Amino acids 

Summary data for genetic associations with amino acids were retrieved from a recently 

conducted cross-platform GWAS of 174 metabolites that included up to 86,507 participants 

(for individual metabolites sample sizes varied from 8,569 to 86,507) 18. Genome-wide 

association results were meta-analysed in three cohort studies (i.e., the Fenland, EPIC-

Norfolk and INTERVAL studies) followed by a further meta-analysis with publicly available 

GWAS summary data from two studies 19,20. Of 174 plasma metabolites investigated in the 

GWAS, 20 circulating levels of amino acids (alanine, arginine, asparagine, aspartate, cysteine, 

glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, 

phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine) were included. We 

calculated the SNP specific genetic associations with amino acids and their corresponding 

standard errors based on the original information, including the z-score, sample size and 

minor allele frequency (MAF), reported in the GWAS of metabolites using the following 

formula �� � �/�2�	1 � ��	 � ��� and �� � 1/�2�	1 � ��	 � ��� 21,where b is the 
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SNP specific genetic association, z is the z-score, p is the MAF of the SNP, n is the sample 

size, and SE is the standard error of the genetic association.  

Outcome measure: NAFLD 

Two independent datasets on the outcome measure (i.e., NAFLD) were namely retrieved 

from recently conducted GWASs of NAFLD 22,23. Data for discovery analysis were obtained 

from the largest NAFLD GWAS meta-analysis conducted in four cohorts of European 

ancestry: the Electronic Medical Records and Genomics (eMERGE) network, the UK 

Biobank (UKB), the Estonian Biobank (EstBB) and the FinnGen 23. In the GWAS meta-

analysis on NAFLD, two GWASs of NAFLD were firstly conducted in the UKB and EstBB 

cohorts, and then combined with results from two publicly available NAFLD GWASs 

(eMERGE and FinnGen). As a result, 8,434 NAFLD cases were identified by electronic 

health records (EHR) and 770,180 controls were included in the GWAS meta-analysis 

(Figure 1 Panel B). Furthermore, for the replication analysis, data were retrieved from a 

large GWAS of NAFLD in individuals of European ancestry (1,483 cases and 17,781 

controls), where NAFLD cases were diagnosed using liver biopsy (i.e., the gold standard 

method for diagnosing NAFLD) 22 (Figure 1 Panel B).
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Figure 1. Schematic overview of the study design and MR analysis. a. rs3970551 was absent from the IV set in the replication NAFLD

by Anstee et al. due to non-available proxy SNPs being identified. 
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Genetic instruments selection and data harmonization 

Based on the GWAS summary data on cross-platform measured metabolites, 112 genetic 

variants, which were associated with at least one of 20 circulating amino acids at a 

metabolome-adjusted genome-wide significance level (p < 5 × 10−8 / 102 = 4.9 × 10−10), were 

selected as candidate instrument variables (IV). In the present study, a stringent linkage 

disequilibrium (LD) clumping threshold (r2 < 0.01 and window = 10 Mb) for genetic 

instruments selection was applied using the “clump_data” function in the TwoSampleMR R 

package. A total of 111 SNPs (excluding rs61937878) were retained after LD clumping. 

Each genetic instrument was looked up in two NAFLD GWASs (for discovery and 

replication analysis respectively) for SNP-NAFLD associations. SNPs that are in high LD 

with genetic instruments (r2 > 0.8 and window = 500 Mb) were identified to proxy the absent 

variants in the discovery and replication NAFLD datasets (14 and 6 proxies were identified 

respectively). Detailed information on the proxy SNPs can be found in the Supplementary 

Table S1. Two SNPs (rs142714816, the unique instrument for cysteine, and rs3970551), both 

of which were absent from the summary data of NAFLD GWAS with no proxy SNPs 

available, were excluded from the discovery analysis, and one SNP (rs142714816) was 

removed from the replication analysis.  

A data harmonization procedure was performed to merge SNP-amino acid and SNP-NAFLD 

associations using the “harmonise_data” function in the TwoSampleMR R package 24. Two 

palindromic SNPs (rs2422358 and rs1935) were removed from further analysis. As a result, a 

total of 107 and 108 eligible SNPs used as instrumental variables for 19 circulating amino 

acids were included in the discovery and replication MR analysis, respectively. 
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Statistical analysis 

In both discovery and replication stages, we used Wald ratios (for glutamate and methionine 

because only one SNP was available for each of these two amino acids), and multiplicative 

random-effect inverse variance weighted (IVW) approach for all other amino acids as the 

main MR analysis method, to estimate the causal effect of genetically predicted circulating 

levels of amino acids on risk of having NAFLD. To increase the statistical power and 

precision of the causal estimates, a fixed-effect meta-analysis was performed to combine the 

causal estimates in both discovery and replication stages using the meta R package 25. 

