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Abstract 
In this study, we investigate the clinical potential of brain-fingerprints derived from 
electrophysiological brain activity for diagnostics and progression monitoring of Parkinson’s 
disease (PD). We obtained brain-fingerprints from PD patients and age-matched healthy controls 
using short, task-free magnetoencephalographic recordings. The rhythmic components of the 
individual brain-fingerprint distinguished between patients and healthy participants with 
approximately 90% accuracy. The most prominent cortical features of the Parkinson's brain-
fingerprint mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these 
features, we also show that Parkinson’s disease stages can be decoded directly from cortical 
neurophysiological activity. Additionally, our study reveals that the cortical topography of the 
Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's 
pathophysiology. We further demonstrate that the arrhythmic components of cortical activity are 
more variable over short periods of time in patients with Parkinson’s disease than in healthy 
controls, making individual differentiation between patients based on these features more 
challenging and explaining previous negative published results. Overall, we outline patient-specific 
rhythmic brain signaling features that provide insights into both the neurophysiological signature 
and clinical staging of Parkinson’s disease. For this reason, the proposed definition of a rhythmic 
brain-fingerprint of Parkinson’s disease may contribute to novel, refined approaches to patient 
stratification and to the improved identification and testing of therapeutic neurostimulation 
targets. 
 

Keywords: Movement disorders, Parkinson’s disease, neural dynamics, oscillations, arrhythmic 
brain activity, magnetoencephalography, brain-fingerprinting. 
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Lay summary:  

We propose a new method to help diagnose and monitor Parkinson's disease (PD) using 
patients’ unique brain-fingerprint. These fingerprints are based on the brain's electrical activity, 
which we measured without any specific tasks, using a technique called 
magnetoencephalography. Remarkably, we found that these brain-fingerprints can differentiate 
between people with Parkinson's and those without, with about 90% accuracy. Specifically, we 
noticed that certain rhythmic patterns in the brain, particularly in areas involved in sensory and 
motor functions, were key indicators of Parkinson's. Interestingly, these patterns also helped us 
identify the different stages of the disease. 

Additionally, our research shows that the arrangement of these brain-fingerprints in Parkinson's 
patients corresponds to how the neurochemistry of the brain is impacted by the disease. We 
also observed that certain irregular patterns in the brain's activity, which vary more from 
moment to moment in Parkinson's patients, make it harder to distinguish between individuals 
based on these features alone. This finding sheds light on why previous studies reported 
challenges with similar approaches. 

Overall, our study offers new insights into the unique brain activity patterns in Parkinson's 
disease and suggests that individual brain-fingerprints could be valuable in tailoring treatment 
plans and developing new therapies for this condition. 
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Introduction 
The neurophysiological underpinnings of Parkinson’s disease (PD) are characterized by a spectrum 
of motor and non-motor symptoms that vary widely among patients, and their fundamental 
nature continues to be a subject of extensive research1–3. This variation in symptoms is paralleled 
by PD's diverse structural alterations4–7, along with changes in hemodynamic and 
electrophysiological brain activity compared to healthy individuals1,8–12. Notably, 
electrophysiological changes in PD concern both the rhythmic and arrhythmic components of 
neurophysiological signals8,9,12–15. Brain-network characteristics, as highlighted in previous studies 
using functional connectome analysis with functional magnetic resonance imaging (fMRI) and 
other brain mapping techniques, also deviate from those in health and correlate with PD's 
hallmark motor and cognitive impairments16–19.  
 
Recent methodological advances have employed fMRI connectomes to derive brain-fingerprints, 
providing biometric differentiation based on individual neuroimaging phenotypes20–23. This 
concept posits that the neuroimaging phenotypes of an individual remain relatively stable over 
time, forming the basis for distinctive brain-fingerprints20,21,24. Such brain-fingerprinting has 
enabled exploration of the neurophysiological bases of complex traits and behaviors in healthy 
subjects20,21,23–27.  
 
However, subsequent studies have indicated an increased variability in brain-fingerprints over 
time in PD26,28,29, which challenges the differentiation between patients on the basis of this 
neuroimaging phenotype. For example, a recent study with magnetoencephalography (MEG) 
showed that the differentiation accuracy between the brain-fingerprints of patients with PD, 
derived from connectomes, declines with the severity of their motor symptoms30. This also 
challenges the ability to distinguish PD patients from healthy controls based on brain-fingerprints, 
thereby raising questions about the relevance and effectiveness of these approaches in 
neurological disease research, or for testing novel therapeutic pathways. 
 
A plausible explanation for the apparent limited impact of brain-fingerprinting to clinical research 
so far may be an inherent instability in the brain activity of PD patients over short periods. For 
instance, previous work has shown that hemodynamic signals from functional near-infrared 
spectroscopy (fNIRS) are more variable in patients with severe PD symptoms31. This suggests that 
electrophysiological activity in PD is also likely to exhibit greater temporal variability, especially in 
brain regions with strong coupling between electrophysiological and hemodynamic signals32.  
 
This short-term variability within patients challenges the definition of a stable brain-fingerprint 
profile that would accurately characterize an individual's disease stage. Further research is needed 
to determine whether this increased variability affects the entire frequency spectrum of 
electrophysiological activity or is confined to specific rhythmic or arrhythmic components33,34. 
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In a recent study with healthy young adult participants, we showed that frequency-specific 
measures of electrophysiological activity across the cortex, derived from brief, task-free MEG data, 
define spectral brain-fingerprints that are specific to each individual over remarkably prolonged 
periods of time24.  
 
In the present study, we extend this approach and confirm that the electrophysiological brain-
fingerprint of patients with PD exhibits greater variability over time compared to that of healthy 
controls. However, this variability is predominantly driven by the arrhythmic component of the 
neurophysiological power spectrum. In contrast, rhythmic features of the PD brain-fingerprint 
remain remarkably stable, enabling effective differentiation between PD patients and healthy 
controls, and among patients themselves. We highlight the clinical significance of these stable 
features by relating them to individual disease stages, and their cortical topography to the 
functional hierarchy of the cortex35 and atlas maps of cortical neurotransmitter systems relevant 
to PD neuropathophysiology36. 
 

Methods 

Participants: Participants for this study were selected from a diverse age group (40-82 years) and 
included healthy controls as well as patients with mild to moderate idiopathic Parkinson’s Disease 
(PD). We aggregated data from multiple sources. We utilized data from 79 PD patients who were 
part of the Quebec Parkinson Network (QPN; https://rpq-qpn.ca84). These patients had undergone 
extensive clinical, neurophysiological, and biological profiling. All enrolled patients in the QPN 
study were on a stable dose of antiparkinsonian medication and demonstrated satisfactory clinical 
responses. They were instructed to continue their medication regimen as prescribed before any 
data collection. We included data from QPN participants who had complete and usable 
Magnetoencephalography (MEG; 275 channels whole-head CTF; Port Coquitlam, British Columbia, 
Canada) clinical, and demographic data. 