Additionally, for certain amino acids that have five or more genetic instruments, we 

performed several sensitivity analyses, including weighted median and MR-Egger regression 

analysis to test the consistency of the causal estimates under the different assumptions and to 

detect possible pleiotropy. Unlike the IVW method that assumes all the SNPs are valid IVs 26, 

the MR-Egger regression could generate a consistent estimate in presence of invalid genetic 

instruments, as long as the Instrument Strength Independent of Direct Effect (InSIDE) 

assumption holds 27. The weighted median method assumes that more than half of the genetic 

instruments are valid and is a robust approach to outliers 28.  

To assess the strength of the selected genetic instruments in MR analysis, we calculated F 

statistic for each genetic instrument, which are generally considered strong when greater than 

10 29. We used Cochrane’s Q statistic to examine the heterogeneity between SNP-specific 

causal estimates. Substantial heterogeneity between SNP-specific causal estimates could be 

indicative of horizontal pleiotropy.  

Furthermore, to minimize the risk of bias due to horizontal pleiotropy, we also performed a 

conservative MR analysis by restricting genetic instruments to those directly involved in 

amino acid metabolism pathways, as described elsewhere 30. Two sets of genetic variants, 

namely biologically and genetically prioritised conservative SNPs, were used as instrumental 
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variables in conservative MR analysis to estimate causal effects using the Wald ratios or 

fixed-effect IVW method as appropriate.  

Given that a total of 20 amino acids were investigated in the present study, after a multiple 

testing Bonferroni correction, an estimate with a p-value <0.0025 (p=0.05/20) was considered 

as strong evidence for causal effects, whereas a p-value between 0.0025 and 0.05 indicated a 

suggestive causal effect. All statistical analyses were undertaken with R version 4.0.2 (R 

Foundation for Statistical Computing, Vienna, Austria).  

Ethics statement 

Ethics approval has been obtained in original studies that contributed to GWASs on amino 

acids and NAFLD. All participants provided written informed consent. Declaration of 

Helsinki statement has been described in the original publications of these studies. The 

present study only used summary level data from relevant GWASs. 

Role of the funding source 

The funders had no role in study design, data collection, analysis, or interpretation, or any 

aspect pertinent to the study.  

Results 

Characteristics of the included studies and the selected SNPs 

Genetic variants instrumenting for amino acids in our study were obtained from a meta-

analysis of metabolites GWAS using data from up to 23 cohorts included in previous three 

GWASs 20,31,32 and three independent studies (the Fenland cohort 33, EPIC-Norfolk Study 34, 

and INTERVAL trial 35) (Table 1). Average participant age of included studies ranged from 

43.5 to 59.8 years old 36. Approximately 50.4% to 53.9% of the study participants were 

women, except for the GWAS conducted by Shin et al.,20 where only 16.5% of participants 
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were women. A large-scale meta-analysis of NAFLD GWASs in four studies of European 

ancestry (the eMERGE, FinnGen, UKB, and EstBB cohorts) included 8,434 NAFLD cases 

and 770,180 controls and were used for discovery MR analysis 23. Another independent 

NAFLD GWAS used for the replication analysis included 1,483 NAFLD cases diagnosed 

with liver biopsy and 47.3% of these participants were women 22. 

Table 1. Characteristics of included studies. 

Studies Sample size (n) Female % Mean age (SD) Metabolomics platform Ancestry 

Amino acids (meta-

analysis of 

metabolites GWAS) 
       

Fenland study 9,736 53.5% 48.4 (7.4) Biocrates p180 Kit 

European 

EPIC-Norfolk 

study 
5,841 53.3% 59.8 (9.0) Metabolon HD4 

INTERVAL trial 40,818 50.4% 43.5 (14.2) Serum NMR platform (Nightingale) and Metabolon HD4 