Our main control group comprised demographically matched participants from the PREVENT-AD 
(N=50)85 and OMEGA (N=4)86 studies, ensuring a comparison group that mirrors the age and 
demographic characteristics of the PD group. We replicated our observations using a second 
sample of healthy controls from the Cambridge Center for Aging Neuroscience (CamCAN) 
dataset (N= 370 healthy adults, 40-78 years old, 58.67, SD= 11.04; 185 Females) recorded on a 
different MEG instrument. See “CamCAN sample of healthy controls” below for more details. 

All participants underwent resting-state eyes-open MEG recordings. These recordings were 
conducted using a 275-channel whole-head CTF system (Port Coquitlam, British Columbia, 
Canada) at a sampling rate of 2400 Hz, with a 600-Hz antialiasing filter. We also applied systems 
built-in third-order gradient filters to the recordings. Consistency in data collection was 
maintained by conducting all recordings at the same site, each lasting a minimum of 10 minutes.  
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Preprocessing of MEG Data: We preprocessed the MEG data using Brainstorm87, March-2021 
distribution, on MATLAB 2019b (Mathworks, Inc., Massachusetts, USA). We adhered to 
established good practice guidelines88 and replicated the following pre-processing steps following 
previous published studies applied to similar data15,89.  

We filtered the MEG sensor signals between 1–200 Hz to minimize slow-wave drifts and high-
frequency noise. Then, we removed line noise artifacts at 60 Hz and harmonic frequencies, with a 
notch filter bank. We corrected for cardiac and ocular artifacts using Signal-Space Projectors 
(SSPs), derived from electro-cardiogram and electro-oculogram recordings, using an automated 
procedure in Brainstorm87. We segmented the MEG recordings into non-overlapping 6-second 
epochs and downsampled them to 600 Hz. Lastly, we screened and excluded data segments with 
peak-to-peak signal amplitude or maximum signal gradient exceeding ±3 absolute deviations from 
the median across all epochs.  

MEG source mapping. We derived brain source models from each participant's individual T1-
weighted MRI data. We segmented and labeled the MRI volumes using Freesurfer90. We 
coregistered the MEG data to these segmented MRIs using approximately 100 head points that 
were digitized on the day of the MEG sessions. For 14 PD patients and 3 controls who lacked usable 
MRI data, we warped the default Freesurfer anatomy using Brainstorm procedures to match their 
available head digitization points and anatomical landmarks.  

We created biophysical head models for each participant using the Brainstorm overlapping-
spheres model with default parameters. The MEG cortical maps consisted of 15,000 elementary 
dipole sources, constrained to the cortical surface, with free orientation. We computed source 
maps for each participant and each 6-second epoch using dynamic statistical parametric mapping 
(dSPM) with Brainstorm’s default parameters. To model environmental noise statistically, we 
processed with the same approach the two-minute empty-room recordings collected around the 
time of each participant's visit.  

For all epochs, we extracted individual source time series at each cortical location from the first 
principal component of the three elementary time courses of each triplet of elementary sources 
at each cortical vertex. Finally, we clustered the resulting 15,000 time series according to the 
Desikan-Killiany cortical parcellation38 into 68 regions of interest (ROIs), obtaining one 
representative time series per parcel from the first principal component of all source signals within 
each ROI. 

Derivation of spectral brain-fingerprints: We derived brain-fingerprints from the power spectrum 
of the ROI source time series. We calculated the Power Spectrum Density (PSD) for each parcel 
using Welch’s method, with a time window of 3 seconds and 50% overlap. This approach yielded 
PSDs in the frequency range of 0–150 Hz, at a frequency resolution of 1/3 Hz. 
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Each individual's spectral brain-fingerprint was composed of the PSDs of all 68 cortical parcels, 
averaged across all 6-second epochs. As detailed in Results, we derived two sets of spectral brain-
fingerprints based on epochs from either the first or second half of the entire MEG session 
recordings. We also produced spectral brain-fingerprints from shorter datasets comprising 30-
second non-overlapping segments. 

The feature count in each spectral brain-fingerprint totaled 68x451. We performed subsequent 
analyses using in-house developed code in Python (version 3.7.6) and R (version 4.2.1). 

Individual differentiation from spectral brain-fingerprints: We replicated a previously published 
fingerprinting approach based on the correlational differentiability of participants between data 
segments (as illustrated in Figure 1a-b)24. For each participant, we calculated all Pearson’s 
correlation coefficients between their first spectral brain-fingerprint and the second brain-
fingerprint of every individual in the same cohort, including the participant being analyzed. The 
fingerprinting process per se involved a simple lookup along the rows or columns of the 
symmetrical interindividual correlation matrix. The highest correlation coefficient in this matrix 
indicated the matching participant. 

We repeated this approach for all participants in the cohort, resulting in a confusion matrix across 
all participants based on the two instances of their respective brain-fingerprints. We determined 
the overall differentiation accuracy of the brain-fingerprinting procedure by calculating the 
percent ratio of correctly differentiated individuals.  

We addressed three types of differentiation challenges: i) differentiation among healthy 
participants, ii) differentiation among Parkinson’s disease patients, and iii) differentiation of each 
PD patient against all healthy controls (as shown in Figure 1c). Differentiating healthy participants 
aimed to replicate our earlier study with younger adults24 in an older participant group, providing 
a benchmark differentiation accuracy for the patient participants' age group. 

We defined individual differentiability as the ability to distinguish a participant from others in the 
cohort based on their brain-fingerprint. We calculated this measure as the z-scored Pearson’s 
correlation between the two brain-fingerprints of a given participant (self-similarity), relative to 
the mean and standard deviation of the correlations between this participant's first brain-
fingerprint and the second brain-fingerprints of all other participants (other-similarity). 

Bootstrapping differentiation accuracy scores: To establish confidence intervals for the average 
differentiation accuracy scores obtained from the fingerprinting procedure, we employed a 
bootstrapping method across the tested cohorts. This involved randomly selecting a subset of 
participants, constituting 90% of the cohort, and performing brain-fingerprinting on their data to 
obtain a differentiation accuracy score for that subset.  
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We repeated this process 1,000 times, each time with a different random subset of participants 
from the cohort. From the empirical distribution of these differentiation accuracies, we derived a 
95% confidence interval, using the 2.5th and 97.5th percentiles.  