GWAS by Shin et 

al. 2014 
7,824 16.5% 57.1 (11.4) Metabolon HD1 

GWAS by Draisma 

et al. 2015 
7,478 53.5% 48.7 (12.7) Biocrates p150 Kit 

GWAS by 

Kettunen et al. 2016 
24,925 53.9% 46.3 (9.7) Serum NMR platform (Nightingale) 

Studies Cases Controls 
  

Inclusion criteria Exclusion criteria 
 

NAFLD (studies for 

discovery analysis) 
       

eMERGE 

Adults: 710 / 

paediatrics 

(≤�21�years 

old): 396 

Adults: 

7,725 / 

paediatrics: 

846 

Adults: 

54.8% / 

paediatrics: 

44.2% 

Adults: 63.5 

(16.9) / 

paediatrics: 

13.1 (5.4) 

ICD9: 571.5, 571.8, and 571.9; 

ICD10: K75.81, K76.0, and K76.9 

Alcohol dependence, 

alcoholic liver disease, 

alpha-1 antitrypsin 

deficiency, Alagille 

syndrome, liver 

transplant, cystic fibrosis, 

hepatitis, 

abetalipoproteinemia, 

LCAT (lecithin-

cholesterol 

acyltransferase) 

deficiency, 

lipodystrophy, disorders 

of copper metabolism 

Reye’s syndrome, inborn 

errors of metabolism, 

HELLP (hemolysis, 

elevated liver enzymes 

and low platelets) 

syndrome, starvation, and 

European 

UK Biobank 2,558 395,241 NA NA 
ICD10: K74.0, K74.2, K75.8, K76.0, and 

K76.9 

Estonian Biobank 4,119 190,120 NA NA 
ICD10: K74.0, K74.2, K75.8, K76.0, and 

K76.9 
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acute fatty liver 

FinnGen study 

(data freeze 4) 
651 176,248 55.5%* 52.1* ICD10: K76.0 NA 

NAFLD (studies for 

replication analysis)        

GWAS by Anstee 

et al. 2020 
1,483 17,781 47.3%* 50.1 (13.0) * Liver biopsy 

Excess alcohol intake 

(alcohol intake <20 g/day 

for females; 

<30 g/day for males), 

chronic viral hepatitis 

(hepatitis B and hepatitis 

C), autoimmune liver 

diseases, hereditary 

hemochromatosis, α1-

antitrypsin deficiency, 

Wilson’s disease, and 

drug-induced liver injury 

European 

* indicates that the percentage of women or mean age was calculated in the NAFLD case group only. 

The characteristics of the selected SNPs instrumenting for amino acids are presented in 

Supplementary Table S2. A total of 133 and 134 genetic variants were used as IVs, ranging 

from 1 IV (for glutamate and methionine) to 20 IVs (for alanine), to estimate the causal 

effects of 19 amino acids on NAFLD in discovery and replication MR analysis, respectively. 

The F-statistics of genetic variants instrumenting for 19 amino acids ranged from 38.7 to 

7504.1 (Supplementary Table S2), suggesting a low risk of weak instrument bias. 

Proportions of variation in amino acids explained by genetic instruments ranged from 0.13% 

(glutamate) to 10.38% (glycine) (Supplementary Table S3). Cochrane’s Q statistics 

indicated that there was no significant heterogeneity between SNP-specific causal estimates 

for arginine, aspartate, phenylalanine, proline, and tryptophan in the discovery MR analysis 

(Supplementary Table S4). 
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MR main analysis results 

 

Figure 2. MR main analysis results of the causal effects of genetically predicted circulating 

levels of amino acids on NAFLD risk. 

Of 19 amino acids examined, genetically predicted higher circulating alanine levels were 

causally associated with an increased risk of NAFLD in both discovery and replication 

analyses. The odds ratio (OR) of NAFLD was 1.45 (95% CI 1.15-1.83; p = 0.002) per 1-SD 

increment in alanine levels, after combining causal effect estimates from discovery (OR = 

1.37, 95% CI 1.07-1.76; p = 0.012) and replication (OR = 2.06, 95% CI 1.08-3.94; p = 0.029) 

MR analyses (Figure 2). Additionally, genetically predicted higher circulating glutamine 

levels appeared to be suggestively associated with a lower risk of NAFLD (OR = 0.81, 95% 

CI 0.66-1.00; p = 0.048) after meta-analysing estimates from discovery (OR = 0.80, 95% CI 

0.64-1.02; p = 0.068) and replication (OR = 0.84, 95% CI 0.55-1.29; p = 0.436) MR analyses 