Addressing biophysical and environmental artifacts: We examined the potential impact of 
environmental noise and biophysical recording artifacts on the differentiation of individual 
participants. To do this, we correlated individual differentiability scores with the root-mean-
squares (RMS) of ocular, cardiac, and head movement signals that were recorded simultaneously 
with MEG. These signals included data from electrocardiogram (ECG), horizontal electrooculogram 
(HEOG), vertical electrooculogram (VEOG), and head-coils triplet channels. 

We analyzed the correlations between these three measures and the individual differentiability of 
each participant from the entire cohort. Additionally, we included the head motion RMS measure 
as a nuisance covariate in our regression model that explored the relationship between individual 
differentiability and motor symptoms.  

To assess if environmental and instrument noise, which can vary daily, could have biased individual 
differentiation, we utilized the empty-room recordings collected alongside each MEG session. 
From these recordings, we derived pseudo brain-fingerprints for each participant, based on the 
cortical source maps of the noise recordings. We then calculated the differentiation accuracies 
from these pseudo brain-fingerprints, following the same procedure as above.  

Arrhythmic/rhythmic spectral parametrization: To evaluate the contribution of arrhythmic and 
rhythmic spectral components to individual differentiation, we first identified the best-fitting 
arrhythmic components of each individual’s brain-fingerprint spectral features in the 2-40 Hz 
range using specparam in Brainstorm. The parameters for specparam were set as follows: peak 
width limits between 0.5 and 12 Hz, a maximum of 3 peaks, a minimum peak amplitude of 3 
arbitrary units (a.u.), a peak threshold of 2 standard deviations, a proximity threshold of 2 standard 
deviations, and a fixed aperiodic mode. 

Using these arrhythmic models, we derived brain-fingerprints based solely on their features. 
Symmetrically, we removed the arrhythmic components from the original brain-fingerprints to 
isolate the rhythmic residuals and assess their contribution to inter-individual differentiation.  

We then conducted the same brain-fingerprinting analyses as previously described, applying them 
separately to both arrhythmic and rhythmic brain-fingerprints.  

Saliency of brain-fingerprint features: We quantified the contribution of each cortical region to 
individual differentiation using intraclass correlations (ICC). ICC assess the agreement between 
two measures, in this context, indicating how consistent a particular brain-fingerprint feature is 
across the two brain-fingerprints of each individual compared to others in the cohort. A higher ICC 
for a given brain-fingerprint feature implies greater consistency across an individual's brain-
fingerprints relative to the cohort. 
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To illustrate the saliency of these features, we created ΔICC maps, as shown in Figure 3b and Figure 
S3. We first averaged the ΔICC values within each of the canonical frequency bands and then 
averaged these across all bands. This process involved averaging ΔICC within specified frequency 
ranges: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz). 
This resulted in six ΔICC maps, one for each frequency band, which were then averaged to obtain 
a broadband ΔICC map. 
 
The rationale behind this method was to give equal weight to each frequency band in the 
derivation of the broadband ΔICC, irrespective of their respective bandwidths. For example, while 
the delta band has a bandwidth of 4 Hz, the high-gamma band encompasses 100 Hz. This approach 
ensures a balanced representation of all frequency bands in assessing the contribution of cortical 
regions to individual differentiation based on brain-fingerprint features. 
  

CamCAN sample of healthy controls: For verifying the robustness of the ΔICC cortical map, we 
utilized an independent sample of healthy age-matched controls from the Cambridge Center for 
Aging Neuroscience (CamCAN) dataset. This data consisted of resting-state, eye-closed MEG 
recordings using a 306-channel VectorView MEG system (Elekta Neuromag, Helsinki). We 
processed the data of 370 healthy adults, aged between 40 and 78 years, from the CamCAN 
dataset using a pipeline similar to the one described in this paper.  

We preprocessed the CamCAN dataset in a similar fashion to the other data reported here. 
However, we used the linearly constrained beamformer in Brainstorm with default parameters to 
brain map sensor data and used longer time windows of 2 seconds with a 50% overlap for power 
spectrum estimates of source time series.  

We computed PSD estimates at each of the 68 parcels in the Desikan-Killiany atlas. We calculated 
ICC values for each specified frequency band. Using these ICC values, we constructed a cortical 
map of broadband ΔICC, following the method outlined above in Saliency of Brain-fingerprint 
Features. 

Computational neuroanatomy analysis: We ensured that neuroanatomical features, including 
those altered by Parkinson’s disease, did not influence the differentiation of participants based on 
their spectral brain-fingerprints. To achieve this, we measured z-scored deviations in cortical 
thickness for each cortical parcel in PD patients. These deviations were calculated using 
FreeSurfer's recon-all, based on the mean and standard deviation of cortical thickness observed 
in the age-matched healthy controls. 

We employed linear regression models to investigate two aspects: i) whether patients who were 
most differentiable based on their brain-fingerprints also exhibited greater deviations in cortical 
thickness, and ii) the relationship between deviations in regional cortical thickness and regional 
ΔICC (as depicted in Figure 3b, left panel). 
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Decoding disease stage from brain-fingerprints: We used individual Hoehn & Yahr scores as 
markers for disease staging in PD patients41,42. We binarized these scores around a value of 2, 
creating two distinct groups to differentiate patients with unilateral symptoms from those with 
bilateral symptoms.  

We trained a linear support vector machine (SVM) classifier in R, using default parameters. We 
trained a linear support vector machine (SVM) classifier in R with default parameters, to identify 
each patient’s disease stage category from their respective spectral brain-fingerprint features. 

We conducted SVM classification for each cortical parcel independently. To train the SVM 
classifier, we used data from a random sample of 80% of the patients, and the remaining 20% of 
patients served as a test set. We recorded the percentage of these held-out patients for whom 
the classifier accurately identified their Hoehn & Yahr category. We repeated this classification 
process 1,000 times for each cortical parcel, generating an empirical distribution of disease stage 
classification accuracy across the cortex.  

Next, we examined the spatial correlation between the cortical topographies of disease stage 
decoding accuracy and the regional ΔICC values from the brain-fingerprints (as discussed above in 
Saliency of Brain-fingerprint Features). Specifically, we correlated the differences in ICC values—
subtracted between the PD-cohort fingerprinting challenge and the control-cohort challenge—
across cortical ROIs with the decoding accuracies obtained from Hoehn & Yahr score decoding.  
 
Correspondence with cortical functional hierarchy:  We examined whether the brain-fingerprints 
of individuals with Parkinson's Disease (PD) align with the cortical topography of functional 
hierarchies in the cortex35. To investigate this, we focused on the spatial relationship between the 
ΔICC brain-fingerprint topography and the first gradient of the cortical functional hierarchy.  
 
We calculated Pearson’s spatial correlation between the ΔICC topography of brain-fingerprints 
and the atlas map of the first gradient of the cortical functional hierarchy. The gradient map we 
used is available from neuromaps36 and was parcellated into the 68 regions of the Desikan-Killiany 
atlas.  
 
To statistically evaluate the significance of these correlations, we computed Bayes factors using 
the correlationBF function in R. Additionally, we estimated p-values using permutation tests that 
accounted for the spatial autocorrelation inherent in the data91,92. 
 
Correlation with cortical neurotransmitter systems: Using a similar approach, we assessed the 
spatial correlation between the ΔICC values of brain-fingerprints and the normative atlas maps of 
various neurotransmitter systems. These systems were represented by maps for 19 receptors and 
transporters across 9 neurotransmitter systems, obtained from neuromaps. The neurotransmitter 
systems and their corresponding receptors and transporters included: Dopamine (D1, D2, DAT); 
Serotonin (5-HT1a, 5-HT1b, 5-HT2a, 5-HT4, 5-HT6, 5-HTT); Acetylcholine (α4β2, M1, VAChT); GABA 
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(GABAa); Glutamate (NMDA, mGluR5); Norepinephrine (NET); Histamine (H3); Cannabinoid (CB1) 
and Opioid (MOR). 
  
Each neurotransmitter system map was parcellated using the 68 regions of the Desikan-Killiany 
atlas. We then calculated Pearson’s spatial correlations between these neurochemical maps and 
the regional ΔICC values of brain-fingerprints.  
 
To determine statistical significance, we corrected for multiple comparisons using the False 
Discovery Rate (FDR) method implemented in R's p.adjust function93. We also computed Bayes 
factors using the correlationBF function in R to quantify evidence in favor of the alternative 
hypothesis that a spatial correlation exists. 
 
For each significant spatial correspondence observed, we estimated p-values based on spatially 
constrained permutation tests91,92. We conducted 1,000 permutations of the neurochemical 
atlases using the Hungarian method. It is important to note that the reported effects might be 
stronger than what was observed in the spin tests from the permuted data, leading to a null pspin 
value.  

Temporal variability of the PD brain-fingerprint: To investigate the temporal variability of PD 
brain-fingerprint, we utilized brain-fingerprints derived from 30-second recordings of data. This 
approach builds on our previous work, which demonstrated the robustness of spectral brain-
fingerprints derived from brief recordings81.  

To predict the Fisher z-transformed self-similarity (i.e., autocorrelation) of successive brain-
fingerprints, we employed second-order polynomial hierarchical regression models constructed 
using the lme4 package in R. 

In our modeling, we nested the slope of gap duration within each subject, allowing for second-
order polynomial fits for gap duration between brain fingerprints.  

𝑎𝑟𝑡𝑎𝑛ℎ(𝑠𝑒𝑙𝑓 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑖𝑟𝑡𝑦)	~		𝑝𝑜𝑙𝑦(𝑔𝑎𝑝	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 2) ∗ 𝐺𝑟𝑜𝑢𝑝	(𝑃𝐷	𝑣𝑠	𝐶𝑇𝐿) + ℎ𝑒𝑎𝑑	𝑚𝑜𝑡𝑖𝑜𝑛
+ 𝑟𝑎𝑛𝑑𝑜𝑚	𝑒𝑓𝑓𝑒𝑐𝑡(1	 + 	𝑝𝑜𝑙𝑦(𝑔𝑎𝑝	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 2)	|𝑆𝑢𝑏𝑗𝐼𝑑) 

 

Results 
We collected at least two task-free MEG recordings, each lasting 5 minutes with participants' eyes 
open, from 79 PD patients and 54 age-matched healthy controls (Prevent-AD sample; 
demographic details in Table S1). We then applied source-imaging to the MEG sensor data, using 
individual cortical surfaces derived from T1-weighted structural MRI scans37. For each participant, 
we estimated the power spectrum density (PSD) of their cortical MEG time series in the 0-150 Hz 
frequency range, across the cortical regions defined by the Desikan-Killiany atlas38. This process 
generated one spectral brain-fingerprint for each participant’s MEG recordings (see Methods). 
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Our goal with brain-fingerprinting was to quantify the distinctiveness of individual features in the 
brain-fingerprints of patients and healthy controls. We therefore compared the cortical spectral 
features from each participant's MEG recordings with those of all other participants in our sample. 
By doing so, we extended our seminal brain-fingerprinting results, previously established in young 
healthy adults24, to the healthy older individuals in our present cohort. Subsequently, we applied 
the same analysis to differentiate PD patients. Finally, we examined if this method could reliably 
distinguish PD patients from their age-matched healthy counterparts (Figure 1). For the 
differentiation accuracy scores obtained, we calculated bootstrapped confidence intervals (CIs), 
as detailed in the Methods section. 
 
 

Figure 1: Brain-fingerprinting pipeline and study design. 
(a) From each participant, the power spectrum density of MEG source time series is computed 
for each region defined by the Desikan-Killiany atlas. This is done for two data segments (datasets 
1 and 2), each containing approximately 4 minutes of clean data. The power spectra from these 
segments form two spectral brain-fingerprints (b-fp1 and b-fp2) for each participant 38. A 
confusion matrix, using self- and other-similarity measures of these brain-fingerprints across 
participants, enables inter-individual differentiation assessment. (b) We evaluated the 
effectiveness of this approach in differentiating individuals among three groups: i) healthy 
controls, ii) patients with Parkinson's Disease (PD), and iii) each PD patient compared to healthy 
controls. (c) We derived an individual differentiability score for each participant, based on the 
self-similarity of their two brain-fingerprints. This score is z-scored against the other-similarity of 
their fingerprints with those of other participants in the study. 
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Brain-Fingerprinting Accuracy in Differentiating Healthy and PD Participants 
We found that healthy participants can be differentiated from each other with 89.8% accuracy (CI 
[88.0, 94.0]; Figure 2a), patients with PD from each other with 77.2% accuracy (CI [74.7, 81.7]), 
and patients from healthy controls with 81.1% accuracy (CI [81.0, 83.5]; Figure 2a) using full 
spectral features.  
 