(Figure 2). There was little evidence for a causal association between circulating levels of the 

remaining amino acids and NAFLD risk. Causal effect estimates from the replication MR 

analysis were broadly consistent with that from the discovery analysis, except for methionine, 

which had discrepant directions of effect but low precisions.  
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MR sensitivity analyses results 

MR sensitivity analyses, including weighted median and MR-Egger regression analyses, 

were conducted in 14 amino acids that had at least 5 SNPs as genetic instruments 

(Supplementary Table S5). A broad consistence was observed when comparing results from 

sensitivity analyses with those from main analysis presented above, except for several amino 

acids which had very low precisions in replication MR-Egger regression analysis. Reasons 

for the low precisions of estimates included smaller sample size of data used in replication 

analysis and homogeneous SNP-amino acid associations 37. Of note, meta-analysed causal 

effect estimates derived from weighted median analysis, which is statistically more robust 

compared to MR-Egger regression, supported potential causal effects of both alanine (OR = 

1.58, 95% CI 1.22, 2.04; p < 0.001) and glutamine (OR = 0.81, 95% CI 0.70, 0.93; p = 0.004) 

on NAFLD risk. 

Conservative MR analysis results 

By restricting genetic instruments for amino acids to SNPs that were biologically or 

genetically prioritized in previous published GWAS of metabolites 18, we performed a 

conservative MR analysis to achieve more reliable causal inference. We were unable to 

investigate histidine, threonine, methionine and glutamate as genetic variants instrumenting 

for these amino acids were not on the list of biologically or genetically prioritized genes nor 

directly involved in relevant metabolism pathway. Results from the conservative MR analysis 

confirmed a causal role of alanine (OR = 1.80, 95% CI 1.09, 2.97, p = 0.022 for biologically 

prioritised IVs; OR = 1.93, 95% CI 1.26, 2.96, p = 0.003 for genetically prioritised IVs) and 

glutamine (OR = 0.83, 95% CI 0.73, 0.96, p = 0.009 for both biologically and genetically 

prioritised IVs) on the risk of NAFLD (Figure 3). 
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Figure 3. MR conservative analysis results using genetically and biologically prioritised 

variants as instrumental variables. 

Discussion 

In this MR study, we provided novel evidence for a causal role of genetically predicted 

circulating levels of alanine and glutamine in the development of NAFLD. Specifically, 

genetically predicted higher alanine and lower glutamine were associated with a higher risk 

of developing NAFLD. To the best of our knowledge, it is the first study systematically 

assessing the causal relationships between levels of plasma amino acids and the development 

of NAFLD using multi-omics (i.e., genomic and metabolomic) data from large-scale human 

studies (in up to 778,614 individuals).  

Previous observational studies mainly focused on the profiling of amino acids or altered 

amino acid metabolism in individuals with NAFLD compared with those without NAFLD. 

Metabolism of amino acids including BCAAs (i.e., leucine, isoleucine and valine), alanine, 
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glutamine and tyrosine has been reported to be impacted by NAFLD 13,15. These findings 

were beneficial to identifying diagnostic biomarkers of NAFLD, whereas they were not 

capable to provide causal evidence for aetiological biomarkers of NAFLD development. 

Thus, our findings provide novel insights into the causal mechanism between altered amino 

acid metabolism and NAFLD development.  

Glutamate is one of the major substrates for the synthesis of glutathione, which is a tripeptide 

consisting of glutamate, cysteine and glycine and protects tissues from free radical injury via 

detoxification of active species and/or repair of injury. Since glutamate is poorly transported 

into cells and glutamine can be efficiently transported across the cell membrane and 

deaminated in the mitochondria to produce glutamate and NH3, plasma glutamine is thus 

important for the generation of intracellular glutamate and consequently glutathione. 

Experimentally, it has been reported a potential causal role of glutamine administration in 

decreasing liver injury and mortality in animal studies 38-40. However, there are sparce human 

studies on the effect of glutamine administration on liver function and its related biomarkers. 

The present study, from a genetic perspective, provides causal evidence for a protective 

causal effect of higher circulating glutamine levels on the development of NAFLD. Further, 

in our MR conservative analysis, we found that only the GLS-2 (rs2657879) genetic variant 

predicted glutamine exerting a causal effect on NAFLD risk, compared with another variant 

(GLS, rs7587672) instrumenting for glutamine. Our results were partly supported by findings 

from a previous study, where the authors found that reducing glutamine metabolism (loss-of-

function of GLS2) in the liver resulted in decreased severity of hyperglycaemia (increased 

plasma levels of glutamine and reduced levels of fasting glucose) 41.  