To assess the respective contributions to this inter-individual differentiation from arrhythmic 
versus rhythmic neurophysiology, we parametrized the regional power spectra of the cortical time 
series into aperiodic (broadband, scale-free 1/f) and periodic (band-limited, oscillatory) 
components and used these data to recompute brain-fingerprints. The accuracy of inter-individual 
differentiation based on arrhythmic brain-fingerprints decreased to 74.1% between healthy 
controls (CI [72.0, 78.0]), 66.5% between patients (CI [62.9, 71.4]), and 71.5% accuracy individual 
patients and healthy controls (CI [69.6, 75.9]; Figure S1 and Supplemental Information). In 
contrast, the accuracy of inter-individual differentiation based on rhythmic brain-fingerprints 
increased to 92.6% (CI [90.0, 96.0]) among healthy participants, 86.7% (CI [82.9, 91.4]) between 
patients, and 90.5% (CI [89.9, 92.4]) between individual patients and healthy controls (Figure 2a 
bar plots).  
 
We then sought to determine whether the present participants could be similarly differentiated 
based on brief, 30-second segments, thereby replicating our previous observations in younger 
healthy participants with older healthy adults and patients.24. We observed a similar pattern of 
differentiation accuracies: differentiation between healthy participants reached 84.9% (computed 
95% CI [83.1, 86.7]), 77.2% for between patients (95% CI [74.4, 79.9]), and 81.2% for between 
patients and healthy controls (95% CI [78.7, 83.7]) for full spectral features. These results 
demonstrate the robustness of the spectral brain-fingerprinting approach with respect to data 
length (scatter plots in Figure 2a). Both brain-fingerprints of the arrhythmic and rhythmic 
components derived from brief segments of 30 seconds exhibited similar patterns, with 
arrhythmic brain-fingerprints differentiating between patients with lower accuracy than healthy 
participants. 
 
Moment-to-moment arrhythmic fluctuations are increased in Parkinson’s disease 
We aimed to understand why the accuracy of differentiating PD patients from healthy controls 
varied so significantly, both with full spectral brain-fingerprints (77.2% vs. 89.8% accuracy) and 
arrhythmic ones (66.5% vs. 74.1% accuracy). To do this, we compared the similarity of brain-
fingerprints within each dataset (self-similarity) to the similarity with fingerprints from other 
participants (other-similarity). Our analysis revealed no significant difference in other-similarity 
among healthy participants and PD patients when comparing full spectral brain-fingerprints (see 
Figure S2). However, we noted a significant reduction in the self-similarity of the patients' full 
spectral brain-fingerprints (t=2.24, p=0.02; permutation t-tests; Figure 2b). 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 1, 2023. ; https://doi.org/10.1101/2023.02.03.23285441doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.03.23285441
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

  13 

 

To better understand this effect, we analyzed the impact of arrhythmic versus rhythmic 
neurophysiological spectral components on self-similarity. We observed that arrhythmic brain-
fingerprints in patients demonstrated reduced self-similarity (t=4.86, p<0.01; permutation t-tests), 
unlike rhythmic brain-fingerprints (t=1.77, p=0.09; permutation t-tests; Figure 2b). 
  
Further, we investigated if this discrepancy could be linked to the increased moment-to-moment 
variability in the brain activity of PD patients within the recording session (as detailed in Methods 
under 'Temporal variability of the PD brain-fingerprint'; see Table S2-S4 and Figure 2c). Using the 
shorter 30-second data segments, we discovered that for full spectrum brain-fingerprints, the self-
similarity decreases more rapidly in patients than in healthy controls as the duration of the gap 
between the data segments increases (β=-3.77, SE=1.73, 95% CI [-7.16, -0.38], p= 0.029; detailed 
in Table S2). This pattern was not significant for arrhythmic brain-fingerprints (β=-3.67, SE=2.33, 
95% CI [-8.25, 0.92], p= 0.117; Table S3) but showed a similar trend. Conversely, rhythmic brain-
fingerprints revealed a different pattern: for shorter time gaps between data segments, the 
neurophysiological activity in patients with PD was more self-similar than that of controls, 
becoming comparable over longer durations (β=-3.33, SE=1.69, 95% CI [-6.65, -0.02], p=0.049; 
Table S4). Together, these results suggest that the decreased differentiation accuracy observed in 
PD is related to an increased moment-to-moment variability of arrhythmic brain-fingerprints in 
PD. 
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Figure 2: Differentiating Patients with Parkinson’s Disease from Healthy Controls Using Spectral 
Brain-Fingerprints. 
(a) Accuracy in distinguishing participants from their brain-fingerprints derived from full, 
arrhythmic, and rhythmic neurophysiological power spectra, estimated from 4-minute (bar plots) 
and 30-second (scatter plots) data segments. Scatter plots indicate differentiation accuracy for 
all brain-fingerprint pairs derived from all possible contiguous 30-second segments derived from 
the original 4-minute recordings. Grey segments at the base of the bar plots indicate control 
differentiation performances based on empty-room MEG recordings collected during each 
participant' visit (refer to Methods). Error bars represent bootstrapped 95% confidence intervals. 
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(b) Self-similarity statistics within participants for full spectral, rhythmic, and arrhythmic brain-
fingerprints. The plots show the empirical density of self-similarity statistics between two 
consecutive brain-fingerprints in control and PD cohorts, with the PD group showing a wider 
distribution, suggesting more variability in patients for full spectral and aperiodic features. 
(c) Self-similarity of brain-fingerprints from brief (30-second) brain data segments across full 
spectral, rhythmic, and arrhythmic features. PD patients show lower self-similarity with increased 
gap durations between recordings (y-intercept shift downwards). The self-similarity of patient 
full spectrum brain-fingerprints decreases more rapidly as the gap duration between recordings 
increases. In contrast, the self-similarity of patient brain-fingerprints from rhythmic components 
was more self-similar than controls at short gap durations, and became comparable at longer 
durations. Shaded regions indicate the standard error on the mean. 
  

The Parkinson’s brain-fingerprint indicates disease stages 
Given the noted temporal stability of rhythmic neurophysiological features in patients with 
Parkinson’s Disease (PD), we calculated the intraclass correlation (ICC) scores for each cortical 
region to identify the most consistent neurophysiological features in the rhythmic spectral brain-
fingerprints across individuals21,39. We found distinctive patterns of rhythmic neurophysiology in 
varying brain regions between healthy controls and PD patients. The highest ICC values were in 
frontal and medial cortical regions for healthy controls (Figure S3a), and in the right pre- and post-
central regions for PD patients (Figure 3a and Figures S3b). 

 
We replicated these findings with an external sample of healthy age-matched controls from the 
Cambridge Center for Aging Neuroscience (CamCAN) dataset40 (Figure 3a, see Methods). We 
computed a cortical map of ICC values for the independent sample of healthy older controls and 
contrasted this map with the topography of patients with PD (i.e., ΔICC map). The cortical maps of 
the distinctive patterns of the PD brain-fingerprint obtained from using the two separate control 
samples were strongly correlated across control samples (r= 0.75, p< 0.001, pspin< 0.001).  
 