Alanine is the predominant amino acid contributing to hepatic gluconeogenesis, therefore, 

abnormal levels of which generally indicate dysregulation of the alanine-glucose cycle, even 

further consequent tricarboxylic acid (TCA) and urea cycles 42,43. Elevated alanine 
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concentrations in NAFLD have been observed in multiple latest metabolomics studies 44, 

which was consistent with an emerging hypothesis of dysregulated TCA and urea cycles in 

NAFLD 45,46. Recently, in the Young Finns Study that examined prospective associations 

between baseline metabolite levels and the future risk of NAFLD, plasma alanine levels were 

also found to be positively associated with future onset of NAFLD 47. In our study, results 

from MR analysis confirmed the positive causal effect of circulating levels of alanine on 

NAFLD risk.  

Among other amino acids, higher levels of BCAAs (including leucine, isoleucine and valine) 

and AAAs (including phenylalanine, tryptophan, and tyrosine) have been reportedly linked 

with NAFLD 48-50, however, to our knowledge, we identified only one study in which the 

prospective associations between baseline concentrations of amino acids and the risk of 

developing NAFLD during 10-year follow-up were examined 47. Interestingly, in our study, 

on contrary to the positive associations revealed in the above-mentioned studies, we find little 

evidence to support a causal effect of both BCAAs and AAAs on NAFLD development. One 

reason for these discordant results might be reverse causation or confounding bias that cannot 

be ruled out in previous observational studies. For example, in the prospective Young Finns 

Study, increased plasma tyrosine levels were associated with higher 10-year risk for fatty 

liver when first adjusted for sex and age, whereas after adjusting for additional baseline 

confounders, such as waist circumference, alcohol intake, smoking and leisure-time physical 

activity, this association attenuated and became statistically non-significant 47. Further, in a 

recent MR study investigating the causal effect of NAFLD on consequent blood metabolites, 

NAFLD was found to have a positive impact on plasma tyrosine levels 14. Taken together 

with our results, it seems more plausible to consider altered tyrosine metabolism as a 

response to the presence of NAFLD rather than an aetiological factor for NAFLD 

development.  
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Our study has several strengths. Firstly, this is the first and largest study systematically 

investigating the causal effects of human circulating amino acids on NAFLD risk, utilizing 

multi-omics data. Secondly, we leveraged data from an independent GWAS of NAFLD to 

validate our findings in the discovery population, and combined causal effect estimates from 

both datasets using meta-analysis to increase statistical power and estimate precision. Thirdly, 

the conservative MR analysis that was less susceptible to horizontal pleiotropy using 

genetically and biologically prioritized SNPs as instrumental variables confirmed findings 

from our MR main analysis. Finally, our results can be generalized to European ancestry as 

samples span the entire Europe.  

We acknowledge some important limitations of our study. Firstly, our study was limited to 

individuals of European ancestry due to data availability, thus generalizability to other ethnic 

populations needs to be further investigated. Secondly, although summary data from the 

largest histology based NAFLD GWAS was used to replicate our findings, results derived 

from discovery analysis were based on electronic health record (EHR) data where diagnosis 

of NAFLD may be biased by misclassification of cases and controls due to using hospital 

records (i.e., ICD-9 and ICD-10 codes). Therefore, future replications in larger cohorts of 

participants with NAFLD diagnosed with gold standard (i.e., liver biopsy) are warranted.  

In conclusion, novel causal biomarkers including alanine and glutamine of NAFLD 

development were revealed in our study with integrating genomic and metabolomic data. 

Although further studies are needed, these findings suggest the potential for the glutamine 

supplementation or alanine depletion for personalized nutrition in NAFLD prevention and 

treatment.  
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Figure legends 

Figure 1. Schematic overview of the study design and MR analysis. a. rs3970551 was absent 

from the IV set in the replication NAFLD GWAS by Anstee et al. due to non-available proxy 

SNPs being identified. 

 

Figure 2. MR main analysis results of the causal effects of genetically predicted circulating 

levels of amino acids on NAFLD risk. 

 

Figure 3. MR conservative analysis results using genetically and biologically prioritised 

variants as instrumental variables. 
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