To gauge how the spatial divergence between the rhythmic brain-fingerprints relates to individual 
differentiation, we created brain-fingerprints for both PD patients and healthy controls using the 
top 10% of ICC features specific to each group (Figure 3a). Utilizing the most distinctive features 
of the brain-fingerprints of PD patients, we achieved a differentiation accuracy of 78.7% ([76.6, 
80.8] CI; Figure 2a) among healthy participants, and 88.7% ([85.5, 91.8] CI; Figure 3b) among PD 
patients. In contrast, using the features most salient in healthy control brain-fingerprints, we 
differentiated healthy participants with 92.7% accuracy ([90.6, 94.9] CI; Figure 3b), and PD patients 
with only 66.9% accuracy ([62.4, 71.5] CI; Figure 3b). 
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Figure 3: Comparative Analysis of Brain-Fingerprint Differentiation in Parkinson’s Disease and 
Control Groups  
(a) Cortical maps comparing ICC scores for differentiating between patients and controls. Orange 
areas show regions where differentiation of individual patients is more effective than in controls. 
We replicated this finding in two independent samples of healthy controls: the Prevent-AD 
dataset (top panel) and the CamCAN dataset (bottom panel).  
(b) Differentiation accuracy from brain-fingerprints defined by top features for differentiating 
patients (left, cortical areas shown in orange) and top features for differentiating controls (right, 
cortical areas shown in blue). 
 
We then explored if the rhythmic brain-fingerprint of a patient could be indicative of their clinical 
disease stage. For this purpose, we developed binary classifiers to decode the disease stage based 
on rhythmic spectral features at each cortical parcel (detailed in Methods under 'Decoding disease 
staging from brain-fingerprints'). We classified the disease stage as either “early” or “advanced” 
according to the patients’ scores on the Hoehn & Yahr clinical scale (HY< 2 and HY≥ 2, 
respectively)41,42.  
  
The cortical map of regional decoding accuracies revealed that it is possible to distinguish early 
from advanced clinical stages, exceeding chance levels, through electrophysiological brain activity. 
The most notable brain regions enabling this decoding were the right post-central and left caudal 
middle frontal gyri, showing decoding accuracies of 69.6% and 68.8%, respectively (Figure 4a). This 
data-driven approach uncovered that in these specific regions, there is a suppression of faster 
brain activity above 15Hz and an increase in slower activity (6-9 Hz) in the more advanced disease 
stages (Figure 3b, right panel). 
  
Moreover, we found that the cortical map for disease-stage decoding aligns with the map of ICC 
difference scores (Figure 4b) and replicated this alignment using the CamCAN sample of healthy 
controls r= 0.36 (p< 0.01, pspin< 0.001) and r= 0.51 (p>0.001, pspin< 0.001), respectively. This 
consistency in findings was robust regardless of the cross-validation method employed for training 
the disease-stage classifiers (Figure S6). 
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Figure 4: Decoding Stages of Parkinson’s Disease from Brain-Fingerprints.  
(a) Cortical topography of decoding accuracies for Parkinson’s disease stages (based on binarized 
Hoehn & Yahr scores). On the right, power spectra of resting-state neurophysiological activity in 
the right postcentral gyrus, the cortical region with the highest accuracy in disease stage 
decoding. Plots represent the average power spectrum for each group: healthy controls, early 
and advanced disease stages, with shaded areas indicating standard errors across groups. 
(b) Scatter plot showing how the decoding accuracy of Parkinson’s disease stages from brain-
fingerprint features of each cortical parcel correlates with the saliency of each parcel, as 
determined by its ΔICC score.  
  
Aligning Parkinson's Disease Brain-Fingerprints with Cortical Functional Gradients 
and Neurotransmitter Systems 
We found that the regional disparities in prominent features of the rhythmic brain-fingerprint 
between Parkinson's Disease (PD) patients and controls (indicated by ΔICC; see Figure 3a) were 
aligned with the unimodal-to-transmodal functional gradient of the cortical hierarchy35 (r=-0.49, 
p< 0.001, pspin<0.001; Figure 5a, with details in Methods). The most notable rhythmic brain-
fingerprint features in healthy adults were associated with transmodal cortical regions. 
Conversely, the distinct features of the Parkinson rhythmic brain-fingerprint were more closely 
related to unimodal (i.e., primary sensorimotor) areas within the functional hierarchy of the 
cortex. Again, we replicated this effect using the CamCAN sample of healthy controls (r=-0.53, tp< 
0.001, pspin<0.001; Figure S7). 
 
We further investigated if the most prominent features of the Parkinson's brain-fingerprint were 
topographically related to the cortical distribution of major neurotransmitter systems. Using 
neuromaps36, we obtained 19 normative cortical maps representing 9 neurotransmitter systems 
(Figure 5b bottom) and assessed their spatial correlation with the cortical map of ICC difference 
scores (Figure 3a Prevent-AD sample; see Methods). Our analysis revealed significant correlations 
with several neurotransmitter systems, including serotonin-2a (r=-0.39, pFDR=0.006, pspin<0.001), 
serotonin-4 (r=-0.37, pFDR =0.008, pspin =0.008), cannabinoid-1 (r= -0.41, pFDR =0.00045, 
pspin<0.001), mu-opioid (r=-0.34, pFDR =0.018, pspin =0.007) receptors, and the norepinephrine 
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transporter (r=0.43, pFDR =0.0040, pspin <0.001). Notably, the cannabinoid, opioid, and serotonin 
systems, concentrated in temporal and frontal cortical regions, and corresponded with the most 
salient rhythmic brain-fingerprint features in healthy controls (Figure 5b & Figure S3a). Conversely, 
the pronounced presence of norepinephrine transporters in the somato-motor cortices mirrored 
the significance of rhythmic neurophysiology in these areas in PD patients (Figure 5b & Figure 3a). 
  
This effect replicated using the CamCAN sample of healthy controls (Figure 3a). We found 
alignments with the cortical distributions of serotonin-2a (r=-0.31, pFDR =0.02, pspin =0.005), 
serotonin-4 (r=-0.43, pFDR =0.002, pspin =0.002), cannabinoid-1 (r= -0.35, pFDR =0.01, pspin =0.003), 
mu-opioid (r=-0.37, pFDR =0.007, pspin =0.002) receptors, and the norepinephrine transporter 
(r=0.52, pFDR <0.001, pspin<0.001). Additionally, we observed a correspondence with the 
dopamine-1 (r=-0.31, pFDR =0.02, pspin =0.005), dopamine-2 (r=-0.28, pFDR =0.04, pspin =0.035), and 
serotonin transporter maps (r=-0.43, pFDR =0.001, pspin =0.003; Figure 5b). 
 

 
Figure 5: Correlation of Spectral Brain-Fingerprints with Cortical Functional Hierarchy and 
Neurotransmitter Systems. 
(a) Top: Cortical map illustrating the first unimodal-to-transmodal functional gradient, sourced 
from neuromaps36. Bottom: Linear association between the weights of cortical regions in this 
functional gradient (as per neuromaps) and their prominence in the PD brain-fingerprint (Figure 
3a, top). 
(b) Top: Bayes factor analysis of the topographical alignment between PD brain-fingerprint 
features (from Figure 3a) and atlases of various cortical neurochemical systems, highlighting 
strong correlations particularly with serotonin, cannabinoid, mu-opioid, and norepinephrine 
systems. Each row represents data from different control samples. Bottom: Selected 
neurochemical cortical atlases, as obtained from neuromaps.  
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Robustness of Spectral Brain-Fingerprints Against Environmental and Physiological 
Artifacts 
To ensure the reliability of spectral brain-fingerprints, we tested their robustness against 
environmental and physiological artifacts. We first evaluated environmental factors, specifically 
those related to the recording conditions on different days. To that effect, we used empty-room 
MEG recordings conducted around each participant's visit. By processing these recordings in a 
manner similar to the participant data and mapping them onto the participant’s cortical surfaces 
with the same imaging procedure used for their MEG data, we established that environmental 
factors did not significantly contribute to individual differentiation. Notably, the differentiation 
accuracy based on these empty-room recordings was substantially lower than that achieved with 
actual spectral brain-fingerprints (<5%; see Figure 2a & Figure S1). 
 
Further, we evaluated the influence of common physiological artifacts in MEG recordings, such as 
head motion, heart-rate variability, and eye blinks, on brain-fingerprinting. Our findings indicated 
that inter-individual differentiability was not significantly affected by cardiac or ocular artifacts (r= 
-0.04, p= 0.71 and r= -0.08, p= 0.46, respectively). However, there was a modest  association with 
head movements in the PD cohort (r= 0.24, p= 0.04; Bayesian post-hoc analysis BF= 2.04; Figure 
S5). Consequently, we included head motion as a nuisance covariate in all subsequent regression 
analyses (detailed in Methods). We note that there were no significant differences in physiological 
artifact profiles between healthy controls and PD patients (head motion: t(64.34)= 0.41, p= 0.68; 
EOG: t(123.88)= -0.91, p=0.36; ECG: t(64.41)= -1.24, p=0.22). 
 
Lastly, considering previous reports of cortical thickness abnormalities in PD4–7, we investigated 
whether these structural changes could partly explain the differentiability of PD patients from 
healthy controls. We derived cortical thickness measures from the structural MRI data of both 
groups, when available (n=134; Figure S4a). We standardized the patients’ cortical thickness maps 
using z-score transforms based on healthy controls. Our analysis revealed no significant linear 
relationship between individual differentiability and the average standardized cortical thickness in 
PD patients (b= -0.03, SE= 0.07, 95% CI [ -0.16, 0.11], p= 0.69; Figure S4b). Additionally, the cortical 
topography of the most salient Parkinson's brain-fingerprint features did not align with the cortical 
thickness changes observed in patients (Pearson’s correlation: r=0.04, t(66)=0.34, p=0.73, pspin 
=0.36). Thus, we conclude that the individual differentiability observed in PD patients based on 
their spectral brain-fingerprints is not significantly influenced by cortical thickness alterations 
associated with the disease. 
 

Discussion 
Our study demonstrates the application and relevance of brain fingerprinting to Parkinson’s 
disease (PD) research. We derived brain-fingerprints from task-free MEG recordings and first 
replicated the prior observation that the brain-fingerprints of patients with PD present increased 
variability over short periods of time compared to healthy controls30,31. We identified that this 
effect is due in large part to the enhanced temporal variability of the arrhythmic component of 
the neurophysiological brain activity of PD patients, making them less distinguishable from one 
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another. However, we observed that PD patients can be accurately differentiated from each other 
and from healthy controls based on brain-fingerprints derived from the rhythmic components of 
their ongoing electrophysiological brain activity. We further show that the distinct features of 
these rhythmic fingerprints correlate with disease staging and align with neurochemical systems 
impacted in PD, underscoring the potential for targeting neuromodulation therapies based on 
rhythmic cortical neurophysiology in PD.  
 
Alterations of Cortical Signaling in Parkinson’s Disease 
Previous studies highlighted frequency-specific signaling abnormalities in PD, particularly in motor 
and subcortical structures43,44. Our findings align with this literature10,45,46, showing that the most 
distinctive brain-fingerprint features in PD patients localize to the primary sensorimotor cortex 
(Figure 3b left panel & Figure S3c), which correlates with their disease stages (Figure 3b). In 
particular, we found evidence of a link between atypical beta and theta band activities in the 
postcentral gyrus and disease stages. This aligns with previous findings linking beta-bursting in the 
motor network and sensorimotor cortex with symptom severity and treatment response to 
medication8,10 and deep brain stimulation of the subthalamic nucleus47.  
 
The role of midline theta-band activity in PD48–51, thought to reflect cognitive processes52,53 and 
dopaminergic signaling54,55, was also confirmed in our study (Figure 4a). These findings are 
supported by previous research on theta neurostimulation's effectiveness in alleviating motor 
symptoms, including when targeting the precentral gyrus56–58.  
 
Functional Decoupling of the Default Mode Network in Parkinson’s Disease  
We observed that the most salient brain-fingerprint features of healthy controls align with regions 
of the default-mode network (DMN; Figure 5a & Figure S3a). Prior studies have noted functional 
decoupling of the DMN in PD during rest and task-based activities59–62, often linked to the 
dopaminergic system59–62. Yet, our data from patients on stable antiparkinsonian medication 
regimens may have moderated the saliency of DMN regions in the patients’ brain-fingerprints 
(Figure 3). Thus, our observation that the DMN, transmodal brain regions of the functional 
hierarchy do not contribute substantially to the Parkinson brain-fingerprint (Figure 5a) may reflect 
a normalization effect of medications63,64. These observations prompt further investigation into 
how responsiveness to medications relates to brain-fingerprints in transmodal brain regions. 
 

Neurochemical correlates of the PD brain-fingerprint 
Our data suggest that monoamine neurotransmitters are closely associated with the brain-
fingerprint of PD (Figure 5b). Specifically, we found that the cortical topography of serotonin 2a 
and 4 receptor densities is inversely related to the PD brain-fingerprint, while there is a direct 
association with the norepinephrine transporter.  
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This finding is in agreement with previous observations of the degradation of monoamines in PD65. 
We report negative relationships between the brain-fingerprint of PD and dopamine systems 
(Figure 3a). This effect was weak and inconsistent, possibly because changes in dopaminergic 
signalling caused by PD may primarily affect subcortical structures66 rather than the cortex, where 
our analyses were restricted. Further, the normative neurochemical system maps available in 
neuromaps were derived from an independent sample of adults, who were younger in age than 
the PD patients and aged-matched controls of the present study. Future research should explore 
these effects across subcortical structures and with normative atlases of neurochemical systems 
in older adults. 
 
We also observed a negative alignment of the Parkinson brain-fingerprint with the cannabinoid 
receptor-1 (CB1) system (Figure 5b), supporting prior research that documents elevated CB1 
receptor concentrations in PD61, and highlighting  CB1 as a potential therapeutic target in PD69. 
Our present results also highlight the potential participation of the cannabinoid system in the 
neuropathophysiology of PD and encourage more research in this area.  
 
Enhanced Temporal Fluctuation of Arrhythmic Brain Activity in Parkinson’s Disease 
Our study revealed that the brain-fingerprints of patients with Parkinson’s disease fluctuate more 
over short time spans compared to age-matched healthy individuals. This finding aligns with the 
decreased accuracy observed originally in differentiating individuals within the patient group 
(Figures 2b &c).  
 
We anticipated greater variability in PD brain activity based on previous fNIRS research, which 
suggested a correlation between symptom severity and hemodynamic signal variability31. 
Additionally, studies using fMRI connectome brain-fingerprinting indicated reduced self-similarity 
in individuals at risk of or with mental health disorders28,29 and in PD patients30. Our data extend 
these findings to electrophysiology, pointing at increased within-subject variability of arrhythmic 
brain activity in PD as a possible source of such variability. We noted that differentiation accuracy 
using full spectral and arrhythmic brain-fingerprints in PD patients was lower compared to 
rhythmic brain-fingerprints, which achieved similar differentiation as seen in healthy controls 
(Figure 2a).  
 
Recent research has linked alterations in PD patients' arrhythmic brain activity to symptom 
severity15,70,71. Preliminary studies further suggest that baseline arrhythmic activity in the 
subthalamic nucleus may predict responses to neuro-stimulation protocols13,14. While these 
studies focused on group-level mean differences, our findings emphasize the significance of 
within-patient variability of arrhythmic brain activity in understanding individual disease 
manifestations. We hope our results promote further research into optimizing personalized 
rhythmic stimulation protocols for PD management by normalizing cortical dynamics. 
 
Previous studies have also documented increased intra-individual variability in cognitive task 
performance in PD72–74, correlating with cognitive symptom severity49,72,73. The biological basis of 
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this behavioral variability increase remains poorly understood75. fMRI research has linked 
moment-to-moment brain activity variability with cognitive performance76–78, and recent studies 
have related BOLD signal variability to the arrhythmic components of electrophysiology79. 
Consequently, we hypothesize that the heightened variability in PD behavioral markers may be 
associated with the observed increased temporal variability in arrhythmic brain activity.  
 
The arrhythmic and rhythmic components of the neurophysiological spectrum indicate distinct 
neural mechanisms33,34,80. The arrhythmic spectrum's slope is conceived as reflecting the balance 
of neuronal excitation versus inhibition33,34. Therefore, our findings tentatively suggest more 
fluctuant dynamics in cortical excitability in PD. This construct is in line with emerging insights that 
dynamics of spectral aperiodic components are key to understanding healthy aging and 
behaviors80.  
 

Potential Clinical Impact of Brain-Fingerprinting in Personalized Neuromodulation 
Therapies  
The clinical utility of brain-fingerprinting hinges on its capacity to refine patient stratification, 
reveal novel disease characteristics, and inspire new treatment strategies. 
  
Our findings demonstrate that brief brain recordings can distinguish individuals24, including those 
with Parkinson’s disease. We highlight the consistent within-participant stability of rhythmic brain-
fingerprints in both patients and healthy controls (see Figure 2c), offering a unique insight into 
individual-specific brain activity. This consistency aligns with prior research showing the 
stabilization of spectral content in resting-state brain activity within 30 to 120 seconds of MEG 
recording81. This rapid stabilization is especially beneficial for clinical applications, particularly for 
patients with cognitive or motor impairments who may find longer recording sessions challenging. 
 
The present study also suggests that personalized neuromodulation therapies should primarily 
concentrate on rhythmic neurophysiology, the most consistent electrophysiological characteristic 
within individuals, reflective of each patient and related to disease traits. Specifically, theta- and 
beta-frequency rhythms in the fronto-motor cortices emerge as potential prime targets for 
neurostimulation protocols aimed at normalizing disease-related neurophysiological 
changes14,47,56,82. Conversely, arrhythmic neurophysiological activity displayed less stability and 
individual specificity in Parkinson's disease patients (Figure 2). This suggests that tracking the 
longitudinal variability of arrhythmic brain-fingerprints could enhance the definition and 
understanding of patient trajectories, as indicated here in Figure 2c. Incorporating this variability 
into adaptive neurostimulation therapies could potentially enhance clinical outcomes in 
Parkinson’s disease by reducing moment-to-moment fluctuations of core dynamics of brain 
activity related to the disease. 
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We also highlight the need to account for increased intra-individual variability of brain activity in 
disease states when developing statistical and machine learning models for disease classification. 
This consideration is crucial to ensure the scalability and generalizability of patient stratification 
methods.  
 
In conclusion, our study underscores the clinical significance of brain-fingerprinting based on rapid 
neurophysiological activity dynamics. It sheds light on the clinical aspects of Parkinson’s disease, 
identifying specific brain regions and rhythms where disease impacts neurophysiological stability. 
We anticipate these insights will catalyze further research in population neuroscience and the 
development of personalized neuromodulation therapies for Parkinson’s disease and other 
neurodegenerative conditions.  

 
Data availability 
The data are available through the Clinical Biospecimen Imaging and Genetic (C-BIG) repository 
(https://www.mcgill.ca/neuro/open-science/c-big-repository)84, the PREVENT-AD open resource 
(https://openpreventad.loris.ca/ and https://registeredpreventad.loris.ca)85, and the OMEGA 
repository (https://www.mcgill.ca/bic/resources/omega)86. Normative neurotransmitter density 
data are available from neuromaps (https://github.com/netneurolab/neuromaps)36. 
 

Code availability 
All in-house code used for data analysis and visualization is available on GitHub 
https://github.com/jasondsc/PDneuralfingerprinting. 
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